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Preface

Home is where one starts from. As we grow older
The world becomes stranger, the pattern more complicated
Of dead and living.

T. S. EuioT, Four Quartets, East Coker, V.

A scienTist who writes on philosophy faces conflicts of conscience
from which he will seldom extricate himself whole and unscathed;
the open horizon and depth of philosophical thoughts are not easily
reconciled with that objective clarity and determinacy for which he
has been trained in the school of science.

The main part of this book is a translation of the article, * Philo-
sophie der Mathematik und Naturwissenschaft,” that I contributed
to R. Oldenbourg’s Handbuch der Philosophie in 1926. Writing it, I
was bound by the general plan of the Handbuch, as formulated in
broad outlines by the editors, that laid equal stress on both the sys-
tematic and historical aspects of philosophy. I was also bound,
though less consciously, by the German literary and philosophical
tradition in which I had grown up, and by the limited circle of prob-
lems that had come to life for me in my own mental development.

Under the heading ‘“Naturwissenschaft’”’ my Handbuch article
dealt almost exclusively with physics. It is the only branch of the
natural sciences with which I am familiar through my own work.
There were additional reasons why biology was dismissed with a few
general observations: the space allotted me was more than exhausted,
and I could rely on the following article, *“ Metaphysik der Natur”
by the biologist and philosopher Hans Driesch, to fill the gap.

Twenty odd years have since passed, a long and eventful timein the
history of science. But when (not of my own initiative) the plan
arose to have the book translated into English I gave my consent,
fully aware though I was of the accidental circumstances of its birth
and the wrinkles of old age in its face. For it seemed to me that its
message of the interpenetration of scientific and philosophical thought
is today as timely as ever. But the events of the last two decades
could not be ignored altogether. For more than one reason the alter-
native of re-writing the book myself in English was out of the question;
how could I hope to recapture the faith and spirit of that epoch of my
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PREFACE

life when I first composed it — after due literary preparations dashing
off the manusecript in a few weeks? Thus a different course had to be
followed.

In spite of numerous alterations in detail, I mention especially
Sections 13-15 and the concluding Section 23, the substance of the
old text has been preserved, the outlook still being that of a philo-
sophically-minded mathematician at the time when the theory of
relativity had reached completion and the new quantum mechanics
was just about to rise. But the references are brought up to date and
six essays have been appended for which the development of mathe-
matics and physics in the intervening years, as well as biology, have
provided the raw material. This arrangement, objectionable from the
standpoint of esthetic unity, has a certain stimulating value. The
appendices are more systematic-scientific and less historico-philo-
sophical in character than the main text. With the years I have
grown more hesitant about the metaphysical implications of science;
““as we grow older, the world becomes stranger, the pattern more
complicated.” And yet science would perish without a supporting
transcendental faith in truth and reality, and without the continuous
interplay between its facts and constructions on the one hand and the
imagery of ideas on the other.

One of the principal tasks of this book should be to serve as a
critical guide to the literature listed in the references.

{Sections of historical and supplementary interest not necessary
to the main course of development of the book, set off in the German
edition by small print, are indicated in this volume by opening and
closing brackets, such as these. }

Dr. Olaf Helmer, versed both in mathematics and philosophical
logic, translated the whole Handbuch article, with the exception of
sections 16 and 17 which were done by my son, Dr. Joachim Weyl.
His and Dr. Helmer’s manuscripts have been revised by the author.
Unless an excessive amount of care and labor is bestowed on it, the
translation of a work that depends to some degree on the suggestive
power of language — and the communication of philosophical thoughts
does — or that has any literary qualities is apt to be a compromise.
I am afraid this book is no exception. But I can at least vouch for
the absence of any gross errors or misunderstandings; that is more
than can be said about the majority of translations.

HerMANN WEYL

Princeton, New Jersey
December 1947
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BIBLIOGRAPHICAL NOTE

Concerning editions and translations that have been used
for quotations

R. DEescaArTEs, Oeuvres, ed. Victor Cousin, Paris 1824. The
French versions of the Meditationes de prima philosophia = M édi-
tations [métaphysiques) touchant la premiére philosophie, and of Prin-
cipia philosophiae = Les principes de la philosophie, are contained in
Vols. I and III respectively.

The monumental Swiss edition of L. EULER’s Opera omnia is still
far from complete and does not yet include the two works cited here
(Theorta motus, and Anleitung zur Naturlehre).

G. GaLILEL, Opere, Edizione nazionale, Florence 1890-1909,
reprinted 1929—. “Dialogo” = ‘“Dialogo sopra i dui massimi
sistemi del mondo” is in Vol. VII; ‘“ Discorsi” = ‘Discorsi e dimo-
strazioni matematiche intorno & due nuoue scienze’ in Vol. VIII,
“Il saggiatore” in Vol. VI.

Davip Hume's Treatise of Human Nature and JoHN LockEe's
Engquiry concerning Human Understanding are quoted by ‘chapter
and verse,” which makes the quotations independent of any special
edition.

IMMANUEL KANT’s Critigue of Pure Reason, transl. by F. Max
Muiiller, 2nd ed., New York 1905 [German original: Kritik der reinen
Vernunft, first ed. 1781, second ed. 1787].

G. W. LeiBN1z, Mathematische Schriften, ed. Gerhardt, Berlin 1849
seq., Philosophische Schriften, ed. Gerhardt, Berlin 1875 seq.

LemsnN1z’s letters to S. Clarke form part of the controversy Leibniz
— Clarke that is to be found in G. W. LeiBN1z, Philosophische
Schriften, ed. Gerhardt, VII, pp. 352-440.

Str Isaac NEWTON’s Mathematical Principles of Natural Philosophy
and his System of the World, ed. F. Cajori, Berkeley, California, 1934,
2nd print 1946. [Original in Latin: Philosophiae naturalis principia
mathematica, first ed. London 1687, second ed. 1713, third ed. 1726.
The above translation is based on an old translation made after the
third edition by Andrew Motte in 1729.]

NEwTON’s Oplicks was written in English. The 4th edition (Lon-
don 1730) has been reprinted with an introduction by E. T. Whit-
taker: London 1931.

vii






Contents

PREFACE

BIBLIOGRAPHICAL NOTE

Part I. MATHEMATICS

Chapter I. Mathematical Logic, Axiomatics

1. Relations and their Combination, Structure of Propositions
2. The Constructive Mathematical Definition

3. Logical Inference

4. The Axiomatic Method

Chapter II. Number and Continuum, the Infinite

5. Rational Numbers and Complex Numbers

6. The Natural Numbers

7. The Irrational and the Infinitely Small

8. Set Theory

9. Intuitive Mathematics

10. Symbolic Mathematics

11. On the Character of Mathematical Cognition

Chapter II1I. Geometry

12. Non-Euclidean, Analytic, Multi-dimensional, Affine, Projective

Geometry; the Color Space
13. The Problem of Relativity
14. Congruence and Similarity. Left and Right
15. Riemann’s Point of View. Topology

Part II. NATURAL SCIENCE

Chapter 1. Space and Time, the Transcendental External

World

16. The Structure of Space and Time in their Physical Effectiveness
17. Subject and Object (The Scientific Implications of Epistemology)

18. The Problem of Space

Chapter II. Methodology

19. Measuring
20. Formation of Concepts
21. Formation of Theories

X

vii

30

67

93

95

139



CONTENTS

Chapter III. The Physical Picture of the World

22. Matter
23. Causality (Law, Chance, Freedom)

APPENDICES
Appendix A: The Structure of Mathematics
Appendix B: Ars Combinatoria
Appendix C: Quantum Physics and Causality
Appendix D: Chemical Valence and the Hierarchy of Structures
Appendix E: Physics and Biology
Appendix F: The Main Features of the Physical World; Morphe
and volution

INDEX

165

219
219
237
253
266
276

285
302



Part One. Mathematics



THE two parts of this book are intended to be a
report on some of the more important philo-
sophical results and viewpoints which have
emerged primarily from research within the
fields of mathematics and the exact empirical
sciences. I shall point out connections with the
great philosophical systems of the past wher-
ever I have been aware of them. Illustrative
examples will be chosen as simple as possible.
In principle, however, knowledge of the sciences
themselves must be upheld as a pre-requisite for
anyone engaging in the philosophy of science.

The method of presenting the foundations
of mathematics will lead from the surface into
the depth; consideration of the more formal
aspects will precede the study of problems con-
nected with the infinite. Though these latter
problems have stirred the imagination of all ages,
their careful formal preparation and stringent
treatment are recent achievements. Among the
heroes of philosophy it was Leibniz above all
who possessed a keen eye for the essential in
mathematics, and mathematics constitutes an
organic and significant component of his philo-
sophical system.



CHAPTER 1
Mathematical Logic, Axiomatics

To the Greeks we owe the insight that the structure of space, which
manifests itself in the relations between spatial configurations and
their mutual lawful dependences, is something entirely rational.
Whereas in examining a real object we have to rely continually on
our sense perception in order to bring to light ever new features,
capable of description in concepts of vague extent only, the struc-
ture of space can be exhaustively characterized with the help of a
few exact concepts and in a few statements, the axioms, in such a
manner that all geometrical concepts can be defined in terms of those
basic concepts and every true geometrical statement follows as a
logical consequence from the axioms. Thereby geometry has become
the prototype of a deductive science. And in view of this its character,
mathematics is eminently interested in the methods by which concepts
are defined in terms of others and statements are {nferred from others.
(Aristotelian logic, too, was essentially a product of abstraction from
mathematics.) What is more, it does not seem possible to lay the
foundations of mathematics itself without first giving a complete
account of these methods.

1. RELATIONS AND THEIR COMBINATION,
STRUCTURE OF PROPOSITIONS

In Euclidean geometry we are concerned with three categories
of objects, points, lines, and planes, which are not defined but assumed
to be intuitively given, and with the basic relations of incidence (a
point lies on a line, a line lies in a plane, a point lies in a plane), between-
ness (a point z lies between the points z and y), and congruence
(congruence of line segments and of angles). Analogously, in the
domain of natural numbers 1,2, 3, . . . we have a single basic relation
in terms of which all others are definable, namely that between a
number 7 and the number n’ immediately following upon n. Again,
the kinship relations among people furnish an excellent illustration
of the general theory of relations. In this case there are two basic
categories, males and females, and two basic relations, child (z is child
of y) and spouse (x is married to y).

The propositional scheme of a relation, e.g. ‘x follows upon y,’
contains one or more blanks z, y, . . . , each of which refers to a cer-
tain category of objects. From the propositional scheme a definite
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MATHEMATICS

proposition is obtained, e.g. ‘5 follows upon 4, when each blank is
filled by (the name of) a certain object of the corresponding category.
Language does not reflect the structure of such a relational proposition
correctly; we have no subject, copula, and predicate, but a relation
with two blanks, neither subordinate to the other, which are filled by
objects. One might, in order to get rid of the grammatical accidents
of language, represent the propositional schemata of relations by
wooden boards provided with so many holes co:responding to the
blanks, and the objects by little pegs which fit into the holes. In
principle these would be symbols as suitable as words. Two proposi-
tions such as ‘5 follows upon 4’ and ‘4 precedes 5’ are expressions of
one and the same relation between 4 and 5. It is unwarranted to
speak here of two relations inverse to each other. The blanks in a
relational proposition, though, do each have a specific position; and
it is a particular property (commutativity) if the relation R(zxy) (e.g.
z is a cousin of y) is equivalent (or coextensive) with R(yz).

Properties will have to be counted among the relations, just as 1
is taken to be a natural number. Their propositional scheme pos-
sesses exactly one blank.

{In §47 of his fifth letter to Clarke, Leibniz speaks of a “relation
between L and M, without consideration as to which member is pre-
ceding or succeeding, which is the subject or object.” ‘One cannot
say that both together, L and M, form the subject for such an accidens;
for we would then have one accidens in two subjects, namely one which
would stand, so to speak, with one foot in one subject and with the
other in the other subject, and this is incompatible with the concept
of an accidens. It must be said, therefore, that the relation . . . is
something outside of the subjects; but since it is neither substance nor
acctdens it must be something purely ideal, which is nevertheless well
worthy of examination.” The (explicit or implicit) assumption that
every relation must be based on properties has given rise to much
confusion in philosophy. A statement asserting, say, that one rose
is differently colored from a second is indeed founded on the fact that
one is red, the other yellow. But the relation ‘the point A4 lies on the
left of B’ is not based on a qualitatively describable position of A
alone and of B alone. The same holds for kinship relations among
people. The view here opposed evidently originates within the domain
of sense data, which -— it is true — can yield but quality and not rela-
tion. It is for this reason that Leibniz, in the above quotation, refers
to the relation as something purely ideal. More than two-place rela-
tions are hardly ever mentioned in the logico-philosophical literature.

The introduction of propositional schemata with blanks represents
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MATHEMATICAL LOGIC, AXIOMATICS

an important progress of mathematical beyond traditional logic. In
analogy to mathematical functions, which yield a number when their
arguments, or blanks, are filled by numbers, propositional schemata
are often also referred to as ‘ propositional functions.”

Aside from relations, operations play a part in the axioms of arith-
metic; e.g. the operation of addition which, when applied to two
numbers, a and b, produces a third, @ + b. This operation can be
replaced, however, by the relation a 4+ b = ¢ between the three
numbers a, b, ¢; it is ‘single-valued’ with respect to the argument ¢, in
the sense that for any two numbers a and b there exists one and only
one number ¢ which stands in the relation @ + b = ¢ to them. Thus
we are able to subordinate genetic construction to the static existence
of relations. Later, however, we shall proceed conversely, inasmuch
as we shall replace all relations by constructive processes. }

The principles of the combination of relations are as follows:

1. In a relation scheme with several blanks it is possible to
identify several of these blanks. For instance, from the scheme
N(zy): z is a nephew of y
we may obtain

N(zz): z is a nephew of himself.
2. Negation. Symbol: ~. N(zy) becomes
~ N(zy): z is not a nephew of y.

3. and. Symbol: & Thus N(zy) and, say, F(xy) — z is father of
y — yield the relation with three blanks

F(xy) & N (yz): z is father of y and y is nephew of z.

It must be stated which blanks of the combined schemata are to
be identified. Symbolically this is indicated by choosing the
same letter for the blanks.

4, or. Symbol: v. For instance,

F(zy) v N(yz): z is father of y or y is nephew of z.

The combination by means of ‘or’ can also be expressed in terms

of negation and the ‘and’ combination, and vice versa.!
! Leibniz employs the signs - and + for ‘and’ and ‘or’ respectively. We
deviate from his notation in order to avoid confusion with the arithmetical

operations of multiplication and addition. The formal analogy becomes apparent
in J. H. Lambert’s distributive law:

a-(b+c)=(a:b)+(a-c)
(Acta erudit. 1765, p. 441). Our use of the product sign IT and summation sign =
in 6 and 7 are in agreement with Leibniz’s usage.
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MATHEMATICS

5. Filling a blank by an immediately given object of the corre-
sponding category (substitution). F(I, z) means: I am father of
z. This is the scheme of that property with one blank z which
appertains exclusively to my children.

6. all. Symbol: II,. For instance, II,R(zy) means: all z (of the
corresponding category) are in the relation R(zy) to y.

7. some. Symbol: Z,. Thus Z,R(ry) means: there exists a y to
which z is in the relation R(zy). =, and II, are reducible to each
other in the same way with the help of negation as vand &. The
presence of a prefixed symbol I, or =, (with index z) deprives the
blank z of its capability of substitution just as much as if it had
been filled in according to 5. For the sake of these last two
principles of construction, it will always be necessary to add the
two-place relation of logical identity, z = y, to the immediately
given relations of our domain of investigation.

{ Ezamples. 1. Let (zl) mean: the point z lies on the line . In
plane geometry, according to Euclid, parallelism of two lines, {| 7,
consists in their having no point (z) in common:

~ Z; {(2]) & (al')}

is therefore the definition of the relation I || I
2. The statement that through two distinct points (z, y) there
always exists a line (/) would have to be written thus:

ILIL((z = ) v 2 {(2]) & (yD)}).

3. In the domain of natural numbers, p is called a prime number
if no numbers = and y, both different from 1, exist which stand to p
in the relation z - y = p. This property of p, of being a prime num-
ber, is to be defined as follows:

ILIL((z=Dv(y=1v~(z-y=0p)}

Starting with the immediately given basic relations of a field of
objects we may by applying the above principles in arbitrary com-
bination obtain an unlimited array of ‘derived’ relations (among which
the basic relations will of course be counted too). In particular we
shall thus arrive at relations with only one blank, the ‘derived prop-
erties” How such a property E(z) may serve as ‘differentia specifica’
in the sense of Aristotelian logic to demarcate a new concept within the
‘genus proximum’ of the object category to which its blank z refers,
will be sufficiently clear from the definition of ‘prime number’ in
Example 3. Among the derived propositional schemata we find,
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furthermore, those which no longer possess any blank at all, such as in
Example 2; they are the pertinent propositions of our discipline. If
we knew of each of these propositions whether or not it is true, then
we should have complete knowledge of the objects of the basic cate-
gories as far as they are connected by the basic relations. The logical
structure of a proposition of this kind can be described adequately
only by stating the manner, order, and combination, in which our
seven principles have contributed to its construction. This is a far
cry from the old doctrine, according to which a proposition must
always consist of subject, predicate, and copula. The syntax of
relations, as indicated here, offers a firm starting point for a logical
critique of language.

-[Compa.re, for instance, Russell’s remarks (Introduction to Mathe-
matical Philosophy, Chap. 16) on the definite article in non-deictic
application (such as in the proposition: the line through the distinct
points 4, B also passes through C).

A proposition is called general if it is constructed without recourse
to the fifth principle, of substitution of an immediately given object
(‘this here’). A non-general proposition is called particular. (Here
one might still distinguish between the singular case, in which Prin-
ciple 5 only, and neither II, nor Z,, is used for elimination of a blank
z, and the mixed general-singular case.) An object a shows itself to
be an tndividual if it can be completely characterized by a pertinent
general property; that is, if without recourse to Principle 5 a property
can be constructed that applies to a but to no other object of the same
category. Existence can be asserted only of something described by a
property in this manner, not of something merelv named, it being
essential that =, carries a blank z as an index. (This remark is of
use in a critique of the ontological proof of the existence of God.)
Within the domain of natural numbers, 1 is an individual, for it is the
only such number which does not follow upon any other. Indeed, all
natural numbers are individuals. The mystery that clings to num-
bers, the magic of numbers, may spring from this very fact, that the
intellect, in the form of the number series, creates an infinite manifold
of well distinguishable individuals. Even we enlightened scientists
can still feel it e.g. in the impenetrable law of the distribution of prime
numbers. On the other hand, it is the free constructibility and the
individual character of the numbers that qualify them for the exact
theoretical representation of reality. The very opposite holds for the
points in space. Any property derived from the basic geometric
relations without reference to individual points, lines, or planes that
applies to any one point applies to every point. This conceptual
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homogeneity reflects the intuitive homogeneity of space. Leibniz has
this in mind when he gives the following ‘philosophical’ definition of
similar configurations in geometry, ‘‘Things are similar if they are
indistinguishable when each is observed by itself.” (Math. Schriften,
V, p. 180.) }

2. THE CONSTRUCTIVE MATHEMATICAL
DEFINITION

Aside from the combinatorial definition of derived relations, as
discussed in Section 1, mathematics has a creative definition at its
disposal, through which new ideal objects can be generated. Thus, in
plane geometry, the concept of a circle is introduced with the help of
the ternary point relation of congruence, 0A = OB, which appears in
the axioms, as follows, ‘A point O and a different point A determine a
circle, the ‘circle about O through A’; that a point P lies on this circle
means that 04 = OP.” For the mathematician it is irrelevant what
circles are. It is of importance only to know in what manner a circle
may be given (namely by O and A) and what is meant by saying that a
point P lies on the circle thus given. Only in statements of this latter
form or in statements explicitly defined on their basis does the concept
of a circle appear. Therefore the circle about O through A is identical
with the circle about O’ through A’ if and only if all points lying on the
first circle also lie on the second, and vice versa. The axioms of
geometry show that this criterion, which refers to the infinite manifold
of all points, may be replaced by a finite one: O’ must coincide with O,
and we must have OA’ = OA.

{F’urther examples. 1. Nobody can explain what a function is, but
this is what really matters in mathematics: ““A function f is given
whenever with every real number a there is associated a number b (as
for example, by the formula b = 2a 4+ 1). b is then said to be the
value of the function f for the argument value a.”” Consequently,
two functions, though defined differently, are considered the same if,
for every possible argument value a, the two corresponding function
values coincide.

2. In Euclidean geometry the ‘“ points at infinity,” in which parallel
lines allegedly intersect, are such ideal elements added to the real
points by a creative mathematical definition. By a suitable intro-
duction of ideal points one can, more generally, extend a given limited
portion 8 of space, the ‘accessible’ space, so as to comprise the whole
space of projective geometry. The task is to decide through geometric
constructions within S whether two real lines, i.e. lines passing through
S, issue from the same ideal point. Such a point is defined most
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simply as the vertex of a trilateral corner (formed by three real lines).
Thus we arrive at the following definition: * Three non-coplanar lines
a, b, ¢, any two of which are coplanar, determine an ideal point [a, b, c].
To say that a line [ passes through this point means that [ is coplanar
with each of the lines @, b, ¢.”” Again this definition implies a criterion
for the coincidence of two such ideal points. To every real point p
there corresponds exactly one ideal point r such.that every line through
p passes, in the sense of our definition, through . Thus a part of the
ideal points may be identified with the real points. (Compare Pasch,
Vorlesungen tiber neuere Geometrie, 2d ed., p. 40.) According to the
same scheme, mathematics always accomplishes the extension of a
given domain of operation through the introduction of ideal elements.
Such an extension is made in order to enforce the validity of simple
laws. For example, as a consequence of the addition of the points at
infinity it is true not only that two distinet points can always be
joined by a line, but also that two distinet coplanar lines always
intersect at a point. The introduction of imaginary elements in
geometry (in order to enforce simple and universally valid theorems
on intersection of algebraic curves and surfaces) and the introduction
by Kummer of ¢deal numbers in number theory (in order to restore the
laws of divisibility, which at first were lost in the transition from
rational to algebraic numbers) are among the most fruitful examples
of this method of ideal elements. }

A special case is the process of definition by abstraction. A binary
relation ¢ =~ b in a domain of objects is called an equivalence (a relation
of the character of equality), if the following is universally true:

(i) a = a;

(i1) if a = b, then b = a (commutativity);

(iii) if @ = b and b = ¢, then a = ¢ (transitivity).
By agreeing to consider two objects @ and b as distinct if and only if
they do not satisfy the equivalence relation a = b, a new object domain
is derived by abstraction from the original one.

Ezxamples and comments. 1. Similarity of geometrical figures is an
equivalence. Every figure is attributed a certain shape, and two
figures have the same shape if and only if they are similar. In a more
philosophical mode of expression one is used to say that the concept of
shape results from that of figure by abstracting from position and
magnitude. In scientific practice the introduction of a concept thus
abstracted expresses the intention of exclusively considering znvariant
properties and relations among the originally given objects. R(zy) is
invariant with respect to the equivalence =, if R(ab) always entails
R(a’d’), provided a’ = a and b’ = b.

9
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2. Two sets A and B of objects (say, the persons and chairs in a
room) are said to be numerically equivalent, A =~ B, if it is possible
to pair off the elements of A with those of B (if it is possible to assign
one person to each chair, so that no chair remains vacant and no
person remains unseated). Numerical equivalence obviously is an
equivalence in the above sense. ‘Every set determines a (cardinal)
number; two sets determine the same number if and only if they are
numerically equivalent.” (This explanation can already be found in
Hume, Treatise of Human Nature, Book I, Part III, Section 1.)2 In
more careless formulation one would say that the concept of (cardinal)
number results from that of set by abstracting from the nature of the
elements of the set and merely considering their discernibility. The
objection occasionally put forward that all elements, if degraded into
mere Ones, collapse into one, is met by the above precise formulation.

-[The example of number may serve to illustrate that the definition
by abstraction is a special case of the creative definition. It is
subordinated to the latter as follows: ‘Every set A determines a
number (A). To say that an arbitrary set M consists of (A) elements
means that M and A are numerically equivalent.” Consequently the
number (A) is the same as the number (B), if every set M thatis =~ A
also is = B, and vice versa. But according to the rules (ii) and (iii)
for equivalences, such is the case if and only if A = B. Finally, rule
(1) guarantees that, in particular, A itself consists of (A) elements.

3. Two integers, according to Gauss, are congruent modulo 5 if
their difference is divisible by 5. Congruence is a relation of the
character of equality. Through the corresponding abstraction we
obtain, from the integers, the congruence-integers modulo 5. Since
the operations of addition and multiplication are invariant with
respect to congruence, the result is a finite domain of only 5 elements,
within which the usual algebra can be carried on just as well as in the
infinite domain of the ordinary rational integers. We have here, for
instance, 2 +4 =1, 34 = 2 (modulo5). Not only subtraction but
even division can be carried out, by virtue of the fact that 5 is a prime
number. This example is of fundamental importance for number
theory.

4. The most significant physical concepts are likewise obtained in
accordance with the scheme of mathematical abstraction. We shall
return to this in Part IT when the process of measurement is discussed.

2 The passage is worth quoting. ‘“When two numbers are so combined, as
that the one has always an unit answering to every unit of the other, we pronounce
them equal; and it is for want of such a standard of equality in extension, that
geometry can scarce be esteemed a perfect and infallible science.”
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The principle of definition by abstraction I find alluded to by
Leibniz in his fifth letter to Clarke, §47. He says there, ‘‘ Incidentally,
I have proceeded here by and large as Euclid did. The latter, since
he found himself unable to define the concept of geometrical ratio
absolutely, stipulated what was to be understood by equal ratios.”
And shortly before that, *“ The mind, however, is dissatisfied with this
equality. It seeks an identity, a thing which would truly be the same,
and it imagines it to be in a manner outside of the subjects.” The
principle has shown its full importance for mathematics only in the
19th century. It was consciously formulated in all generality by
Pasch in his book quoted on p. 9 (1882), still more clearly by Frege
(Die Grundlagen der Arithmetik, Breslau 1884, Sections 63-68). Com-
pare also Helmholtz (Zihlen und Messen, 1887, Wissenschaftliche
Abhandlungen, 111, p. 377).

Beside the above-mentioned mathematical form of abstraction one
might be inclined to place another, the originary abstraction. In
looking at a flower I can mentally isolate the abstract feature of color
as such. This act of abstraction would here be primary while the
statement that two flowers have the same color ‘red’ would be based
on it; whereas in mathematical abstraction it is the equality which is
primary, while the feature with regard to which there is equality comes
second and is derived from the equality relation. But the integers of
the same congruence class modulo 5 can also be characterized by the
fact that upon division by 5 they all leave the same remainder; the
similarity of two triangles by the fact that the angles in both have
the same numerical values and corresponding sides have the same ratios.
The general procedure of constructing these remainders and these
numerical values of angles and ratios, respectively, takes the place of
the feature ‘color,” its identical result for two integers or triangles that
of the identical ‘red’ of two flowers. Originary abstraction thus is
subordinate to mathematical abstraction. But that which is common
to all congruent triangles or to all bodies occupying the same spatial
position, I find myself unable to represent by an objective feature
(it is the latter example that Leibniz loc. cit. had in mind), but merely
by the indication: congruent to this triangle, occupying this spatial
position. Our question is connected with the problem of relativity
(Section 13), with the difference between conceptual definition and
intuitive exhibition. But in both cases alike, those of originary and of
mathematical abstraction, the transformation of a common feature
into an ideal object, e.g. of the property ‘red’ into an objectified ‘red
color,” of which the red things ‘partake,’ is an essential step (Plato’s

p.ét?eELs).]'

11



MATHEMATICS

With every property E(r) which is meaningful for the objects z
of a given category we correlate a set, namely ‘the set of objects z
having the property E.” Thus we speak of the set of all even numbers,
or of the set of all points on a given line. The conception that such a
set be obtained by assembling its individual elements should by all
means be rejected. To say that we know a set means only that we are
given a property characteristic of its elements. Only in the case of
a finite set do we have, in addition to such general description, the
possibility of an individual description which would exhibit each one
of its elements. [Formally, by the way, the latter mode of description
is a special case of the former; e.g. the set consisting of three given
objects a, b, ¢ corresponds to the property of being either a or b or c:
@=a)v(Ex=0b)v(zx =¢).] It is possible that the same set is
correlated with two properties £ and E’. This happens when every
object (of our category) having the property E also has the property
E’, and conversely. Hence, what is decisive for the identity of the
two sets is not the manner of their definition (in terms of the prin-
ciples enumerated in Section 1), but solely the question whether each
element of one is an element of the other and vice versa, a question
referring to a domain of existing objects and unanswerable by recourse
to the meaning alone. If the concept of set is understood in this way,
then the creative definition is seen to be nothing but the transition
from a property to a set, so that the mathematical construction of new
classes of ideal objects can quite generally be characterized as set
formation. Now there is no longer anything objectionable in describ-
ing the circle about O through A as the set of all points P whose dis-
tance from O equals OA, or the color of an object as the set of objects
having the same color, or the cardinal number 5 as the set of all those
aggregates which are numerically equivalent to the exhibited aggre-
gate of the fingers of my right hand. But it is an illusion — in which
Dedekind, Frege, and Russell indulged for a time, because they
apparently conceived of a ‘set’ after all as a collective — to think
that thereby a concrete representation of the ideal objects has been
achieved. On the contrary, it is through the principle of creative
definition that the meaning of the general set concept is elucidated as
well as safeguarded against false interpretations.

The properties employed in the creation of new abstracts ® gen-
erally depend on one or more arguments «, v, . . . , which are allowed
to vary freely within certain domains: ® is a function of u,», . . . . In
the definition of a circle, for instance, the ternary point relation
OP = OA is interpreted as a property of P (relation with one blank P)
depending on O and A ; the ‘circle about O through A’ is a function of
O and A. The criterion for the coincidence of two values of an

12
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abstract, ®(u, v, . . . ) and ®(/, v/, . . . ), refers to a totality of
existing objects. But of special importance are those cases where this
transfinite criterion can be converted by virtue of certain universally
valid facts into a finite criterion requiring recourse to the meaning of
the defining relation only. Instances are our definition of the circle
and the definitions by abstraction. Not only properties, but more
generally relations may serve to define ideal elements. If we want to
adhere to the set-theoretical terminology throughout, it will be neces-
sary to have a ‘binary set’ (R) correspond to every binary relation R;
such that (R) and (R’) are identical if, for arbitrary elements a, b, it
never happens that one of the statements R(a, b), R’(a, b) is true, the
other false. The same for ternary, quaternary, . . . relations. We
thus arrive at the following final version of the principle of creative
definition: A relation R(zy . . . /uv . . . ), whose blanks are sepa-
rated into two groups, zy . . . and wv . . . , determines an abstract
®(uv . . . ) depending on the arguments wu, v, ... ; equality
Buv . . . ) = ®w'v' . .. ) for any two sets of values of the argu-
ments, u, v, . . . and ¥, v/, . . . , holds if and only if any objects
z, y, . . . of the appropriate categories which stand in the relation
R to u, v, . . . also stand in the relation R to %/, v/, . . ., and
conversely.

3. LOGICAL INFERENCE

Having dealt with definitions we now come to proofs. If one
turns a geometrical proposition into a hypothetical statement whose
premiss consists of all geometrical axioms, replacing mentally at the
same time any abbreviatory expressions by what they mean according
to their definitions, one will arrive at a ‘formally valid,’ ‘analytic’
proposition, the truth of which is in no way tied to the meanings of the
concepts entering into it (point, line, plane, incidence, betweenness,
congruence). The logic of inference has the task of characterizing
those propositional structures which assure the formal validity of the
proposition. Barbara, Baralipton, and so on, are of little help in this
connection. Leibniz considered the doctrine of the argumens en forme
“une espéce de Mathématique universelle, dont 'importance n’est
pas assez connue’’ (Nouveauz Essais, Libre IV, Chap. 17, §4).

That part of logic which operates exclusively with the logical con-
nectives ‘not,” ‘and,’ ‘or’ will be referred to as finite logic, as opposed
to transfinite logic, which in addition uses the propositional operators
‘some’ (or ‘there is’) and ‘all’. The reason for this subdivision is as
follows. Suppose several pieces of chalk are lying in front of me; then
the statement ‘all these pieces of chalk are white’ is merely an abbrevi-
ation of the statement ‘this piece is white & that piece is white & . . . ’

13
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(where each piece is being pointed at in turn). Similarly ‘there is a
red one among them’ is an abbreviation of ‘this is red v that is red
v . ... But only for a finite set, whose elements can be exhibited
individually, is such an interpretation feasible. In the case of infinite
sets, the meaning of ‘all’ and ‘some’ involves a profound problem
which touches upon the core of mathematics, the very secret of the
infinite; it will unfold itself to us in the next chapter. The situation
here may be compared to the transition from finite to infinite sums;
the meaning of the latter is tied to special conditions of convergence,
and one may not deal with them in every respect as with finite
sums.

In the propositional calculus it is convenient to introduce, in
addition to the symbols for ‘not,” ‘and,” ‘or,’” the symbol ¢ — b (read:
a implies b). It has the same meaning as ~ a v b (a does not hold or
b holds) and does not beyond that signify any deeper connection
between the propositions a and b.

{Incidentally two of the four symbols ~, &, v, — would suffice;
for the propositional calculus it is convenient to choose — and ~.
Nay, it is even possible to get along with one symbol, a/b, denoting the
incompatibility of the propositions @ and b (~av~©b). For, in
place of

~a, a—b ak&b, avbd
we may write

a/a, a/(b/b), (a/b)/(a/b), (a/a)/(b/b).

However, for the sake of greater lucidity, we shall here use all four
symbols. }

In a finite-logical formula the letters (propositional variables) for
which arbitrary propositions (without blanks) may be substituted are
combined by those four symbols ~, &, v, —» . For example:

b— (a—0b).

There exists a general rule by which the formal validity of a formula
of this kind can be recognized. In fact, assign to each letter occurring
in the formula one of the values ‘true’ (T) or ‘false’ (F) in all possible
combinations, and determine in each instance the value of the entire
formula according to the following direction for evaluating compound
propositions:
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a “ ~a al| b a—b a&bd avbh
T ¥ T|T T T T
F T T|F F F T
F|T T F T
F|F T F F

(The number of combinations to be tested, for instance, when the
formula contains 5 different propositional variables is 25.) If the
resulting value of the formula is T in every case, then the formula is
formally valid. This rule, which may be said to be based on the
law of contradiction and the law of the excluded middle (tertium non
datur), I shall call briefly the finite rule.

Example: b — (a — b).

a b a—b |b— (a—Db)
T T T T
T F F T
F T T T
F F T T

On this level, then, it is possible to ascertain directly by a combinatorial
procedure following a fixed scheme, whether a given assertion is a
logical consequence of certain other propositions, provided premiss
and conclusion are built up of propositions a, b, . . . (whose meanings
do not matter) with the help of the four operations ~, —, &, v.

All this changes completely as soon as ‘some’ and ‘all’ (and their
concomitants, the blanks) are admitted into our formulas. 2, and
I, compel us to construct — we set up a number of formally valid
basic formulas, the logical axioms, and state a rule by which further
formally valid propositions may be obtained from formally valid
propositions. The rule is none other than the one by which logic is
applied to all theoretical sciences, namely the syllogism: if you have a
proposition A, and a proposition A — B in which the first proposition
A reappears on the left of —, then set down the proposition B. All
propositional structures obtained from the axioms by repeated applica-
tion of this rule are of analytic character. It is impossible, however,
to characterize descriptively the infinite manifold of these individual
structures independently of the constructive manner in which they are
generated. Hence the necessity of step by step demonstration.
Using a phrase coined by J. Fries in a somewhat different sense, one
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may speak of a ‘primordial obscurity of reason.” We do not possess
the truth, it wants to be attained by action.

{Galileo (““Dialogo,”” Opere, V11, p. 129) expresses a widely spread
view when he interprets this as the difference between human and
divine understanding. ‘““We proceed in step-by-step discussion from
inference to inference, whereas He conceives through mere intuition.
Thus in order to gain insight into some of the properties of the circle,
of which it possesses infinitely many, we begin with one of the simplest;
we take it for a definition and proceed from it by means of inferences
to a second property, from this to a third, hence a fourth, and so on.
The divine intellect, on the other hand, grasps the essence of a circle
senza temporaneo discorso and thus apprehends the infinite array of its
properties.” (But intensively, i.e. as regards the objective certainty
of an individual mathematical truth, the human intellect does not
fall short of the divine intellect). }

Concerning ‘some’ and ‘all,’ Z. and II,, we may lay down, first of
all, the following two axioms, in which a(z) stands for an arbitrary
propositional scheme containing the one blank z, and ¢ for any given
object of the corresponding category:

I. I,a(z) — a(c); IL a(c) — Z, a(x).

The first of these axioms tells us merely how to derive something from
a universal proposition, but fails to show how other propositions can
ever lead us to a universal proposition. The converse is true of the
second axiom.

{Everybody knows the classical example of an inference: («) all
men are mortal, () Caius is a man; hence (y) Caius is mortal. Our
formalism decomposes it into several steps. Let H and M designate
the properties of being (hu)man and mortal respectively, and let ¢
designate Caius. Then

(a) IL.(H(z) — M(z)),

in connection with I,
IL(H (z) — M(z)) — (H(c) — M(c)),
according to our syllogism rule of inference yields
H(c) —» M(c).
This, together with
®) H(c),
16
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again by the rule of inference, yields
62 M(o).

— does not, of itself, involve the idea of universality; but (a) illus-
trates how it may combine with ‘all’ to form a universal hypothetical
statement. The grounds for the validity of a universal implication of
the form

I-(a(z) — b(z))

may of course be several. If they are solely to be found in the logical
axioms, then the symbol — expresses purely logical consequence. But
the grounds may well be of a factual nature, such as a causal relation
or some other empirically observed regularity. This remark may
suffice to clarify the question as to how the relation of cause and effect
is connected with that of logical reason and consequence. The
symbol — remains neutral with respect to all this.

The finite-logical axioms can be found listed in D. Hilbert and
P. Bernays, Grundlagen der Mathematik, I, Berlin, 1934, p. 66. They
are of course constructed in such a manner that their formal validity
can be established by means of the ‘finite rule.’” Conversely it can
be shown — but this already requires an essentially mathematical
and not altogether trivial proof — that the list of axioms is complete,
in the sense that all logical formulas containing only the symbols
~, —, &, v which are formally valid according to the ‘finite rule’ can
be obtained from these few axioms by substitution and repeated
application of the syllogism. The group of transfinite axioms, of
which we know as yet only Axioms I and II, remains in need of
supplementation.

From the syllogism rule of inference other, derived, rules of
inference may be obtained by means of the logical axioms. Indeed
every formally valid proposition of the form 4 — B (where A and
B are built up from the propositional variables a, b, . . . with the
help of the logical connectives), by virtue of the syllogism, leads to the
following Tule of inference: If you have a proposition of the form A,
then you may set down the corresponding proposition of the form B.
Conversely, the syllogism also has its representative among the
logical formulas:

a— ((@a—>b) —b).

And yet, since construction means action, one does not get along with
formulas alone; some practical rule of inference that tells how to
handle the formulas is needed. This is probably the truth behind the
opinion as to the normative character of logic.
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Kant’s distinction between analytic and synthetic judgments
(Critique of Pure Reason, Introduction) is so obscurely phrased as to
render a comparison with the precise concept of formal validity in
mathematical logic almost impossible. The latter concept is in
agreement, however, with Husserl’s definition (Logische Untersuchun-~
gen, II, 2d ed., p. 254): ‘“ Analytic laws are unconditionally universal
propositions containing no concepts other than formal. As opposed
to the analytic laws we have their particular instances, which arise
through the introduction of material concepts or of ideas positing indi-
vidual existence. And as particular cases of laws always yield neces-
sities, so particular cases of analytic laws yield analytic necessit;ies.”]-
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4. THE AXIOMATIC METHOD

The axiomatic method consists simply in making a complete
collection of the basic concepts as well as the basic facts from which
all concepts and theorems of a science can be derived by definition and
deduction respectively. If this is possible, then the scientific theory
in question is said to be definite according to Husserl. Such is the
case for the theory of space. Of course, from the axioms of geometry
I cannot possibly deduce the law of gravitation. Hence it was neces-
sary to explain above what is to be considered a pertinent proposition
of a given field of inquiry. Similarly the axioms of geometry fail to
disclose whether Zurich is farther from Hamburg than Paris. Though
this question deals with a geometrical relation, the relation is one
between individually exhibited locations. Thus, precisely speaking,
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what is supposed to be deducible from the axioms are the pertinent
general true proposttions.

-[“Such, then, is the whole art of convincing. It is contained in
two principles:-to define all notations used, and to prove everything
by replacing mentally the defined terms by their definitions.” Thus
Pascal in a discourse de l'esprit géométrigue (Oeuvres coinplétes, ed.
F. Strowski, Paris (Librairie Ollendorff), I, p. 427). But this is more
easily said than done. Euclid’s Elements fail to afford a complete
solution of the problem of axiomatizing geometry. He begins with
épot, definitions; but they are only in part definitions in our sense, the
most important among them are descriptions, indications of what is
intuitively given. Nothing else, in fact, is possible after all for the
basic geometrical concepts such as ‘point,” ‘between,’ etc.; but as
far as the deductive construction of geometry is concerned, descrip-
tions of this kind are evidently irrelevant. There follow, under the
name of alrfuara, certain geometrical axioms, in particular the axiom
of parallels: Given a plane P, a line / in P, and a point p in P not lying
on [; all lines in P which pass through p, except one, intersect I. Fin-
ally a few general axioms of magnitude: kowvai &évvoiar. They play
their part in the development of geometry, inasmuch as certain
geometrical relations such as congruence, or equality of areas, are
tacitly assumed to satisfy these axioms. Behind them are concealed
an indefinite number of proper axioms of geometry. In later books
of the Elements the list of axioms is supplemented as the occasion
demands. Because the geometrical postulates are intuitively self-
evident and because a purely logico-deductive attitude is not natural
to the human mind, it has required great pains to compile a complete
list of geometrical axioms. ‘Non-Euclidean geometry,’ established
by Bolyai and Lobatschewsky around 1830, becomes the driving force
for axiomatic research in the second half of the 19th century. The
most hidden axioms, those of order, are disclosed by Pasch around
1880. Finally, at the turn of the century, the goal is reached com-
pletely and finds its classical expression in Hilbert’s Grundlagen der
Geometrie. Hilbert arranges the axioms in five groups: the axioms of
incidence, of order (‘betweenness’), of congruence, of parallelity, and
of continuity.

The axiomatic procedure of the ancients, which aside from Euclid
was also handled by Archimedes with admirable facility, became
exemplary for the foundation of modern mechanics. It dominates
Galileo’s doctrine of uniform and uniformly accelerated motion
(“ Discorsi,” 3rd and 4th days), and even more so Huyghens’ establish-
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ment of the laws of the pendulum in his Horologium oscillatorium. In
more recent times the axiomatic program was carried out completely
(outside of mathematics proper) for the statics of rigid bodies, the
space-time theory of special relativity, and other parts of physics.

An axiom system is by no means uniquely determined by the
discipline in question; rather, the choice of the basic concepts and basic
facts is arbitrary to a considerable extent. The question as to whether
it is possible to differentiate between essentially originary and essen-
tially derived notions lies beyond the competence of the mathema-
tician.® The definition of a geometrical relation concept that was
originally chosen may with equal justification be replaced by any
criterion which, in accordance with geometrical facts, is a necessary
and sufficient condition under which the relation holds. }

An axiom system must under all circumstances be free from con-
tradictions, in which case it is called consistent; that is to say, it must
be certain that logical inference will never lead from the axioms to a
proposition a while some other proof will yield the opposite proposi-
tion ~ a. If the axioms reflect the truth regarding some field of
objects, then, indeed, there can be no doubt as to their consistency.
But the facts do not always answer our questions as unmistakably as
might be desirable; a scientific theory rarely provides a faithful rendi-
tion of the data but is almost invariably a bold construction. There-
fore the testing for consistency is an important check; this task is
laid into the mathematician’s hands. Not indispensable but desirable
is the independence of the individual axioms of an axiom system. It
should contain no superfluous components, no statements which are
already demonstrable on the basis of the other axioms. The question
of independence is closely connected with that of consistency, for the
proposition a is independent of a given set of axioms if and only if the
proposition ~ a is consistent with them.

The dependence of a proposition @ on other propositions A (an
axiom system) is established as soon as a concrete proof of @ on the
basis of A is given. In order to establish the independence, on the
other hand, it is required to make sure that no combination of infer-
ences, however intricate, is capable of yielding the proposition a.
There are three methods at one’s disposal of reaching this goal; by
what has been said above, each of them qualifies also for proving the
consistency of an axiom system.

(1) The first method is based on the following principle: if a con-

3 Sometimes this is certainly the case; e.g. among the kinship relations, ‘child’
and ‘spouse’ are the essentially originary ones.
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tains a new original concept, not defined in terms of those occurring in
A, then a cannot be a consequence of A. For example: a ship is 250
feet long and 60 feet wide; how old is its captain? Only in the most
trivial cases does this simple idea accomplish our objective.

(2) The construction of a model. Objects and relations are exhibited
which, upon suitable naming, satisfy all of the propositions 4, and yet
fail to satisfy a. This method has been the most successful so far
invented.

The most famous example is furnished by the axiom of parallels.
From the beginning, even in antiquity, it was felt that it was not as
intuitively evident as the remaining axioms of geometry. Attempts
were made through the centuries to secure its standing by deducing it
from the others. Thus doubt of its actual validity and the desire to
overcome that doubt were the driving motives. The fact that all
these efforts were in vain could be looked upon as a kind of inductive
argument in favor of the independence of the axiom of parallels, just
as the failure to construct a perpetuum mobile is an inductive argu-
ment for the validity of the energy principle. Negating the axiom of
parallels amounts to the assumption that, given a point P and a line [
not passing through P, there exist in the plane determined by P and [
an infinitude of lines through P not intersecting I. Therefore this is
what the constructors of non-Euclidean geometry did: they drew the
consequences of that assumption, and in doing so they found, even
though they made free use of the remaining axioms of Euclidean geome-
try, that no contradiction arose, as far as they followed the matter up.
But they could not claim security for all future. Klein was the first
to offer a Euclidean model for non-Euclidean geometry; the objects of
Euclidean geometry itself, upon an assignment of names differing from
the customary one, satisfy the non-Euclidean axioms. Let S be a
sphere in Euclidean space. The dictionary which furnishes the trans-
lation into non-Euclidean language consists of only a few words (here
characterized by quotation marks): by a ‘point’ we understand any
point in the interior of S. Several such ‘points’ are said to lie on a
‘line’ or in a ‘plane,’ and a ‘point’ is said to lie ‘between’ two others, if
they do so in the customary sense. A ‘motion’ is any collinear trans-
formation which transforms the sphere S into itself; two configurations
are ‘congruent’ if one results from the other by a ‘motion.” For any-
one who believes in the truth and thus in the consistency of Euclidean
geometry, the consistency and thus conceivability of non-Euclidean
geometry is thereby established.

The consistency of Euclidean geometry, on the other hand, can be
demonstrated quite independently of the belief in its truth and of the
intuitive content of its basic concepts. For analytic geometry, which
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can best be based on the concept of vector (see Section 12), has shown
that Euclidean geometry is but a different expression of the facts of
linear algebra, of the theory of linear equations; it has thus provided
us with a simple arithmetical model of Euclidean space. Linear
algebra accounts for the affine concepts of geometry, while the adjunc-
tion of a positive definite quadratic form that serves as the ‘metric
ground form’ leads to the metrical concepts. In algebra the number
n of variables (or ‘unknowns’) may be left indeterminate. One has
to choose n = 3 in order to get the geometry of the intuitive 3-dimen-
sional space. Arithmetic and geometry, by virtue of this correspond-
ence, are so closely interwoven that today even in pure analysis we
constantly make use of geometrical terms. Any contradiction in
geometry would at the same time show up as a contradiction in arith-
metic. This may be looked upon as a reduction, since the numbers
are to a far greater measure than the objects and relations of space a
free product of the mind and therefore transparent to the mind.

These examples indicate that the method of models need not be
restricted to those cases where the truth about the objects and relations
employed in the construction of the model is known, but that it may
serve to reduce the consistency of an axiom system A (e.g. that of
geometry) to the consistency of another, B (e.g. that of arithmetic).
This is achieved whenever the basic concepts of the system A are
defined in terms of the basic concepts of the system B in such a manner
that the axioms A become a logical consequence of the axioms B.
No attention has to be paid for this purpose to the intuitive meaning
of the basic concepts in A and in B; the assignment of the names given
to the basic concepts of A to certain concepts derived from B is purely
arbitrary.

More than anybody else has Hilbert, through the ingenious con-
struction of suitable arithmetical models, contributed to the clarifica-
tion of the logical relations that connect the various parts of the
geometrical system of axioms.

If we are dealing with a-finite number of objects only which are
explicitly exhibited one by one and designated by symbols, we may be
able to prove consistency by stating for each single instance in terms
of the symbols whether or not the basic relations obtain. As an exam-
ple we give a combinatorial model that ensures the consistency of the
incidence axioms in plane projective geometry (which deal with the
single relation ‘point lies on line’). The model consists of seven
symbols for points, 1, 2, 3, 4, 5, 6, 7, and seven symbols for lines, I, II,
II1, IV, V, VI, VII, and incidence is defined by the following table, in
which a *, say, at the crossing of row 3 and column VI indicates that
point 3 lies on line VI:
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I I |1 | IV | V | VI |VII
1 * * *
2 * * *
3 * * *
4 * * *
5 * * *
6 * * *
7 * * *

For example, verify from this table the axioms stating that through
any two distinct points there goes exactly one line (i.e. any two rows
contain exactly one pair of *'s in the same column) and that any two
distinct lines intersect at exactly one point!

The case of a finite system of objects exhibited one by one is com-
paratively trivial. In all other cases the method of models is merely
capable of reducing the consistency of one system to that of another.
Ultimately it will become necessary to prove consistency in an absolute
way for one basic system of axioms. For the larger part of mathe-
matics and for the whole of physics this basic system deals with the
concept of real number. )

(3) For the purpose of an absolute proof of consistency we have
none but the direct method at our disposal, which endeavors to show
that by following the rules of deductive inference one will never arrive
at two propositions of which one is the negation of the other. Com-
plete enumeration of the logical rules of the game is here a necessary
presupposition (compare Section 3); for only then can one apply the
method to propositions, blind against their meaning, as one applies the
rules of chess to chessmen. Only in recent years has Hilbert attacked
the problem of securing the consistency of the arithmetical axioms in
this manner. (Should a new and evidently stringent method of logical
inference be discovered and thus the set of rules of the game be aug-
mented, one would have to be prepared to see a consistency proof
conducted by the direct method become obsolete. The method of
models, on the other hand, is independent of the ‘rules of the game.’)

{The following might serve as an analogue in chess: it is required
to see that a game of chess, no matter what the various moves, as long
as it is played in accordance with the rules, can never lead to a position
in which there are 10 queens of the same color on the board. Here
the ‘direct method’ is applicable. For it can be gathered from the
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rules of the game that no move increases the sum of the numbers of
queens and pawns of the same color. Hence, as this sum is 9 initially,
it must remain < 9. Incidentally, method (1) is a special case of the
direct method, but it seemed to deserve special mention because of its
simplicity.

In addition to consistency and independence, the completeness of
the axioms which form the basis of a science will be required. What
is meant by that? That for every pertinent general proposition a
the question ‘does @ or ~ @ hold?” be decidable by logical inference
on the basis of the axioms? Just as consistency guarantees that not
both a and ~ a can be obtained, completeness would then guarantee
that always one of them can be obtained. Completeness in this sense
would only be ensured by the establishment of such procedural rules
of proof as would lead demonstrably to a solution for every pertinent
problem. Mathematics would thereby be trivialized. But such
a philosopher’s stone has not been discovered and never will be dis-
covered. Mathematics does not consist in developing the logical
consequences of given assumptions omnilaterally, but intuition and
the life of the scientific mind pose the problems, and these cannot be
solved by mechanical rules like computing exercises. The deductive
procedure that may lead to their solution is not predesigned but has
to be discovered in each case. Analogy, experience, and an intuition
capable of integrating multifarious connections are our principal
resources in this task. As was already mentioned in Section 3, there
is no descriptive characteristic of all propositions deducible from given
premisses; we have to rely on construction. It is not feasible in prac-
tice to proceed like Swift’s scholar, whom Gulliver visits in Balnibarbi,
namely, to develop in systematic order, say according to the required
number of inferential steps, all consequences and discard the ‘unin-
teresting” ones; just as the great works of world literature have not
come into being by taking the twenty-six letters of the alphabet, form-
ing all ‘combinations with repetition’ up to the length 10!, and
selecting and preserving the most meaningful and beautiful among
them.

Suppose we make a continuous deformation of space (as if it were
filled out with plasticine), and suppose we understand now by lines,
planes, and congruent figures such curves, surfaces, and figures as
result from real lines, real planes, and really congruent figures by this
deformation. Then evidently all the facts of geometry hold for these
newly introduced concepts. It is therefore impossible to distinguish
conceptually between the system of lines and the system of curves
resulting from them by a spatial deformation. }
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This brings us to the idea of isomorphism, which is of fundamental
importance for epistemology. Let us assume that we have a system
Z; of objects (such as the points, lines, and planes of geometry) and
certain appertaining basic relations R, R’, . . . . Let there be a
second system Z,, with corresponding basic relations which (though
they may have entirely different meanings) are correlated, say, by the
use of the same names, to the relations R, R’, . . . within the first
domain of objects. Then, if it is possible to state a rule by which
the elements of the system =, are paired in a mutually unique manner
with the elements of the system Z,, so that elements in 2, between
which B (or R’, . . . ) holds correspond to elements in Z, between
which the relation with the same name R (or R/, . . . respectively)
holds, then the two domains are said to be isomorphic. The correla-
tion in question is said to be an isomorphic mapping of Z, into Z,.
Isomorphic domains may be said to possess the same structure. For
every pertinent true proposition about Z; (whose sense can be
understood by virtue of the meanings of R, R’, . . . within Z,),
there is a corresponding and identically phrased proposition about
Zs, and conversely. Nothing can be asserted of the objects in
Z: that would not be equally valid in Z;. Thus, for example,
Descartes’ construction of coordinates maps the space isomorphically
into the operational domain of linear algebra. These considerations
induce us to conceive of an axiom system as a logical mold (‘ Leerform’)
of possible sciences. A concrete interpretation is given when designata
have been exhibited for the names of the basic concepts, on the basis
of which the axioms become true propositions. One might have
thought of calling an axiom system complete if in order to fix the
meanings of the basic concepts present in them it is sufficient to require
that the axioms be valid. But this ideal of uniqueness cannot be
realized, for the result of an isomorphic mapping of a concrete inter-
pretation is surely again a concrete interpretation. Hence the final
formulation has to be as follows: an axiom system is complete, or
categorical, if any two concrete interpretations of it are necessarily
isomorphic. In this sense the categoricity of Hilbert’s axiom system
of Euclidean geometry is guaranteed. Indeed it can easily be shown
that a space satisfying these axioms is isomorphic to the algebraic
model provided by Descartes’ analytic geometry.

{ A science can only determine its domain of investigation up to an
isomorphic mapping. In particular it remains quite indifferent as to
the ‘essence’ of its objects. That which distinguishes the real points
in space from number triads or other interpretations of geometry one
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can only know (kemnen) by immediate intuitive perception. But
intuition is not blissful repose never to be broken, it is driven on
toward the dialectic and adventure of cognition (Erkenntnis).® It
would be folly to expect cognition to reveal to intuition some secret
essence of things hidden behind what is manifestly given by intuition.
The idea of isomorphism demarcates the self-evident insurmountable
boundary of cognition. This reflection has enlightening value, too,
for the metaphysical speculations about a world of things in themselves
behind the phenomena. For it is clear that under such a hypothesis
the absolute world must be isomorphic to the phenomenal one (where,
however, the correlation needs to be unique only in the direction thing
in itself — phenomenon); for ‘“we are justified, when different per-
ceptions offer themselves to us, to infer that the underlying real condi-
tions are different” (Helmholtz, Wissenschaftliche Abhandlungen, 11,
p. 656). Thus even if we do not know the things in themselves, still
we have just as much cognition about them as we do about the phe-
nomena. The same idea of isomorphism clarifies the problem which
Leibniz, stimulated by Hobbes’ nominalistic theory of truth, treats
in his dialogue on the connection between things and words; Leibniz
evidently wrestles with giving expression to that idea (Phtlosophische
Schriften, VII, pp. 190-193).

Through the disclosure of isomorphic relations it is possible to
transfer any insights gained in one field to the isomorphic field. A
service of this kind is rendered, for instance, by the principle of duality
in plane projective geometry. Its only relational concept is the
incidence of point and line (point lies on line, line passes through
point). It is possible to pair off uniquely the points and the lines in
the plane in such a manner that, whenever a point P lies on a line g,
the line p paired with P passes through the point @ paired with q.
Consequently any valid theorem of projective geometry (phrased in
terms of the directionless relation of incidence) at once becomes
another valid theorem if the words ‘point’ and ‘line’ are interchanged.
S. Lie discovered that the lines of (complex) space may be uniquely
correlated with the spheres in such a manner that intersecting lines
correspond to tangent spheres. An important part of analytic func-
tion theory, the so-called theory of uniformization, may be treated
most naturally in the language of Bolyai-Lobatschewskyan geometry.
Let an electrical network be given which consists of individual homo-

¢ Unfortunately English uses the same word ‘know’ for the two meanings that
the author’s German distinguishes as kennen and erkennen, and that the Latin,
French and Greek languages express by the pairs cognoscere vs. scire, connaitre vs.
savoir, yv@var Vs. eidévar. Our translation is inconsistent in so far as it uses the

terms cognize, cognition in contrast to know and knowledge only in places where the
distinction is essential. [Translator’s note.]
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geneous wires connecting at various branch points; if by a ‘Point’ we
understand an arbitrary current distribution, which assigns to each
(oriented) wire s the intensity I, of the electric current in s, then these
Points satisfy the laws of a Euclidean space with a center O and as
many dimensions as there are branches in the network. Here the
central point O is represented by the absence of current where every
I, vanishes, and the square of the distance of a ‘Point’ from O is
defined as the Joule heat developed by the current distribution per
unit of time. This isomorphism is of value since it correlates the
simple and important notions of geometry and the simple and impor-
tant physical notions concerning electrical circuits. For instance, the
basic problem of finding the current distribution when the various
electromotive forces in the wires s are given is identical with the
geometrical problem of finding the perpendicular projection of a Point
onto a plane. The existence of a unique solution is thereby at once
mathematically established, and a method for computing the solution
made available. }

Pure mathematics, in the modern view, amounts to a general
hypothetico-deductive theory of relations; it develops the theory of
logical ‘molds’ without binding itself to one or the other among the
possible concrete interpretations. Concerning this formalization, as
“a point of view, without which an understanding of mathematical
methods is out of the question,” compare Husserl, Logische Unter-
suchungen, I, Sections 67-72. ‘‘The presupposition for the erection
of a general arithmetic,” Hankel declares (Theory of Complex Num-
bers, 1867, p. 10) ““is thus a purely intellectual mathematics, dissociated
from all intuition, a pure theory of forms, which has as its object not
the combination of quanta or their images, the numbers, but intellec-
tual objects, to which there may (but need not) correspond actual
objects or relations.” The axioms become implicit definitions of the
basic concepts occurring in them. The concepts, admittedly, retain
a certain range of indeterminacy; but the logical consequences of the
axioms are valid, no matter what concrete interpretation may be
adopted within this range. Pure mathematics acknowledges but one
condition for truth, and that an irremissible one, namely consistency.

{ Perhaps there already is an inkling of this modern view in Euclid’s
term for axioms: airfuara, postulates. Leibniz takes some decisive
steps towards the realization of a mathesis universalis in the sense here
indicated and clearly understood by him. The theory of groups
above all, that shining example of “purely intellectual mathematics,”
belongs within the framework of his ars combinatoria. A finite group
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(7 is a system of a finite number of objects within which, in some way,
an operation is defined which generates, from two (equal or different)
elements a, b (in this order), an object ab of the system. The only
postulates, or axioms, are these:

the associative law a(bc) = (ab)c;
if @ % b (a different from b), then also ac = be, ca = cb.

From these insignificant looking assumptions springs an abundance of
profound relationships; and mathematics offers an astounding variety
of different interpretations of this simple axiom system. The group
is perhaps the most characteristic concept of the mathematics of the
19th century.

The method of implicit definition is of importance also within the
sciences themselves, and not only in the laying of their foundations.
The area of a piece, where by the latter I will understand a piece of
the plane that is bounded by line segments, satisfies the following
requirements:

(i) The area is a positive number.

(i1) If a piece is dissected into two parts by a sequence of line
segments in its interior, then the area of the whole is equal
to the sum of the areas of the parts.

(ili) Congruent pieces have the same area.

These are the really essential properties of the concept of area but
they contain no explicit definition of it. It can be shown, however,
that these requirements are consistent and that a procedure can be
devised by which every piece v is assigned a positive number J(v) as
its area which satisfies requirements (ii) and (iii). The requirements
fail to determine the concept unambiguously; they are also satisfied,
apart from J(v), by ¢- J(vy), where ¢ is any positive constant inde-
pendent of y. But beyond this there are no further possibilities. The
remaining arbitrariness as expressed by the factor ¢, can only be
eliminated by the exhibition of an individual piece, say, a square, and
the stipulation that it be assigned the area 1 (relativity of size). The
significance of the implicit definition within all sciences, not only
mathematics, is expounded very aptly in Schlick’s Allgemeine Erkennt-
nistheorte (Berlin, 1918, pp. 30-37). ‘“From the viewpoint of exact
science, which strings inference after inference, a concept is indeed
nothing but that of which certain propositions may be asserted.
Thereby it should consequently also be defined.”” A suitable field of
application, aside from the exact sciences, might be jurisprudence.]-
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CHAPTER II

Number and Continuum, the Infinite

5. RATIONAL NUMBERS AND COMPLEX
NUMBERS

THE genetic construction of the mathematical realm of numbers takes
as its point of departure the sequence of natural numbers 1, 2,3, . . . .
The first step to be made is the rise from the natural numbers to the
fractions. Historically fractions owe their creation to the transition
from counting to measuring. All measuring is based on a domain of
magnitudes, such as the segments on a line. We have here (1) a rela-
tion of equality, a = b (congruence), satisfying the axioms set up for
such a relation (p. 9), and (2) an operation applicable to any two
segments a, b and producing a segment a + b. From the segment a
we obtain, say, the segment 5a by forming thesuma +a +a +a + a
with 5 terms a. This brings out the connection between counting and
measuring. This process of iteration which leads from a to la, 2a,
3a, . . . can be exactly explained as follows:

a) la = a;
B) if n is a natural number, then (n 4+ 1)a results from na in
accordance with the formula

(n 4+ 1)a = (na) + a.

Within the domain of line segments, the operation of iteration
admits of a unique inversion, partition: given a segment a and a
natural number n, there exists one and (in the sense of equality) only
one segment X such that nx = a; it is denoted by a/n. The operation
of partition may be combined with that of iteration. Thus e.g. we get
5a/3, called ‘5/3 times’ a. The fractional symbol m/n serves as the
symbol of the composite operation, so that two fractions are equal
if the two operations denoted by them lead to the same result, no
matter to what segment a they are being applied. Multiplication of
fractions is performed by carrying out one after another the operations
denoted by them. The possibility of adding fractions is due to the
fact that the operation (applied to an arbitrary segment x) that is
expressed by

(mx/n) + (m*x/n*)
can be represented by a single fraction.
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It is unnecessary to introduce special fractions for each domain
of magnitudes. Since their laws are independent of the nature of
these magnitudes, it is more expedient to define them in purely
arithmetical terms.® This can be achieved by simply choosing as
domain of magnitudes in the above considerations the natural num-
bers themselves. The fact that in this domain a relation between
z and y, such 52z = 3y, cannot always for a given z be solved with
respect to y, does not impede the development of the theory. We thus
arrive at the following formulation: “Two natural numbers m, n
determine a fraction m/n. The statement that, of any two natural
numbers z and y, the second is m/n times the first is merely another
form of expressing the equation mz = ny.” This is a creative defini-
tion in the sense of Section 2. Two fractions m/n, m*/n* are equal
provided any numbers z, y which stand in the relation mz = ny also
stand in the relation m*r = n*y, and conversely. The operational
rules for natural numbers permit one to replace this transfinite criterion,
whose phrasing seems to require a checking through of all possible
numbers z, y, by the following finite one:

©) m-n* =n-m*

Hence we deal with a special case of the definition by abstraction: the
equality of the fractions m/n, m*/n* may be explained directly by
(C), after one has convinced oneself that this relation is an equivalence.
The introduction of fractions as ‘ideal elements’ can also be motivated
purely arithmetically without reference to applications. Indeed after
the numerical operations have been suitably extended to fractions it
is found that all the important arithmetical axioms remain in force.
Moreover division, the inverse operation of multiplication, can now
always be carried out while this was only exceptionally so in the
arithmetic of natural numbers.

{If the same idea is applied once again for the purpose of ensuring
the invertibility of addition, then we get from the fractions to the
rattonal numbers (which include 0 and the negative). (This, though,
calls for one rather serious sacrifice — the possibility of division has
to be abandoned for the divisor 0.) There are nowhere in this pro-

§ This is in line with the oldest mathematical tradition, that of the Sumerians.
Only after the discovery of the irrational did the Greeks abandon the algebraic
road and find themselves compelled to couch algebraic facts in geometric terms.
The post-classical Occident, partly stimulated by the algebraic achievements of
the Arabs, reversed this development. There was little justification, however, for
the modern viewpoint subsuming all quantities under a universal concept of num-
ber, before Dedekind gave Eudoxus’ analysis of the irrational its constructive
twist (cf. Section 7).
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cedure any logical obscurities or philosophical difficulties. A much
more serious matter is the starting point, the system of natural num-
bers, and then the irrational, the transition from the rational num-
bers to the continuum of real numbers. But once we have climbed to
this level, the further advance toward the complex and hypercomplex
numbers no longer leads past any abysses. In order to introduce the
complex numbers it is only necessary to describe how any such number
is given and how one is to operate with them. A complex number is
given by its two components; thus we might as well say that we under-
stand by a complex number any pair (a, 8) of real numbers (Hamilton,
1837). We shall not set down the rules of operation here explicitly.
According to them, e = (1, 0) plays the part of unity in the complex
domain, since its multiplication by any complex number (a, 8) repro-
duces (a, 8). And (0, 1) is that imaginary unit ¢ which satisfies the
equation 7 -7 = —e. The inner reason for the stipulations is again
to be seen in their extending the formal rules of computation from
real to complex numbers. Nothing remains of the mystic flavor that
was so long attached to the imaginary quantities.® From the complex
it is possible to ascend to the hypercomplex numbers with 3 or more
components. But it could be shown quite generally that, no matter
how addition and multiplication be defined in their domain, the con-
tinued validity of all rules of operation of arithmetic is unattainable.
In this respect the complex numbers denote a natural boundary for the
extension of the number concept. Yet also hypercomplex number
systems play their role in mathematics; thus the 4-component guater-
nions, which satisfy all rules of operation except the commutative
law of multiplication, are a useful tool in dealing with the rotations
of a rigid body in space.

Instead of constructing the realm of numbers genetically, arith-
metic may also be based on an axiom system. From this viewpoint
the genesis merely serves to reduce the consistency of that system to
the consistency of the axioms governing the natural numbers. The

8 For instance, Huyghens declares in 1674 (see Leibniz, Mathematische Schriften,
II, p. 15) with reference to a complex formula: “Il y a quelque chose de caché
la-dedans, qui nous est incompréhensible.” Even Cauchy, in 1821, still has a
somewhat obscure idea as to the manipulation of complex quantities. But nega-
tive quantities had produced almost as many headaches at an earlier time. Refer-
ring to the rule “minus times minus is plus,”’ Clavius says in 1612: “debilitas
humani ingenii accusanda (videtur), quod capere non potest, quo pacto id verum
esse possit.”” Descartes, in accordance with contemporary usage, still designates
the negative roots of an algebraic equation as false roots. The explanation, sur-
viving in some textbooks, of 7 as that number which, when multiplied by itself,
yields —1 is of course pure nonsense as long as only the real numbers are at one’s
disposal; it merely contains the demand that the number concept be so expanded

and the sense of multiplication be so extended to the expanded number domain as
to produce the desired equation.
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azxioms of arithmetic fall into two groups, the algebraic axioms and the
axioms of magnitude. The algebraic group deals with the operations
of addition and multiplication. It contains the formal rules of opera-
tion (suchasa + b = b + a), requires the existence of a 0 and a 1 with
the properties

a+0=0+4+a=a la=a'l1l=a

and the invertibility of addition and multiplication (with the excep-
tion of division by 0). The axioms of magnitude (which do not carry
over to the domain of complex numbers) deal with the relation a > b
(a greater than b). Compare the table in Hilbert’s Grundlagen der
Geometrie. }
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6. THE NATURAL NUMBERS

““The integers were created by God; all else is man-made,” is a
frequently quoted statement of Kronecker’s. In the natural numbers,
the problem of cognition presents itself to us in its simplest form.
Let us once more begin with the purely mathematical aspect.

The sequence of natural numbers commences with 1 and is gener-
ated by a process which yields from a number already obtained the
next following number; never does an earlier number recur in this
progression. A concept (a characteristic or an operation) referring to
arbitrary numbers can therefore be introduced only by complete
induction (also called mathematical induction), namely by stating
(a) what the concept means for the first number 1, and (8) how it
carries over from any number = to the next following n’ (= n + 1).
Examples: The definition of na in the preceding section. The con-
cepts even and odd: (&) 1 is odd; (8) n’ is even or odd according as n
is odd or even. The general notion of addition a + n of two natural
numbers a and n:

(a) e+ 1=4d; (B a+n = (a+ n).

»

What is true of the concepts similarly holds for the proofs. To prove
that a certain theorem holds for every number one shows (a) that it
holds for 1, and (8) that it holds for n’ if = is a number for which it
holds. With the help of this method of definition and of proof by
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complete induction, of inference from n to n + 1, the theory of natural
numbers can be completely built up step by step. That inference
introduces an entirely new and peculiar feature unknown to Aristo-
telian logic into the mathematical method; it is the very essence of the
art of mathematical demonstration. The first explicit mention of the
principle of complete induction seems to be with B. Pascal (1654) and
Jacob Bernoulli (1686).

In the building up of number theory by complete induction, the
successton of numbers appears as their constitutive characteristic.
They occur primarily as ordinal numbers and are distinguished only
by their position in the sequence. Justly Schopenhauer (Vierfache
Wurzel vom zureichenden Grunde, Section 38) says of this conception of
number, ‘“Every number presupposes the preceding ones as reasons
for its being: I can get to ten only through all the preceding num-
bers. . . . ” The well-known method of counting, applied to a given
aggregate of objects, produces a certain natural number as the number
(Anzahl) of elements in the aggregate. By virtue of the counting
process the elements of the aggregate are themselves arranged in a
sequence (first, second, third, . . . ); and a special consideration is
required to ensure the fundamental fact that the result of counting is
independent of the order. Only thus is the concept of cardinal num-
ber put on a safe basis. Compare, for instance, the treatment by
Helmbholtz (Zdhlen and Messen, Wissenschaftliche Abhandlungen, 111,
p. 356); further L. Kronecker (Werke, I11, 1, p. 249).

{The question has been argued extensively whether the concept
of cardinal, rather than ordinal, number is not the primary one. The
former, if it is to be introduced independently of an ordinal arrange-
ment, has to be defined by abstraction (as on p. 10). This definition
is not even restricted to finite sets; a theory of infinite cardinal num-
bers based thereon was developed by G. Cantor within the framework
of his general set theory. But the criterion of numerical equivalence
makes use of the possibility of pairing, which can only be ascertained
if the acts of correlation are carried out one after another in temporal
succession and the elements of the sets themselves are thereby arranged
in order. Even if one follows the road of abstraction and splits up the
act of numerical comparison of two sets by first ascribing a number to
each set and then comparing these numbers, it remains indispensable
to order each individual set itself by exhibiting its elements one by one
in temporal succession. (Such a one-by-one exhibition is necessary
anyhow if an aggregate is to be considered as concretely given; and
the numbers employed by us in everyday life concern only such
aggregates.) For this reason it seems to me unquestionable that the
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concept of ordinal number is the primary one. Modern research in
the foundations of mathematics, which has destroyed dogmatic set
theory, confirms this view.

Another point of debate is the question whether the numbers are
independent ideal objects or whether arithmetic is concerned merely
with the concrete numerical symbols ¢ whose shape is recognizable by
us with certainty independently of place and time, of the particular
conditions of their manufacture, and of trifling differences in their
execution” (Hilbert). Thus e.g. Helmholtz (Zihlen und Messen, loc.
cit., p. 359): “I consider arithmetic, or the theory of pure numbers,
as a method built upon purely psychological facts, by which the con-
sistent application of a system of symbols of unlimited extent and
unlimited possibility of refinement is taught. In particular, arith-
metic investigates what different modes of combination of these
symbols (numerical operations) lead to the same result.”” Only
recently Hilbert carried this point of view consistently into effect
(compare Section 10), in a manner unassailable even by the criticism
directed against it by Frege (Grundgesetze der Arithmetik, 1893). A
succession of strokes (‘ones’) offers itself as a suitable symbol. If I
hear a sequence of tones, I put down a stroke upon hearing each one,
placing one stroke after another: ////. A second time I proceed
similarly, again obtaining a symbol consisting of a succession of
strokes. If I were immediately able to judge the equality or disparity
of the ‘shape’ of the two symbols, a numerical comparison would be
accomplished. Here the representation of the data by strokes has the
function of putting these data into a ‘normal form’ of such a kind that
a difference in shape at once indicates a difference in number. (For a
directly given whole, number is meant to describe a relation between
the whole and such parts of it as are considered as units. A difference
in the shape of two wholes does not necessarily imply a difference in
the number of units; e.g. :- : and .". An act of assembling is said
to be the basis for determining the number of elements. It seems to
me that the application of the symbolic method of counting to a struc-
tural whole of units does not require that a mere ‘aggregate’ be
abstracted by dissolving the structural tie; nor need individually given
elements, such as successive tones, be assembled to form an aggregate.
The statement ‘there were this many tones: ////’ is quite intelligible
in itself, and it is unnecessary to search for an ‘aggregate of the tones
heard.’) The immediate recognition of equality or disparity of two
symbols consisting of successions of strokes is possible, however, for
the lowest numbers only. In general one has to proceed by using the
strokes recorded during the first sequence over again, say, by crossing
them out one by one; for this purpose it is required that the first
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sequence stays put (and does not disappear like the tones themselves).
In principle, symbols can be dispensed with for the verification of a
statement such as ‘this time there were more tones than the first
time,” provided the tones of the first sequence (which may have been
falling in pitch) can be reproduced in their temporal succession while
the second sequence is being listened to. Symbols become indispensa-
ble only when the comparison is torn up into two number determina-
tions (‘the first time there were 4, now there are 5 tones; 5 is greater
than 4’); for then part of the mental operation (‘5 is greater than 4)
is shifted onto the permanent symbols, which are at the same time
expedient for preservation and communication. Thus it is not the
comparison of numbers but the determination of numbers which is of
an essentially symbolic character. ‘There were 4 tones’ is unintelligi-
ble without reference to a symbol.

If one wants to speak, all the same, of numbers as concepts or ideal
objects, one must at any rate refrain from giving them independent
existence; their being exhausts itself in the functional role which they
play and their relations of more or less. (They certainly are not
concepts in the sense of Aristotle’s theory of abstraction.)

The employment of several digits and the positional system (de-
veloped in Mesopotamia and later consistently by the Indians for
written numbers) permit a quick decision about greater and smaller
for much larger numbers than the simple numerical symbols composed
of successive Ones; this considerable practical advantage is not one of
principle however. The basis of the number system, which in our
system is ten, is different with different cultures. The Indian, and
particularly the Buddhistic, literature revels in the possibilities of
producing and designating prodigious numbers by means of the posi-
tional system, that is, by combination of addition, multiplication, and
exponentiation. In spite of their fantastic aspect there is something
truly great in these efforts; the human mind for the first time senses
its full power to fly, through the use of the symbol, beyond the bound-
aries of what is attainable by intuition. Something akin we find
among the Greeks only in the latest epoch, namely, in Archimedes’
paper addressed to Gelon ‘“ The Sand-reckoner’’ ; and here is manifested
the delight, not in the step by step opening-up of the infinite, but in
the rational subjugation of the unbounded.

Regarding the relation of number to space and time we may say
that time, as the form of pure consciousness, is an essential, not an
accidental, presupposition for the mental operations on which the
sense of a numerical statement is founded. Contrary to the opinion
of some philosophers (e.g. Hobbes), this does not apply to space,
although permanent symbols having a spatial configuration are the
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most convenient means of putting down a result of counting, of storing
and communicating it, and of safeguarding the manipulation of num-
bers. Kant above all has emphasized the bond between the number
concept and time, but it would be going too far if one were to claim
arithmetic as the science of time in the same sense that geometry is the
science of space.

With reference to two concretely given numerical symbols, m and
n, the sense of the proposition m +n = n + m can be described
without having to ‘generate’ any other numbers. It is also possible
to see that this proposition holds in any concrete situation. Some-
thing new happens, however, when I imbed the actually occurring
numerical symbols in the sequence of all possible numbers. That
sequence is produced through a generating process according to the
principle that any given number gives rise to a new, the next following,
number by the addition of One. Here the being is projected upon the
background of the possible, of a manifold of possibilities which is pro-
duced by a fixed process and yet is open towards infinity. This is
the standpoint held by us at the beginning of the present section when
arithmetic was founded on the principle of complete induction. We
rely on it when we speak of a trillion (= 10'?) dollars. By repeated
application of definitions by complete induction we obtain from the
prime arithmetical process of changing n into n + 1 the operation of
multiplication by 10, and by performing this operation 12 times
(beginning with 1), we arrive at the desired number 10!%. The
numbers 10 and 12 can be written out in strokes; as for 10'% this
has never been done, and yet we maintain the ‘fiction’ of such a
number. }

Thus it is already in the field of numbers that we encounter the
following basic features of constructive cognition:

1. We ascribe to that which is given certain characters which are
not manifest in the phenomena but are arrived at as the result of
certain mental operations. It is essential that the performance of
these operations is held universally possible and that their result is
held to be uniquely determined by the given. But it is not essential
that the operations which define the character be actually carried out.

2. By the introduction of symbols the assertions are split so that
one part of the operations is shifted to the symbols and thereby made
independent of the given and its continued existence. Thereby the
free manipulation of concepts is contrasted with their application, ideas
become detached from reality and acquire a relative independence.

3. Characters are not individually exhibited as they actually occur,
but their symbols are projected on the background of an ordered mani-
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fold of possibilities which can be generated by a fixed process and is
open into infinity.

Cognition has not stopped here. The leap into the beyond occurs
when the sequence of numbers that is never complete but remains open
toward the infinite is made into a closed aggregate of objects existing
in themselves. Giving the numbers the status of ideal objects becomes
dangerous only when this is done. The belief in the absolute is
deeply implanted in our breast; no wonder, then, that mathematics
was bold and naive enough to perform that leap. Whoever accepts as
meaningful the definition ‘n is an even or odd number according as a
number z does or does not exist such that n = 2z,” which refers to the
infinite totality of all numbers (the definition of even and odd by com-
plete induction, as mentioned earlier, is a different matter), already
stands on the other shore; for him the system of numbers has become a
realm of absolute existences which is ‘not of this world’ and from
which only gleams here and there are caught and reflected in our
consciousness. The vindication of this transcendental point of view
forms the central issue of the violent dispute which has flamed up again
today over the foundations of mathematics. The issue is sympto-
matic for all knowledge and may, in the field of mathematics sooner
than elsewhere, lead to a clear decision.
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7. THE IRRATIONAL AND THE INFINITELY
SMALL

In a different form than in the sequence of integers we encounter
the infinite in the continuum, which is capable of infinite division.
Cases of special importance are the continua of time and of space.
Here we find the second open place in the above described construction
of the mathematical realm of numbers. Antiquity has bequeathed to
us two important contributions to the problem of the continuum: (a)
a far-reaching analysis of the mathematical question of how to fix a
single position in the continuum, and (b) the discovery of the philo-
sophical paradoxes which have their origin in the intuitively manifest
nature of the continuum.

{(a) The pure geometry of the Greeks, in elevating itself above
the inexactitude of the sense data, applies the idea of existence (not
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only to the natural numbers but also) to the points in space. The
discovery of the irrationality of the ratio v/2 of the diagonal and
side of a square made it clear that the fractions are not the only possi-
ble quantities measuring ratios of line segments, and thus not the only
‘real numbers.” In the Platonic dialogues the deep impression can be
sensed which this mathematical discovery made upon the rising
scientific consciousness of his time. Independently of the particular
geometrical constructions which led to individual irrationalities such as
/2, Eudoxus recognized the general foundations of this phenomenon.

1. In place of the untenable commensurability he sets down the
axiom: if a and b are any two segments, then a can always be added to
itself so often that the sum na exceeds b. This means that all seg-
ments are of a comparable order of magnitude, or that there exists
neither an actually infinitely small nor an actually infinitely large in
the continuum.

2. And what is it that characterizes the individual segment ratio?
Eudoxus replies: two segment ratios, a:b and a’:b’, are equal to each
other if, for arbitrary natural numbers m and n, the fulfillment of the
condition in the first line below invariably entails the validity of the
corresponding condition in the second line:

na > mb na = mb na < mb
D [na’ > mb’ (D) na’ = mb’ (D) [na’ < mb’

Hence what is characteristic of the individual real number « is the cut
which it creates in the domain of rational numbers by dividing all
fractions m/n into three classes, those which are (I) less than «, (II)
equal to , and (III) greater than . The second class is either empty
or contains only a single fraction. The first axiom guarantees that no
two different segments can have the same ratio to the fixed unit seg-
ment. Euclid’s theory of proportions is likewise erected on this
foundation, while Archimedes bases on it his general method of
exhaustion.

Only in the 19th century did mathematics go beyond Eudoxus, and
settled the problem in a more definite fashion. For Eudoxus the real
number is given as the ratio of two given segments, and thus it is up
to the axioms of geometry to tell us what segment ratios exist. But in
Euclidean geometry it is not possible to construct (by means of ruler
and compass) from a given segment 1, the segment v/2, which would
solve the Delian problem of duplicating the cube, or of the segment
w, which equals the circumference of a circle of diameter 1. Yet we
are convinced of their existence on the basis of continuity considera-
tions: if the edge of a cube increases from 1 to twice that size, the
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volume of the cube rises continuously from 1 to 8, hence must pass
the value 2 at some time. As for the segment =, we can approximate
it from below and from above with any degree of accuracy by the
Euclideanly constructible perimeters of regular 6-, 12-; 24-, . . . sided
polygons inscribed to and circumseribed about the circle. Thus we
are turning the tables: any arbitrarily given cut in the domain of
rational numbers, that is to say, any division of all rational numbers
into three classes I, IT, ITI, no matter in what way effected, determines
a real number. (The only requirements to be satisfied are the follow-
ing: neither I nor IIT must be empty; II contains at most one fraction;
I contains no largest, III no smallest fraction; any number in I is
smaller than any number in II or III; any number in III is greater
than any number in I or II.) According to Dedekind (Stetigkeit und
Irrationalzahlen, 1872), we have no reason to admit only part of these
cuts as real numbers. And in geometry we then postulate (Dedekind’s
axiom) the existence of that segment which stands to the given unit
segment in the ratio determined arithmetically by the cut. Since
conversely, according to Eudoxus, the ratio of any segment a to the
unit segment determines a cut, the axiom of Dedekind guaran-
tees the completeness of the geometrical elements: the system of
points is incapable of extension, provided all axioms (including that of
Eudoxus) are maintained (Hilbert). This logical completeness
(absence of gaps) reflects the intuitive continuity among the points
in space. With Dedekind’s number concept, analysis makes itself
independent of geometry. Thereby, at last, it is in a position to
analyze continuity and to provide geometry with the means of proving
continuity theorems of the following kind: a continuous curve joining
the center of a circle to a point outside the circle meets the circum-
ference. In Eueclid, the proofs of such theorems are incomplete, as
was already pointed out by Leibniz with reference to the first con-
struction occurring in Euclid, namely that of the equilateral triangle
ABC from the points A and B; Euclid fails to show that the circle
about A through B and the circle about B through A have a point in
common.

Another means of characterizing a real number, equivalent to that
of the cut, is the infinite sequence of ‘nested’ rational intervals a.ba
(n=1,23, .. .), each of which lies within the preceding one, and
the length b, — a. of which converges to 0 as the index n increases
indefinitely (compare the example of ). Since the fraction is logically
no more complicated than the natural number — it is determined by
two natural numbers, its numerator and denominator — we may
sum up the result of the historical development of Problem (a) as
follows: }
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The individual natural numbers form the subject of number theory,
the possible sets (or the infinite sequences) of natural numbers are
the subject of the theory of the continuum.

(b) The essential character of the continuum is clearly described
in this fragment due to Anaxagoras: “Among the small there is no
smallest, but always something smaller. For what is cannot cease to
be no matter how far it is being subdivided.” The continuum is not
composed of discrete elements which are ‘‘ separated from one another
as though chopped off by a hatchet.” Space is infinite not only in
the sense that it never comes to an end; but at every place it is, so to
speak, inwardly infinite, inasmuch as a point can only be fixed step-
by-step by a process of subdivision which progresses ad infinitum.
This is in contrast with the resting and complete existence that intui-
tion ascribes to space. The ‘open’ character is communicated by the
continuous space and the continuously graded qualities to the things
of the external world. A real thing can never be given adequately,
its ‘inner horizon’ is unfolded by an infinitely continued process of
ever new and more exact experiences; it is, as emphasized by Husserl, a
limiting idea in the Kantian sense. For this reason it is impossible
to posit the real thing as existing, closed and complete in itself. The
continuum problem thus drives one toward epistemological idealism.
Leibniz, among others, testifies that it was the search for a way out of
the ““labyrinth of the continuum” which first suggested to him the
conception of space and time as orders of the phenomena. ‘‘From
the fact that a mathematical solid cannot be resolved into primal
elements it follows immediately that it is nothing real but merely an
ideal construct designating only a possibility of parts’’ (correspondence
Leibniz-De Volder, Leibniz, Philosophische Schriften, I1, p. 268).

{In contrast to this nature of the continuum, Leibniz conceives the
idea of the monads, since — differently from Kant — he feels com-
pelled to give the phenomena metaphysically a foundation in a world
of absolute substances. ‘Within the ideal or the continuum the
whole precedes the parts. . . . The parts are here only potential;
among the real |i.e. substantial] things, however, the simple precedes
the aggregates, and the parts are given actually and prior to the whole.
These considerations dispel the difficulties regarding the continuum —
difficulties which arise only when the continuum is looked upon as
something real, which posesses real parts before any such division as
we'may devise, and when matter is regarded as a substance” (letter to
Remond, Phtlosophische Schriften, 111, p. 622).

The impossibility of conceiving the continuum as rigid being cannot
be formulated more concisely than by Zeno’s well-known paradox of
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the race between Achilles and the tortoise. The remark that the

1
successive partial sums 1 — o (n=1,23, -+ -) of the series

O U R
2 22 23

do not increase beyond all bounds but converge to 1, by which one
nowadays thinks to dispose of the paradox, is certainly relevant and
elucidating. Yet, if the segment of length 1 really consists of infinitely
many subsegments of lengths 14, 14, 1¢, . . ., as of ‘chopped-off’
wholes, then it is incompatible with the character of the infinite as the
‘incompletable’ that Achilles should have been able to traverse them
all. If one admits this possibility, then there is no reason why a
machine should not be capable of completing an infinite sequence of
distinct acts of decision within a finite amount of time; say, by supply-
ing the first result after 14 minute, the second after another 14 minute,
the third 14 minute later than the second, etc. In this way it would
be possible, provided the receptive power of the brain would function
similarly, to achieve a traversal of all natural numbers and thereby a
sure yes-or-no decision regarding any existential question about natural
numbers!

Descartes struggles with the idea that the material corpuscles of a
liquid in motion have to divide i infinitum, ““ or at least 1n tndefinitum,
and that into so many parts that it is impossible to imagine one, how-
ever small, of which one would not know that it was actually sub-
divided into still smaller parts.” To him this remains a mystery,
confronted with which he takes recourse to the incomprehensibility
of the divine omnipotence. Euler, in his ‘ Anleitung zur Naturlehre”’
(Opera postuma, 11, 1862, pp. 449-560), which in magnificent clarity
summarizes the foundations of the philosophy of nature of his time,
declares that although the bodies are infinitely divisible the statement
that every body consists of infinitely many (‘ultimate’) parts is
entirely false and is even obviously incompatible with the infinite
divisibility (Euler, op. cit., Chap. II, §12). In the Kantian system,
the first two antinomies of pure reason refer to the continuum.” }

Three attempts have been made in the history of thought to
conceive of the continuum as Being in itself. According to the first

7 The first of these, however, is formulated misleadingly. According to the
argument presented, it is not a question of whether the world does or does not have
a temporal beginning, but whether the number of temporal moments up to the
present time is finite or infinite. In a continuously filled time, the latter will be
the case, no matter whether (by virtue of an intrinsic or extrinsic measuring
principle) it be of finite or infinite length.
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and most radical the continuum consists of countable discrete ele-
ments, atoms. With regard to matter, this path, initiated by
Democritus in antiquity, has been followed with brilliant success in
modern physics. Plato, clearly conscious of the goal of ‘saving’ the
phenomenon by means of the idea, was the first to design a consistent
atomism with respect to space. In Islamic philosophy the atomistic
theory of space was renewed by the Mutakallimln (see Lasswitz,
Geschichte der Atomistik, 1, 1890, pp. 139-150), and in the Occident
by Giordano Bruno’s doctrine of the minimum. Hume, too, in his
space-time theory (Treatise of Human Nature, Book I, Part II, Sec-
tion 4) transforms the vagueness of the sense data, at which he aims,
into a composition out of indivisible elements. Stimulated by
quantum theory the idea again arises today in discussions about the
foundations of physics. But so far it has always remained mere
speculation and has never achieved sufficient contact with reality.
How should one understand the metric relations in space on the basis
of this idea? If a square is built up of miniature tiles, then there are
as many tiles along the diagonal as there are along the side; thus the
diagonal should be equal in length to the side. Hume, consequently,
is forced to admit that the ‘“‘just as well as obvious” principle of com-
paring the measures of curves and surfaces by means of the number
of component elements is, in fact, useless. B. Riemann, in his inaugu-
ral lecture Uber die Hypothesen, welche der Geometrie zugrunde liegen
(1854), states the alternative ‘‘that for a discrete manifold the prin-
ciple of measurement is already contained in the concept of this
manifold, but that for a continuous one it must come from elsewhere.”

The second attempt is that of the infinitely small. This is dis-
cussed ingeniously and in detail on the first day of Galileo’s ¢ Discorsi.”
Just as I can bend a straight line segment into an octagon or a thou-
sand-sided polygon, so, according to Galileo, I may also transform it
into a polygon with infinitely many infinitely small sides by simply
winding it around a circle, and thus do not have to rely on a limiting
process which never reaches the goal.®

{If a wheel is rolled off along a horizontal line, then every one of
the smaller concentric circles appears to be stretched out in the form

8 Hankel says (Zur Geschichte der Mathematik im Altertum und Mittelaller,
Leipzig, 1874): ““The idea of never reaching the area of the circle, no matter how
far one might go in the sequence of polygons, although one approaches it arbitrarily
closely, strains the power of imagination to such a degree that it will tend, at all
cost, to bridge this gap extending, as it were, between reality and the ideal. Under
this psychological pressure the —infinitely small or infinitely large? — step is
taken that leads to the assertion: the circle is a polygon with infinitely many
infinitely small sides. The Ancients, however, have refrained from this step; as
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of a line h of equal length (rofa Aristotelis). However, if the circular
wheel is replaced by a many-sided regular polygon, then the ‘covered’
segments along h, into which the sides of the polygon fall successively,
form a disrupted line. Thus, in the case of the circular wheel, one
must assume that h consists of an infinitely dense succession of covered
and uncovered segments. ‘‘This method,” says Galileo in the
“Discorsi” (Opere VIII, p. 93), ‘“perhaps better than any other,
enables us to avoid many intricate labyrinths such as are encountered
in the question of cohesion in solids, mentioned before, and that of
rarefaction and contraction, without forcing upon us the objectionable
admission of empty spaces and thereby of the penetrability of bodies.
We escape all these difficulties, so it seems to me, by assuming a com-
position out of indivisibles.” If a curve consists of infinitely many
straight ‘line elements,’ then a tangent can simply be conceived as
indicating the direction of the individual line element; it joins two
‘consecutive’ points on the curve. However, he who rejects Galileo’s
hypothesis has to define the tangent at the point P of a curve as the
limiting line approached indefinitely by the secant line PP’ as the
second moving point P’ on the curve converges toward P. The dis-
cussion between Johann Bernoulli and Leibniz on this question is very
instructive. Leibniz says (Mathematische Schriften, III, p. 536),
“For if we suppose that there actually exist the segments on the line
that are to be designated by 14, 14, 14, . . . , and that all members of
this sequence actually exist, you conclude from this that an infinitely
small member must also exist. In my opinion, however, the assump-
tion implies nothing but the existence of any finite fraction of arbi-
trary smallness.” But Bernoulli replies (op. cit., p. 563). “If 10
members are present the 10™ necessarily exists, if 100 then necessarily
the 100", . . . , if therefore their number is « then the «*™ |infinitesi-
mal] member must exist.” }

The limiting process was victorious. For the limit is an indis-
pensable concept, whose importance is not affected by the acceptance
or rejection of the infinitely small. But once the limit concept has
been grasped, it is seen to render the infinitely small superfluous.
Infinitesimal analysis proposes to draw conclusions by integration
from the behavior in the infinitely small, which is governed by ele-
mentary laws, to the behavior in the large; for instance, from the
universal law of attraction for two material ‘volume elements’ to the
magnitude of attraction between two arbitrarily shaped bodies with
homogeneous or non-homogeneous mass distribution. If the infinitely

long as there were Greek geometers, they have always halted in front of the
precipice of the infinite. . . . "’

44



NUMBER AND CONTINUUM, THE INFINITE

small is not interpreted ‘potentially’ here, in the sense of the limiting
process, then the one has nothing to do with the other, the processes
in infinitesimal and in finite dimensions become independent of each
other, the tie which binds them together is cut. Here Eudoxus
undoubtedly saw right.

-[Incidentally, as far as I can see, the 18th century remained far
behind the Greeks with regard to the clarify of its conception of the
infinitely small. More than one writer of this enlightened era com-
plains of the ‘incomprehensibilities of mathematics,” and vague and
incomprehensible indeed is their notion of the infinitesimal. As a mat-
ter of fact, it is not impossible to build up a consistent ‘non-Archime-
dean’ theory of quantities® in which the axiom of Eudoxus (usually
named after Archimedes) does not hold. But as was just pointed out,
such a theory fails to accomplish anything for analysis. Newton and
Leibniz seemed to have the correct view, which they formulated more
or less clearly, that the infinitesimal calculus is concerned with the
approach to zero by a limiting process. But they lack the ultimate
insight that the limiting process serves not only to determine the value
of the limit but also to establish its existence. For that reason Leibniz
is still quite unclear as to the summation of infinite series. Only
slowly does the theory of limits gain a foothold. In 1784 D’Alembert
declares emphatically in the Encyclopédie, ‘‘La théorie de la limite est
la base de la vraie métaphysique du calcul différentiel. Il ne s’agit
point, comme on le dit ordinairement, des quantités infiniment petites;
il s’agit uniquement des limites des quantités finies.”” It was left to
Cauchy, at the beginning of the 19th century, to carry these ideas out
consistently. In particular he discovers the correct criterion for the
convergence of infinite series, the condition under which a number is
generated as limiting value through an infinite process. The proof
of the criterion, however, requires that fixation of the number concept
which was later accomplished by the principle of the Dedekind cut. }

The third attempt to ‘save’ the continuum in the Platonic sense
may be seen in the modern set-theoretic foundations of analysis.
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8. SET THEORY

At a first glance it might seem as though with the limiting process
the rigid Being is definitely resolved into Becoming; as though,
thereby alone, Aristotle’s doctrine is mathematically realized which
taught that the infinite is forever being on the way and therefore
exists only dvvduer not évepyela (potentially, not actually). This
appearance is deceptive. For the individual convergent sequence,
such as the sequence of partial sums of the Leibniz series

Y-+ -+ ...,

which converges to =/4, does not unfold itself according to a lawless
process which we have to accept blindly in order to find out what it
produces step by step; but it is fixed once and for all by a definite
law, which correlates with every natural number n the corresponding
approximate value (the n™ partial sum). A classification of the
infinitely many rational numbers into the three classes I, 1I, III of a
Dedekind cut is not made by taking one fraction after another and
assigning it to its class, but rather according to a law, namely, by
stating that all rational numbers with such and such a property are to
belong to class I. (It suffices to define class I, since the other two
classes are defined automatically along with it.) This law, or this
property, fixes the intended real number exactly.

It is said that a function f(z) is continuous at the place x = a if
f(z) converges to f(a) when the variable z approaches a. But how
is this notion of convergence defined? ‘‘For every positive e there
should exist a positive & of such a kind that, for all real numbers x
which satisfy the condition ¢ — 6§ <z <a + 3§, we also have
fla) — e < f(z) < f(a) + ¢ Our attitude thus remains static. It is
characterized by the unlimited application of the terms ‘there exists’
and ‘all’ not only to natural numbers but also to the places in the
continuum, i.e. to the possible sequences or sets of natural numbers.
This is the essence of set theory: It considers not only the sequence of
numbers but also the totality of its subsets as a closed aggregate of
objects existing in themselves. In this sense it is based on the actually
infinite. But once this has been accepted, the vast structure of
analysis has an unshakeable firmness; it is securely founded, in all its
parts based on sound argument, exact in its concepts, without gaps
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in its proofs. It has thus gained a foundation which guarantees the
unconditional intersubjective agreement of all workers in its field.

{To be sure, considerable mathematical acumen was required
thus to establish such general facts concerning continuity as are
suggested by intuition; for instance, that a continuous function
assumes all intermediate values, that a closed planar curve without
multiple points divides its plane into two domains, or that a two-
dimensional domain cannot be mapped continuously and in a one-to-
one fashion into a three-dimensional domain. We experience again and
again with our students what assiduous training is necessary in order
to acquire that freedom from prejudice which is indispensable for a
proper understanding of these proofs and their stringency. Besides
such theorems confirming our intuition, analysis also reveals numerous
occurrences which appear to run counter to it, such as continuous
curves being everywhere without a tangent or filling out an entire
square. It was the work of the 19th century from Cauchy and Gauss
to Weierstrass to test all unproved suppositions of analysis on the
above foundation. }

The set-theoretical method has permeated not only analysis but
also the first beginning of mathematics, the theory of the natural
numbers. From the point of view of set theory, the number sequence
is a completed set N, within which a mapping n — n’ is defined that
uniquely correlates an element n’ with every element n of the set.
This very fact, the existence of a one-to-one mapping of N onto a
subset of N that is not identical with the entire N (the correlations
n — 2n or n — n? have the same effect), shows N to be an infinite set.
The finiteness of a set is established only when the impossibility of
such a mapping has been demonstrated.

-[Thus, for set theory, there is no difference in principle between
the finite and the infinite. The infinite even appears to it as the
simpler of the two (in agreement with Descartes, who maintained that
the infinite is prior to the finite [letter to Clerselier, Corr., ed. Adam
and Tannery, V, p. 356, ‘*“Or je dis que la notion que j’ai de I’infini est
en moi avant celle du fini”’; also Méditations métaphysiques, third
meditation, Oeuvres de Descartes. I, pp. 280-281]). The fact that,
in the definite sense stated, Euclid’s axiom of magnitude xai 76 8\ov
uépovs ueitor (‘‘the whole is greater than the part”) fails to hold for an
infinite set was pointed out already by Galileo (Discorsi, Opere, VIII,
p. 79). From this, Leibniz concludes (letter to Bernoulli, Math.
Schriften, 111, p. 536) that ‘“the number, or set, of all numbers entails
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a contradiction if one conceives of it as a completed whole.”” Bolzano
sees in it a ““paradox of the infinite” (Paradoxien des Unendlichen,
1851, §20). Dedekind, finally, elevates this fact to the status of a
definition of the infinite (Was sind und was sollen die Zahlen?, 1887). }

Following Dedekind, a set C of natural numbers is said to be a chain
if, for every number z contained in C, its ‘image’ ' = z + 1 like-
wise belongs to C. The fact that every natural number can be reached
by starting with 1, going on to its image 1’ (= 2), obtaining 2’ (= 3)
by repeating the mapping, and so on, — the idea of this ‘and so on,’
that seems logically irreducible, but constitutes the essence of the
natural number sequence, is then expressed in the form of the following
principle: Every chain which contains 1 as an element is identical with
the whole of N. Complete induction can therefore be based on the
transfinite use of the concepts ‘all’ and ‘there is’; in this way set-
theory abolishes the partition between mathematics and logic. The
investigations of Dedekind, Frege, and Russell aim at logicizing
mathematics completely.

The question as to when a natural number 7 is less than a given
number m, which common sense answers by the finite specifically
arithmetical criterion: ‘if the enumeration of the numbers from 1 to m
leads to n before m is reached,’ is decided in set theory by the following
transfinite purely logical criterion: ‘if there exists a chain containing
m but not n.” But such a thing is possible only after one has climbed
to that level of application of ‘there exists’ where this term refers to
the sets of natural numbers.

And it is for this purpose alone that we require that objectification
of sets which everyday language, strangely enough, has carried out all
along. A proposition such as ‘the rose is red’ is no longer subordinated
to the scheme ‘z is red,” having one blank, z, but to the more general
one ‘z has the property X,’ from which the proposition results by the
substitution £ = rose, X = red. The words ‘has the property’ denote
a certain relation e, which may hold between the arbitrary object x and
the arbitrary property X. Only in this connection do we encounter
the copula ¢; it changes the originally bipartite proposition into a
tripartite one, x¢ X. (The grotesque confusion of the copula with
existence and with equality is one of the saddest indications of the
dependence of philosophical speculation on accidental linguistic
forms.) The way is now open for a formal application of the defini-
tional principles 6. and 7. of Section 1 to the blank X. The introduc-
tion of the general set concept thus consists of two essentially different
steps; the first is the objectification just described, the secand is the
stipulation that two properties X and Y, or the corresponding sets,
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be considered equal if all elements of X also belong to Y, and vice
versa.

From an aggregate of individually exhibited objects we may by
selection produce all possible subsets and thus make a survey of them
one after another. But when one deals with an infinite set like N, then
the existential absolutism for the subsets becomes still more objec-
tionable than for the elements. Since one can lay hands on such
subsets only as are determined by a characteristic property of their
elements, it is difficult to rid oneself of the feeling that a chaotic
abundance of possibilities, of sets put together haphazardly and with-
out rule or law, goes by the board. But the paradoxical character of
the elusive ‘aggregate of all possible properties of natural numbers’
can be laid bare even more precisely. Suppose we had somehow
succeeded in the demarcation of an ‘extensionally definite’ aggregate
of such properties (I shall call them properties of the first level), so
that we have the right to believe that the question ‘is there a property
of the first level of such and such a well-described kind A ?’ is answered
by the facts with a clear-cut yes or no. We may then speak of the
property P, which applies to a number z if and only if there exists any
property at all of the first level which appertains to z. This property
P,, however, according to its meaning certainly lies outside the circle
of properties of the first level; it belongs to a higher, the second level,
since it has been defined in terms of the totality of properties of the
first level. Russell formulates this insight somewhat vaguely by his
‘“vicious circle principle”: ‘“No totality can contain members defined
in terms of itself.” Similarly, the third level is constructed above
the second, and so forth. Correspondingly, sets of natural numbers —
and hence real numbers — of the first, second, third, . . . levels
should be distinguished. The mode of construction of the property
P, occurs in analysis, for instance, in determining the least upper
bound of a point set on a line. The obliteration by the existential
absolutism of these differences in level, which were first brought out in
Russell’s theory of types, constitutes an unquestionable vicious circle.

{ One could escape this dilemma only if, for every property of the
second level, there existed a property of the first level equal to it (not
in meaning but) in extension. As long as the sequence of natural
numbers is accepted as an extensionally definite aggregate, one might
consider as the properties of the first level those which are generated
by the definitional principles of Section 1 from the one basic relation
‘n follows upon m.” In this case, our wish will hardly be fulfilled.
We would have the task of extending the principles of construction for
the properties of the first level in such a manner that every set of the
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second level demonstrably coincides with one of the first. But there
is not the slighest indication that this is possible. Russell, in order
to extricate himself from the affair, causes reason to commit hara-kiri,
by postulating the above assertion in spite of its lack of support by
any evidence (‘axiom of reducibility’). In a little book Das Konti-
nuum, published in 1918, I have tried to draw the honest consequence
and constructed a field of real numbers of the first level, within which
the most important operations of analysis can be carried out.]-

In spite of its paradoxical character, the idea of absolute existence
in the domain of natural numbers and sets of natural numbers has so
far not yet led to any contradiction. G. Cantor, however, freed him-
self of all fetters and manipulated the set concept without any restric-
tion, in particular permitting the formation of the set of all subsets of
any given set. He developed a general theory of cardinal and ordinal
numbers of infinite sets. Here, at the farthest frontiers of set theory,
actual contradictions did show up. But their root can only be seen
in the boldness perpetrated from beginning in mathematics, namely, of
treating a field of constructive possibilities as a closed aggregate of
objects existing in themselves.

REFERENCES

B. BownzaNo, Paradozien des Unendlichen, posthumous edition Pfihonsky, Leipzig
1851.

R. DEpEKIND, Was sind und was sollen die Zahlen?

G. FrEGE, Die Grundlagen der Arithmetik.

G. CANTOR, Gesammelte Abhandlungen, Berlin, 1932; in particular Sections III and
1V.

B. RusseLL, The Principles of Mathematics.

H. WEyL, Das Kontinuum, Berlin, 1918.

A. FRAENKEL, Einleitung in die Mengenlehre, 3d. ed., Berlin, 1928.

9. INTUITIVE MATHEMATICS

This situation was first clearly recognized by L. E. J. Brouwer
(since 1907). He designed a system of mathematics which does not
make that leap into the beyond of which we spoke at the end of Section
6. An existential statement, such as ‘there exists an even number,’
is not considered a proposition in the proper sense that asserts a fact.
An ‘infinite logical summation’ such as is called for by a statement of
this kind (1 is even or 2 is even or 3 is even or . . . ad infinitum) is
evidently incapable of execution. ‘2 is an even number,’ this is a
real proposition (provided ‘even’ has been defined recursively as on
p. 33); ‘there exists an even number’ is nothing but a propositional
abstract derived from that proposition. If I consider an insight a
valuable treasure, then the propositional abstract is merely a document
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indicating the presence of a treasure without disclosing its location.
Its only value may lie in the fact that it causes me to look for the
treasure. It is a worthless piece of paper as long as it is not endorsed
by a real proposition such as ‘2 is an even number.” Whenever noth-
ing but the possibility of a construction is being asserted, we have no
meaningful proposition; only by virtue of an effective construction, an
executed proof, does an existential statement acquire meaning. In
any of the numerous existential theorems in mathematics, what is
valuable in each case is not the theorem as such but the construction
carried out in its proof; without it the theorem is an empty shadow.

{The question, put in Section 3, as to how conclusions may be
drawn from existential statements, must here be answered by denying
that possibility in principle. It can be done only after the existential
statement has been replaced by the meaningful whole from which it
was isolated as a propositional abstract. All proofs that depend on
the construction of auxiliary elements fall under this remark. On the
other hand, how do we obtain universal theorems on natural numbers?
In order to explain this by means of a very simple example, let the
number-theoretical function ¢(n) be defined by complete induction
as follows:

(@) o(1) = 1; (8) ¢(n) = (e(n))".

Here, (8) represents a universal proposition, from which, in connection
with (a), we may infer by complete induction that generally ¢(n) = n.
Thus the definition itself is seen to be the root of universality, and
from there it spreads by complete induction. The principle of com-
plete induction (as an instrument of definition or inference), not
pressed into a formula but concretely applied at every step, is the true
and only power of mathematics, the mathematical prime intuition.
In this point Brouwer is in agreement with Poincaré (“Science et
hypothése’’). The negation of a universal proposition about numbers
would be an existential proposition; since this is void in itself, universal
propositions are incapable of negation. Even a universal statement
does not refer to a fact, it is not to be interpreted as the logical product
of infinitely many singular propositions but as a hypothetical state-
ment: if applied to a single definite given number it yields a definite
proposition. There is no occasion here for the application of a
principle of terttum non datur (either all numbers have the property 4,
or else there exists a number with the property ~ A). The belief in
it, according to Brouwer (Jahresberichte der Deutschen Mathematiker-
Vereinigung, 28, 1920) ‘““was caused historically by the fact that,
firstly, classical logic was abstracted from the mathematics of the
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subsets of a definite finite set [i.e. a set given by exhibition of its
elements], that, secondly, an a prior? existence independent of mathe-
matics was ascribed to this logie, and that, finally, on the basis of this
supposititious apriority it was unjustifiably applied to the mathe-
matics of infinite sets.” }

In Brouwer’s analysis, the individual place in the continuum, the
real number, is to be defined not by a set but by a sequence of natural
numbers, namely, by a law which correlates with every natural num-
ber n a natural number ¢(n). (The two definitions cease to be
equivalent, as soon as the natural numbers may no longer be treated
as an extensionally definite aggregate.) How then do assertions arise
which concern, not all natural, but all real numbers, i.e. all values of a
real variable? Brouwer shows that frequently statements of this form
in traditional analysis, when correctly interpreted, simply concern the
totality of natural numbers. In cases where they do not, the notion
of sequence changes its meaning: it no longer signifies a sequence
determined by some law or other, but rather one that is created step
by step by free acts of choice, and thus necessarily remains in statu
nascendi. This ‘becoming’ selective sequence (werdende Wahlfolge)
represents the continuum, or the variable, while the sequence determined
ad infinitum by a law represents the individual real number falling
into the continuum. The continuum no longer appears, to use
Leibniz’s language, as an aggregate of fixed elements but as a medium
of free ‘becoming.” Of a selective sequence tn statu nascends, naturally
only those properties can be meaningfully asserted which already
admit of a yes-or-no decision (as to whether or not the property applies
to the sequence) when the sequence has been carried to a certain point;
while the continuation of the sequence beyond this point, no matter
how it turns out, is incapable of overthrowing that decision.

{In accordance with intuition, Brouwer sees the essential char-
acter of the continuum, not in the relation between element and set,
but in that between part and whole. The continuum falls under the
notion of the ‘extensive whole,” which Husserl characterizes as that
““which permits a dismemberment of such a kind that the pieces are
by their very nature of the same lowest species as is determined by
the undivided whole” (Logische Untersuchungen, second edition, II,
p.- 267). The division scheme of the one-dimensional continuum is
best illustrated by the example of a finite line segment. By halving it,
one decomposes it into two parts, a left (10) and a right one (11); each
of the latter, by again halving them, decomposes into a left and right
one, 100, 101 and 110, 111 respectively, and so on. This process may
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be described purely combinatorially and thus furnishes the arithmeti-
cal blank-form of the open one-dimensional continuum. This must

1
N
//// AN
AN
A
N\ 7/ N\

100 101 110 111
N NN N

be distinguished from the realization of the process for a concretely
exhibited continuum, such as the segment in space. In carrying out
its continued subdivision according to the arithmetical scheme it is
clearly irrelevant whether the two parts are always of the same length,
as long as only the fineness of the parts eventually drops below any
possible threshold of exactness. (It may even be that comparison of
length has no foundation in the nature of the given continuum.) The
process of subdivision, which n concreto can never have been carried
out except to a certain point, determines a coordinate system within
the continuum and thus makes it possible to designate the individual
points in arithmetical terms by binary fractions. Since in a concrete
continuum no exact boundaries can be set, one must imagine that the
division framework is at no stage of the procedure fixed with complete
accuracy, but that, as the subdivision continues, the earlier points
of division steadily increase in precision. Any two adjacent parts of
the ¢ division step may be joined into a ‘division interval of the #**
level.” The division intervals of the ¢ level overlap in such a manner
that for any approximately given number, as soon as the approxima-
tion is sufficiently accurate, a division interval of the 7*® level can be
found into which that number falls. Thus the individual real number
will have to be defined as an tnfinite sequence of nested division intervals
of increasing level.

Two real numbers «, 8 coincide if, for every value of n, the n*
interval of the sequence a and the n®™ interval of the sequence B
partially or wholly overlap; they are distinet if a number n exists for
which these two intervals are disjoint. Because of the inapplicability
of the tertium non datur to statements of this kind, Brouwer does not
recognize this as a clear-cut alternative. This view fits in well with
the character of the intuitive continuum. For there the separateness
of two places, upon moving them toward each other, slowly and in
vague gradations passes over into indiscernibility. In a continuum,
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according to Brouwer, there can be only continuous functions. The
continuum ts not composed of parts. Thus I may well distinguish
within the continuum the sub-continuum of the positive numbers by
using only positive binary fractions in the formation of intervals and
interval sequences; but it is not true that the entire continuum is
composed of the continuum of the positive numbers, that of the nega-
tive numbers, and that of the numbers coinciding with zero, in the
sense that every number must belong to one of these three continua.
An old truth thus finds a precise mathematical formulation; one that
Aristotle (wepi dropwv ypouuwv) expressed by saying, ‘‘That which
moves does not move by counting,”’ or (Physics, Bk. VIII, Ch. 8), “If
the continuous line is divided into two halves, the one dividing point
is taken for two; it is both beginning and end. But as one divides in
this manner, neither the line nor the motion are any longer continu-
ous . . . In the continuous there is indeed an unlimited number of
halves, but only in possibility, not in reality.” Compare in this con-
nection the passages quoted earlier from Leibniz’s letters. The
principle comes into its own again that ‘“nothing is separable which is
not already separate” (Gassendi).

Mathematics with Brouwer gains its highest intuitive clarity.
He succeeds in developing the beginnings of analysis in a natural
manner, all the time preserving the contact with intuition much more
closely than had been done before. It cannot be denied, however,
that in advancing to higher and more general theories the inapplica-
bility of the simple laws of classical logic eventually results in an
almost unbearable awkwardness. And the mathematician watches
with pain the larger part of his towering edifice which he believed to
be built of concrete blocks dissolve into mist before his eyes. }
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10. SYMBOLIC MATHEMATICS

Is there no way to escape such radical consequences? The resolu-
tion to make this sacrifice is doubly hard in view of the historical fact
that in set-theoretical analysis we find, in spite of the boldest and most
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elaborate combinations, complete certainty of deduction and an
obvious accord among all the results. Hilbert set for himself the
goal of saving mathematics in its entirety through the axiomatic
method. He, too, admittedly is convinced that the power of intui-
tive thought does not reach farther than was asserted by Brouwer,
that it is incapable of supporting the transfinite modes of deduction
in mathematics, and that none of the transfinite statements of mathe-
matics can be justified as being evident material truths (einsichtige
inhaltliche Wahrheiten). What Hilbert proposes to secure is not the
truth but the consistency of traditional analysis.

For this purpose he has to formalize mathematics, including logic,
so that it becomes a game with symbols played according to fixed
rules. (The symbols are not meant to be symbols for something.)
The mathematical formulas which are made up of these symbols do
not throughout admit of a material interpretation. Along with the
meaningful propositions, ‘ideal propositions’ had to be introduced in
order to reestablish artificially the validity of the simple logical rules
that, as Brouwer had shown us, were lost in the transition to the
infinite — just as in algebraic number theory ideal numbers were
introduced in order to enforce the validity of the simple divisibility
theorems. There are four different kinds of symbols,’® which are
distinguished, like the pawns and knights in chess, by the different
rules of the game that apply to them: constants (such as 1), variables
(symbols for blanks, z, y, . . . ), one-place and many-place operations,
and integrations. The most important one-place operations are ~
(negation), o (transition from a natural number to the next following
one), and N (Na, to be read: a is a natural number). The most
important two-place operations are —, =, and e. We construe all
these as operations; in particular, N is the operation which, when
applied to a, produces the proposition: a is a number; = is the opera-
tion which, when applied to a and b, produces the proposition: a equals
b. In order to arrive at a convenient general formulation of the rules
of the game, these operational symbols may consistently be written

a
in front of the terms (formulas) to which they apply, e.g. ¢ < instead
b
of aeb. Among the integrations (which are always followed by one
formula only) we have, above all, the quantifiers Z,, II, and the symbol
e; to be introduced presently; they carry one (or several) arbitrary
variables as subscripts. A prefixed integration symbol with the
1 Deviating somewhat from Hilbert’s original version, I here follow von

Neumann's simplified formalism (Zur Hilbertschen Beweistheorie, Mathematische
Zeitschrift, 1926).
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subscript = has the effect that the variable x becomes ‘bound’ at all
places in the formula following the symbol, thus losing its capacity of
being substituted for. In the course of the development of mathe-
matics it is always possible to introduce new symbols. What a
formula is, is defined recursively: ‘(a) every constant or variable by
itself is a formula; (8) from one or two (or several) formulas already
constructed a new formula is obtained by writing down respectively
a one- or two- (or several-) place symbol o of operation or a (one-place)
symbol of integration, and having it followed by the formula(s) in
question in their proper order, each written on a separate line and its
initial symbol joined to o by a dash.” The complete formula then
looks like a (parthenogenetic) genealogical tree of symbols, from which
the ‘“grammatical structure” of the formula, i.e. the manner of its
recursive construction can be read off unambiguously. One also can
decide in this way whether a given tree-like arrangement of symbols is
or is not a formula.

-[The linear arrangement, which is more convenient to print, has
to make use of parentheses if the recursive construction is to remain
uniquely recognizable. We return to the usual symbolism, which is
less systematic, whenever it is a question of merely outlining the pro-
cedure in its essential features.

It is unnecessary to worry about the fact that in the formal con-
struction the operations are applied indiscriminately to all kinds of
things. Who is afraid of such generosity may prefer to discriminate
between ‘numerical’ and ‘factual’ formulas, in accordance with the
following recursive stipulations: ““(a) A constant or variable by itself,
as well as any formula beginning with ¢ or e, is a numerical formula;
formulas beginning with ~, —, v, &, N, =, ¢, Z,, II;, on the other
hand, are factual. (8) The symbols ¢ and N must be followed by one,
=, e by two numerical formulas, while ~, e, Z,, II, must be followed
by one, —, &, v by two factual formulas.” Similar restrictions will
then have to accompany the axiomatic rules and the syllogistic rule of
inference below.

If A(z) (as always in what follows) is an arbitrary formula con-
taining only the one ‘free’ variable = (free in the sense that it is not
bound at every place where it occurs), and if b is a ‘closed formula’
(i.e. one containing no free variables), then b may be substituted for
z in A wherever z occurs free (i.e. is not bound). The result of
this process of substitution, which thus has been described intuitively,
is again a formula; it is denoted by the abbreviating sign A (b).1?

11 Here the letters A, b are clearly not symbols of the game, but are used as
signs of communication that enable us to speak of formulas ete. in general. Hil-
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Formulas serving as axioms form the starting point of any proof.
Instead of individual axioms, however, we formulate general rules for
the formation of axioms. First come the axiomatic rules of finite
logic, such as

c— (b—c).

It says: take any two formulas b and ¢ without free variables and
construct out of them the formula ¢ — (b — ¢); the result you may use
as an axiom. Secondly, there are the two axiom rules of equality;
they establish the connection between logic and arithmetic:

= b.
(b =c) = (A() — A(c)).

Thirdly, we have specifically arithmetical rules of a finite character.
In them the constant 1 appears, which is the material starting point
of all construction:
N1.
Nb — N(ob).
(¢b = ac) — (b = ¢).
~ (ob = l)]'

Next we come to the transfinite part. Taking for granted the alter-
native, denied by Brouwer, that either an honest man exists or all men
are dishonest, one is sure to find an Aristides of whom it can be said:
if any man be honest then Aristides is. For, in the first case, we may
choose as Aristides one of the honest, and, in the second case, any man
at all. In order to be able to construct such an Aristides, not just for
the property of honesty, but for every property, i.e. for every formula
A containing one free variable z, we invent a fictitious divine automa~
ton which produces, whenever an arbitrary property A4 is fed into it,
that individual e;A which certainly possesses the property A provided
such an individual exists at all. ¢, is an integration symbol. (Indul-
gently following the fatal custom of employing the word ‘is’ to denote
both the copula and existence we too use the same letter ¢ for both; but
the confusion is avoided by the variable attached as subscript to the
existential e.) If such an automaton were at our disposal, then we
would be rid of all the trouble caused by ‘some’ and ‘all.’” But the
belief in its existence is, of course, sheer nonsense. Mathematics,
however, proceeds as if it existed. This can be expressed in the form
of an axiom rule, and if the application of this rule does not lead to

bert employs the Gothic alphabet to distinguish them from the symbols proper.
Because of the aversion of the English-speaking reader to Gothic type, this prac-
tice has not been followed in our translation, although it is undoubtedly a valuable
help in keeping the issue clear.
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contradictions, then its use is legitimate in formalized mathematics.
Thus we have the following transfinite logical axiom rules:

A®) — 2, A(z); ILA(z) — A(b);
T, A(x) o A(ed); A(e(~A)) — LA(z).

Those stated in the second line were still omitted in Section 3; they
permit us to infer something from =, and to infer II, from other for-
mulas. Of course, they do not offer the same service as the fictitious
automaton; for, given a formula A, they fail to reveal the identity of
ezA. Only in special circumstances may a formula such as ;4 =1
appear as the terminal formula of a proof starting with the axioms.

{Among the arithmetical axioms, the principle of complete induc-
tion is still absent. It may be interpreted as a transfinite arithmetical
axiom rule, expressing the fact that a property appertaining to 1 and
‘handed on’ from r to ox is a property of every arbitrary number.
But, as we know, this rule becomes superfluous if it is admissible to
introduce for every property A a new object y, namely, the correspond-
ing set, such that the proposition ‘z is an element of y’ is equivalent
with the subsistence of A(z). If this hypothesis is formulated as an
axiom rule, it turns out that its application leads inescapably to a
contradiction — a fact tantamount to a forfeiture of the unlimited
right of objectification. For the purposes of analysis, however, it is
sufficient to restrict the argument x to the range of natural numbers,
so that we may lay down the following narrower transfinite set-
theoretical rule:

(I 2, I.{Nz — ((xey) 2 A(2))},

where B &2 C serves as an abbreviation of (B— C) & (C — B). It
seems to be desirable, though not indispensable, for the construction
of analysis to add the aziom of definiteness, according to which two
sets of numbers are equal if they contain the same elements:

IL{Nz — ((zeb) 2 (xec))} = (b = c).]-

A mathematical proof consists in manufacturing axioms by means
of the given rules — these axioms never contain free variables — and
in progressing to ever new formulas by applying the syllogistic rule
of inferencc to such axioms or to formulas already obtained. We
repeat the rule (cf. Sect. 3): Given two formulas b and b — ¢ in the
second of which the first reappears at the left of — one may pass on
to the formula ¢. To survey in advance what demonstrable formulas
will be obtained as the result of this game is impossible, mainly
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because the syllogism leads from two formulas b and b — ¢ to the new
formula ¢, which is shorter than the second of the premisses, so that
in the proof game shrinkage interchanges with growth.

Up to this point all is game, not knowledge. But now the game
is made the subject of investigation in what Hilbert calls metamathe-
matics, the aim being to make certain that the game will never lead
to a contradiction. Such a contradiction would arise if the actual
play of two proof games would terminate, the one with a formula b,
the other with the opposite formula ~ b. Only in order to arrive at
this one insight does Hilbert require the finite, material, meaningful
mode of thought, which cannot be pressed into any ‘axioms.” In par-
ticular, this material thinking makes use of an intuitive inference by
complete induction, such as we drew when we came to the conclusion
(Section 4) that a correctly played game of chess can never produce 10
queens of the same color.

-[One of the rules of the elementary propositional calculus that
either figures among the axiomatic rules or is readily deduced from
them is

(1 ~b—(b—o),

where b and ¢ are any closed formulas. Let ¢ be an arbitrary formula
of this kind, and suppose that a certain formula b and its negation
~ b have been demonstrated. Under these circumstances, two syllo-
gistic steps lead from (1) first to b — ¢ and then to ¢c. Hence in case
the formalism is known to be inconsistent, any closed formula ¢ may be
demonstrated, and thus the proof game loses all interest. Consistency
may also be defined by saying that the formula ~ (1 = 1) is not
demonstrable. }

The axiom system may be continually expanded, but it must be
shown that the consistency is not overthrown by the expansion. In
particular, definitions may be introduced in the form of new axiom
rules; e.g.

ol =2, o(ob) = asd.

This applies especially to the recursive definitions of b + ¢, b - ¢ and
other arithmetical operations. It can be shown once and for all that
consistency, if it prevailed before, is preserved by the addition of
axioms of this kind, that stand for simple or recursive definitions.!?

12 ]t can also be shown that once the definitional axioms for b 4+ ¢, b c and
the corresponding operational symbols +, - have been introduced, all other

recursively definable arithmetical operations are expressible in the formalism.
Compare e.g. Hilbert and Bernays, Grundlagen der Mathematik, vol. I, pp. 412-422,
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Regarding the natural numbers, Hilbert’s construction, in contrast
to Brouwer’s, gets along without that ‘possibility ad tnfinitum’ which
was described in Section 6 as the third step of constructive cognition.
For Hilbert, 102 is a transfinite symbol, which does not denote a
number of the form oo . .. ocl. Geometry and physics may be
adjoined, as soon and insofar as they have been strictly axiomatized.
Hilbert even believes (Axiomatisches Denken, 1917), ‘ Every potential
subject of scientific thought, as soon as it is ripe for the formation of a
theory, is bound to fall under the axiomatic method and, therefore,
indirectly to the lot of mathematics.”’!3

{As long as the transfinite components are left out of considera-
tion, the consistency proof can easily be carried out by means of a
‘valuation’ of formulas. By a precisely described recursive procedure,
every formula, according to its origin, is ascribed one of the values
T or F (true or false) in such a manner that the finite axioms obviously
get the value T and that the rules of evaluation given in Section 3 hold
for the logical combinations. Hence, as long as the transfinite s
excluded, the syllogism and thus the deductive method, remains tmpotent;
for a decision as to the truth or falsehood of the premiss b — ¢ is made
only after the conclusion ¢ has been evaluated.

The consistency proof can no longer be carried out along those
lines if the transfinite axiom rules are taken into consideration. This
brings out the fact that, with them, the insight into true and false
ceases. After Hilbert and P. Bernays had developed more indirect
methods, W. Ackermann and J. von Neumann in 1926 seemed to have
succeeded in establishing the consistency of ‘arithmetic,” i.e. of an
axiomatic system including the transfinite logical axioms and the
principle of complete induction, excluding however the dangerous
axiom (I) about the conversion of predicates into sets. This result
would vindicate the standpoint taken by the author in Das Kontinuum,
that one may safely treat the sequence of natural numbers as a closed
aggregate of existing objects. Justification of the same standpoint
with respect to the ‘aggregate of all possible sets of natural numbers’
would depend on extending the consistency proof to the set-theoretical
axiom rule (I); at the moment we do not see how that could be done.

13 Qut of an entirely different conception of mathematics, Kant (Metaphysische
Anfangsgrinde der Naturwissenschaft, Preface) comes to the conclusion ‘‘that in
every specific natural science there can be found only so much science proper as
there is mathematics present in it.”” In the same sense as Hilbert, on the other
hand, Husserl (Logische Untersuchungen, I, §71) declares with particular reference
to mathematical logic that ‘“the mathematical form of treatment . . . is for all
strictly developed theories (this word taken in its true sense) the only scientific

one, the only one that affords systematic completeness and perfection and gives
insight into all possible questions and their possible forms of solution.”
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Even in the consistency proof for arithmetic just referred to a serious
gap was later discovered. Concerning this development after 1926
and the catastrophe precipitated by an important discovery by K.
Godel in 1931, see Appendix A. But whatever the ultimate value
of Hilbert’s program, his bold enterprise can claim one merit: it has
disclosed to us the highly complicated and ticklish logical structure of
mathematics, its maze of back-connections, which result in circles of
which it cannot be gathered at a first glance whether they might not
lead to blatant contradictions.

The described symbolism evidently attacks again, in a refined
form, the task which Leibniz had set himself with his ‘“general char-
acteristic”” and ars combinatoria. But is it really more than a bloodless
ghost of the old analysis that confronts us here? Hilbert’s mathe-
matics may be a pretty game with formulas, more amusing even than
chess; but what bearing does it have on cognition, since its formulas
admittedly have no material meaning by virtue of which they could
express intuitive truths? The subject of mathematical investigation,
according to Hilbert, is the concrete symbols themselves. It is
without irony, therefore, when Brouwer says (Intuttionisme en for-
malisme, p. 7), “Op de vraag, waar de wiskundige exactheid dan wel
bestaat, antwoorden beide partijen verschillend; de intuitionist zegt:
in het menschelijk intellect, de formalist: op het papier.” The ques-
tion why he sets up just these rules must remain unanswered by the
consistent formalist. He will have to refer us to philosophy, psy-
chology, or anthropology, so Brouwer thinks, in order to justify his
“lustgevoel van echtheitsovertuiging’” and his belief that the chosen
axiom system is more suitable than any other to be projected onto the
world of experience. }

This last remark reminds us that it is the function of mathematics
to be at the service of the natural sciences. The propositions of
theoretical physics, however, certainly lack that feature which Brouwer
demands of the propositions of mathematics, namely, that each should
carry within itself its own intuitively comprehensible meaning.
Rather, what is tested by confronting theoretical physics with experi-
ence is the system as a whole. It seems that we have to differentiate
carefully between phenomenal knowledge or insight — such as is
expressed in the statement: ‘ This leaf (given to me in a present act of
perception) has this green color (given to me in that same perception)’
— and theoretical construction. Knowledge furnishes truth, its organ
is ‘seeing’ in the widest sense. Though subject to error, it is essen-
tially definitive and unalterable. Theoretical construction seems to
be bound only to one strictly formulable rational principle, that of
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concordance (compare Section 17, p. 121), which in mathematics,
where the domain of sense data remains untouched, reduces to con-
sistency; its organ is creative imagination. In connection with physics
we shall have to discuss in greater detail the question what its deter-
mining factors, besides concordance, are. Intuitive truth, though not
the ultimate criterion, will certainly not be irrelevant here. Hilbert
himself expresses the following opinion (Uber das Unendliche, Mathe-
matische Annalen, 95, p. 190), ““The function left to the infinie . . .
is merely that of an idea — if, with Kant, one understands by an idea
a concept of reason (Vernunjftbegriff) transcending all experience and
supplementing the concrete in the sense of totality.” But perhaps
this question can be answered only by pointing toward the essentially
historical nature of that life of the mind of which my own existence is
an integral but not autonomous part. It is light and darkness,
contingency and necessity, bondage and freedom, and it cannot be
expected that a symbolic construction of the world in some final form
can ever be detached from it.
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71. ON THE CHARACTER
OF MATHEMATICAL COGNITION

{From time immemorial mathematics has been looked upon as the
science of quantity, or of space and number. (Though we also find
this definition with Leibniz, the mathesis thus delineated is to him but
a part of the more comprehensive ars combinatoria.) Today this view
appears much too narrow in consideration of such fields as projective
geometry or group theory. Consequently we need not worry par-
ticularly over an exact determination of what is meant by quantita-
tive. In fact, the development of mathematics itself raises doubts
as to whether quantity is a well-determined and philosophically
important category. Geometry, inasmuch as it is concerned with
real space, is no longer considered a part of pure mathematics; like
mechanics and physics, it belongs among the applications of mathe-
matics. Under the influence of the general arithmetic of hypercom-
plex numbers and later of the axiomatic investigations, of set theory
and symbolic logic, the distinction between mathematics and logic
is gradually obliterated. ‘‘Mathematics is the science which draws
necessary conclusions,” B. Peirce declares in 1870. The definition of
‘mathematics or logic’ is discussed in detail in Chapter XI of Husserl’s
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Logische Untersuchungen (Vol. I, Die Idee der reinen Logik) and in the
last chapter of Russell’s Introduction to Mathematical Philosophy.

The crisis brought on by the set-theoretical antinomies — no
matter if one follows Brouwer’s radical intuitionism or Hilbert’s
symbolism — again throws into sharper relief the peculiar character
of mathematics. Like Plato, Brouwer looks upon the two-oneness as
the root of mathematical thinking. *“Dit neo-intuitionisme zieht het
uiteenvallen van levensmomenten in qualitatief verschillende deelen,
die alleen gescheiden door den tijd zich weer Runnen vereenigen, als
oergebeuren in het menschelijk intellect, en het abstraheeren van dit
uiteenvallen van elken gevoelsinhoud tot de intuitie van twee-eenigheid
zonder meer, als oergebeuren van het wiskundig denken.” We have
seen how the division scheme of the one-dimensional continuum
results from ‘“one becoming two’’'* again and again (compare the
diagram on p. 563). The integers when written in the binary system
are obtained in the same manner. Stenzel (Zah! und Gestalt bei Plato
und Aristoteles, 1924) makes it appear probable that Plato thought of
his numbers as being arranged according to this scheme; but since the
splitting of one into two here leads to larger and larger numbers, while
in the continuum we descend to smaller and smaller parts, he refers
to that two-ness as the ‘‘great-and-small.” (See, however, for a
different interpretation: H. Cherniss, The Riddle of the Early Academy,
Univ. of Calif. Press, 1945.) More appropriate for the integers is
their natural order, which Aristotle (Metaphysics A6 and M6) sets
up in opposition to Plato’s number concept. But it, too, can be
generated out of the two-oneness; starting with an undivided whole,
we separate it into an element (the 1), to be preserved as a unit, and an
undivided remainder, the latter we then separate again into an ele-
ment (2) and an undivided remainder, and so forth. (This can be
visualized as the continued chopping-off of a segment from a half-line;
time is open toward the future, but whenever we stop we find that
another segment of time has been lived through.) In this scheme, not
every part but only the last remaining part is subject to further
bipartition. ]-

Independently of the value attached to this last reduction of the
mathematical thought process to the two-oneness, complete induction
appears, from the intuitionist point of view, as that which prevents
mathematics from becoming one huge tautology and which confers
upon its assertions a synthetic non-analytic character. The pro-

14 Allusion to the phrase “Da wurde Eins zu Zwei’” by which Nietzsche
described his Zarathustra experience in several of his poems; e.g. in ‘‘Sils Maria’’:

“Da, plotzhich, Freundin, wurde Eins zu Zwei —
— und Zarathustra ging an mir vorbei . . . ”

63



MATHEMATICS

cedure of complete induction is, indeed, a decisive feature throughout.
If at first it does not appear to play any part in elementary geometry
(especially in elementary projective geometry), the reason is to be
seen in the naive application of ‘some’ and ‘all’ to the points. In the
intuitionist view, this is inadmissible; the field of construction of
geometry is a continuum and hence capable of exact mathematical
treatment only after it has been spun over with a division net as
described above (compare also Section 15).

From the formalist standpoint, the transfinite component of the
axioms takes the place of complete induction and imprints its stamp
upon mathematics. The latter does not consist here of evident truths
but is bold theoretical construction, and as such the very opposite of
analytical self-evidence. The material reasoning of metamathe-
matics, on the other hand, in running over the steps of a proof, operates
by means of an intuitive inference from n to n 4+ 1 and concerns itself
with ‘““extra-logical, concrete objects, which can be overlooked com-
pletely in all their parts and whose exhibition, differentiation, and
succession or coordination are intuitively given along with the objects
as something neither capable nor in need of reduction to anything
else” (Hilbert). Thus Hilbert agrees with Kant — who, incidentally,
likewise emphasized the symbolic construction with concrete tokens
in algebra (Critique of Pure Reason, ed. Max Miiller, p. 576, = p. 717
of the first edition, 1781) — that ‘“mathematics possesses a content
that is secure independently of all logic and therefore can never be
based upon logic alone” (Uber das Unendliche, p. 171).

{1t should be recognized, however, that according to the Kantian
usage of the words ‘analytic’ and ‘synthetic’ at least an individual
equation such as 3 + 2 = 5 ought to be called analytic; for, as Leibniz
explained, it follows logically from the definitions

34+1=4 441=5 (a+1)+1=a+2,

and thus “lies in the concepts” of the numbers 3, 5 and of the opera-
tion +2. Or else what meaning did Kant connect with these symbols?
Mathematics undoubtedly is a priori. It is not, as J. S. Mill wants
to make us believe, founded on experience, in the sense that only
repeated observations of numerical examples confer an increasing
measure of verisimilitude upon such arithmetical theorems as

m-+n=n-+m
that are pretended to hold for arbitrary numbers.]-

A conspicuous feature of all mathematics, which makes it so
inaccessible to the layman, is the abundant use of symbols. The
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intuitionist does not consider this an essential characteristic, he sees
in them, as he does in all spoken or written language, merely a tool of
communication and of support for the memory by fixation. Not
so the formalist. He thinks of mathematics as consisting wholly of
symbols, which have no meaning verifiable in sensual or mental
intuition and which are manipulated according to fixed rules. Lan- .
guage, on the other hand — for instance in the description of substitu-
tion or of the practical rule of inference, as well as in metamathematical
reasoning — serves him as a means for communicating modes of pro-
cedure and acts of meaningful thought. (Communication remains
forever exposed to the risk of misunderstanding.) ‘“In the geo-
metrical figure and, later, in the mathematical formula,” A. Speiser
says (Klassische Sticke der Mathematik, 1925, p. 148), ‘““mathematics
has liberated itself from language; and one who knows the tremendous
labor put into this process and its ever-recurring surprising success,
cannot help feeling that mathematics nowadays is more efficient in its
particular sphere of the intellectual world than, say, the modern
languages in their deplorable condition of decay or even music are on
their fronts.” In his transcendental methodology (Critique of Pure
Reason, Part II), Kant sees the essence of mathematics in the con-
struction, “Philosophical knowledge is that which reason gains from
concepts, mathematical that which it gains from the construction of
concepts’” (ed. Miiller, p. 572, = p. 713 of the first edition, 1781).
Using the theorem of the sum of the angles in a triangle as an example,
he illustrates how geometrical theorems are found, not by conceptual
analysis, but by construction of suitable auxiliary points and lines.
The details of his description of the constructive procedure can no
longer be considered satisfactory today. This much is true, however,
that in the proof of a mathematical theorem it is almost always neces-
sary to go far beyond its immediate content. The reason is to be seen
in the fact emphasized before that a proof proceeding according to the
syllogistic rule of inference is not a monotonically progressing con-
struction — in contrast to a formula, whose manufacture always
advances in the same direction and whose constructive parts are
therefore preserved in the final form — but a constant change of adding
on and removing. This circumstance, together with the points 1, 2,
and 3 enumerated in Section 6 (p. 37), seem to me to give a fairly
adequate characterization of construction as opposed to pure reflection.

The stages through which research in the foundations of mathe-
matics has passed in recent times correspond to the three basic possi-
bilities of epistemological attitude. The set-theoretical approach is
the stage of naive realism which is unaware of the transition from the
given to the transcendent. Brouwer represents idealism, by demand-
ing the reduction of all truth to the intuitively given. In axiomatic
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formalism, finally, consciousness makes the attempt to ‘jump over
its own shadow,’ to leave behind the stuff of the given, to represent
the transcendent — but, how could it be otherwise?, only through the
symbol. Basically, the idealist viewpoint in epistemology has been
adhered to by occidental philosophy since Descartes; nevertheless, it
has searched again and again in metaphysics for an access to the realm
of the absolute, and Kant, who meant to shoot the bolt once and for
all, was yet followed by Fichte, Schelling, and Hegel. It cannot be
denied that a theoretical desire, incomprehensible from the merely
phenomenal point of view, is alive in us which urges toward totality.
Mathematics shows that with particular clarity; but it also teaches us
that that desire can be fulfilled on one condition only, namely, that we
are satisfied with the symbol and renounce the mystical error of
expecting the transcendent ever to fall within the lighted circle of our
intuition. So far, only in mathematics and physics has symbolical-
theoretical construction gained that solidity which makes it compelling
for everyone whose mind is open to these sciences. Their philosophical
interest is primarily based on this fact.

{If in summing up a brief phrase is called for that characterizes
the life center of mathematics, one might well say: mathematics is
the science of the infinite. It was the great achievement of the Greeks
to have made the tension between the finite and the infinite fruitful
for the analysis of reality. It has been attempted here to bring out
the past and present importance of this tension — and of the attempts
to overcome it — for the history of theoretical knowledge. ‘‘The
infinite, like no other problem, has always deeply moved the soul of
men. The infinite, like no other idea, has had a stimulating and fertile
influence upon the mind. But the infinite is also more than any other
concept, in need of clarification” (Hilbert, Uber das Unendliche).

For a survey of the various issues and problems in which mathe-
matical research is interested today, the reader may be referred to
Courant and Robbins, What is Mathematics? }
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CHAPTER III

Geometry

NowHERE do mathematics, natural sciences, and philosophy permeate
one another so intimately as in the problem of space. The presup-
positions for the discussion of this problem, inasmuch as they have
emerged from mathematical investigation, are to be briefly outlined
in this chapter.

12. NON-EUCLIDEAN, ANALYTIC,
MULTI-DIMENSIONAL, AFFINE, PROJECTIVE
GEOMETRY; THE COLOR SPACE

{Little has to be added concerning the topic of non-Fuclidean
geometry to what has been said in Section 4 in connection with axio-
matics. If all remaining axioms are maintained, then there are these
three possibilities: given a point P and a line [ in a plane, with P not
on [, there are either infinitely many lines in that plane which pass
through P but do not intersect /, or just one such line, or none (known
since Klein as the ‘hyperbolic,” ‘parabolic,” and ‘elliptic’ cases respec-
tively). The sum of the angles in a triangle in these cases is respec-
tively less than, equal to, and greater than, 180°. The last-named
possibility, pointed out only toward the middle of the 19th century
by Riemann, exists only if the axioms of order are modified to the
effect that the line appears no longer as an open but as a closed curve.
Plane elliptic geometry is none other than that which holds on a sphere
in Euclidean space, except that diametrically opposite points have to
be identified. Or, in other words, while all other terms referring to
the geometry of the plane p retain their ordinary ‘ Euclidean’ meaning,
the meaning of the notion of congruence is to be modified to the effect
that two configurations in p are considered ‘congruent’ if their pro-
jections from a central point O, not in p, onto a sphere about O are
congruent in the ordinary sense. The plane, in this case, has to be
enriched by the inclusion of the ‘points at infinity,” whose rays of
projection are the lines through O parallel to p. The mappings of p
which map ‘congruent’ configurations into each other can be charac-
terized, without reference to the space, as collinear transformations
that have an invariance property similar to that prevailing in the
Klein model of Bolyai-Lobatschewskyan geometry. Thus the way is
open to the development of an elliptic geometry not only in the plane
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but also in space. The true relation between the three kinds of
geometry is brought out best if the non-metrical projective space
is taken as the starting point and a ‘Cayley metric’ built into it.
According to the type of absolute conic on which this metric is based,
one or another of the three metric geometries is obtained. Klein
himself interpreted his construction in this sense, namely, as endow-
ment of projective space with a Lobatschewskyan metric, not as
construction of a model by means of metric Euclidean space. }

Analytic geometry reduces every geometrical problem to an
algebraic one. This presupposes that the number concept, by the
inclusion of fractions and irrational numbers, has acquired that width
which makes it suitable, not only for counting, but also for measuring,.
The Greeks had been deterred from this step because they took the
discovery of the irrational seriously.!d The post-classical Western
civilization, less scrupulous than they, resumed the old algebraic
traditions of the Sumerians, Indians, and Arabs. It attained to
independent achievements in geometry only after the science of space,
through Descartes’ Géométrie (1637), became subjected to algebraic
calculus.

{Today probably the best approach to analytic geometry is by
means of the vector concept, following the procedure of Grassmann's
Ausdehnungslehre. The vector calculus is a computational device
whose objects are not numbers but simple geometrical entities. A
treatment of geometry along these lines was demanded and even
partially executed by Leibniz in his work De analist situs and his
design for a geometrical characteristic (Mathematische Schriften, V,
p. 178, and II, p. 20), which belong within the framework of his

“‘universal characteristic.”” The translations, or parallel displace-
ments, of space are called vectors. A point A is mapped by a trans-

lation a into a point Aa = B, the ‘endpoint of the vector a laid off
from 4. Conversely, if A, B are any two points in space, there

exists one and only one translation a which carries A into B. Among
the translations we have the ‘identity,” under which all points remain
fixed; this is the vector 0. Translations can be combined they form

a group, the effect of carrying out first one translation, a then another,

b is the same as that of a single translation, the resultant a + b The
number concept enters geometry through the process of iteration of a

18 Descartes speaks of the ‘“‘misgivings of the Ancients regarding the use of
terms of arithmetic in geometry, which can only have had their origin in a lack of
understanding concerning the connection between these two disciplines.”
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translation a (consisting in adding a arbitrarily often to itself; compare
the beginning of Section 5). Starting with a point A and repeating

the same step a again and again, one obtains the skeleton of a line,
namely, a sequence of equidistant points beginning with A. The line
itself results, so to speak, by continuous iteration of the same infinitely
small translation. By partition (as in Section 5) we contrive to apply

not only integral but also fractional multipliers \ to the vector a, and
the continuity requirement finally removes the restriction to rational
numbers. Thus arises an axiomatic construction of geometry (strictly
speaking, of affine geometry, in which only parallel line segments can
be measured against one another) that presupposes the fully formed
concept, of real number — into which the entire analysis of continuity
is thrown — and uses as the only basic geometric concepts ‘point’
and ‘vector.” Three basic operations connect these objects: (1) two

add

vectors a, b generate a thlrd vector, a + b 2) a number A\ and a vector
a generate the vector )\a (3) a point A and a vector a generate a point

Aa. The axioms referring to these operations form a system that,
also in logical respect, is of a much more transparent and homogeneous
structure than the purely geometrical axioms of Euclid or Hilbert.
Indeed, they determine, as has already been pointed out in Section 4,
nothing other than the operational field of linear algebra. They
reveal a wonderful harmony between the given on one hand and
reason on the other. Moreover the simplest derived geometrical
concepts, to which here belong especially the line and the plane,
correspond to those which suggest themselves most naturally from

the logical standpomt All vectors = which are obtained from two

given ones, e1 and es, through the formula

1) T = I181 + T209,
with arbitrary numerical coefficient z,, x,, form a ‘linear vector manifold
of dimension 2. For the sake of the uniqueness of the representation

(1) it is assumed here that e, ;; are linearly independent, i.e. that
the expression on the right furnishes the vector 0 only if z; and z, are

both equal to 0. If all these vectors z are laid off from a fixed initial

point O, then the endpoints Oz = P form a ‘linear point manifold of
dimension 2,” or a plane. The coordinate system here consists of the

point O and the two linearly independent vectors ej, e2. Relative to
these, the point P is characterized by its ‘ coordinates’ z,, ;. Similarly
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linear vector manifolds and linear point manifolds of dimensions
1,2, 3, ... (line, plane, . . . ) may be introduced. }

Only here do we meet the concept of dimension. In real space
we cannot go beyond the third dimension; there exist 3, but no more,
linearly independent vectors. Measured against the transparent
lawfulness that finds its expression in our axiom system, this dimension
number 3 appears as a contingent feature. We might just as well
replace the number 3 by any number n of dimensions, by postulating
that there be n, but no more, linearly independent vectors. A coordi-
nate system for the space then consists of an initial point O and n such
vectors. Forn = 1, 2, 3 we thus obtain respectively the geometry of
the line, of the plane, and of space. Only on the basis of the notion
of an n-dimensional geometry to which this formalization leads in a
cogent manner does the problem of the number of dimensions become
meaningful: What inner peculiarities distinguish the case n =3
among all others? If God, in creating the world, chose to make space
3-dimensional, can a ‘reasonable’ explanation of this fact be given by
disclosing such peculiarities?

-[If all vectors are laid off from a fixed initial point, it is seen that
the geometry of vectors is identical with the (affine) geometry of a
point space provided with an absolute center O. If one identifies
any two non-vanishing vectors resulting from one another through
multiplication by a number, i.e. if one considers as elements the rays
through O, the n-dimensional affine vector geometry becomes the
(n — 1)-dimensional projective geometry (of the family of rays through
0).

The projective geometry holds in the space of the perceptively
given color qualities of colored light. (The manifold of the objective
physical colors has infinitely many dimensions; of these, the normal
non-colorblind eye produces a 2-dimensional ‘projection,” a huge
manifold of physically different colors giving the same color impres-
sion.) If two colors of definite intensity are composed (mixed), the
result is a new definite color of a definite intensity. The various
intensities of one color may be compared with one another, so that, after
a unit intensity has been chosen, every intensity can be measured by
a number (iterated composition of a color of unit intensity with itself
producing a scale of intensities without change of the color quality).
The intensities of two different color qualities, on the other hand, are
incommensurable. Thus the colors with their various qualities and
intensities fulfill the axioms of vector geometry if addition is inter-
preted as mixing; consequently, projective geometry applies to the
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color qualities. All colors resulting from the mixing of three basic
colors A, B, C form the ‘triangle’ ABC. The color space turns out to
be 2-dimensional, by virtue of the fact that three basic colors suffice to
produce all colors by mixing, or at least that the entire color field can
be composed of such color triangles. For the real colors fill out only a
restricted section of the entire projective plane. But it can, by the
procedure described in Section 2, be extended ideally into a full pro-
jective plane; ideal colors must be chosen as the basic colors 4, B, C
if the field of real colors is to fall entirely within the triangle ABC. In
the projective color plane, the pure spectral colors lie on a curve whose
extremities come very close together and are connected by purple.
Epistemologically it is not without interest that in addition to ordinary
space there exists quite another domain of intuitively given entities,
namely the colors, which forms a continuum capable of geometric
treatment.]-
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13. THE PROBLEM OF RELATIVITY

Our knowledge stands under the norm of objectivity. He who
believes in Euclidean geometry will say that all points in space are
objectively alike, and that so are all possible directions. However,
Newton seems to have thought that space has an absolute center.
Epicurus certainly thought that the vertical is objectively distin-
guishable from all other directions. He gives as his reason that all
bodies when left to themselves move in one and the same direction.
Hence the statement that a line is vertical is elliptic or incomplete,
the complete statement behind it being something like this: the line
has the direction of gravity at the point P. Thus the gravitational
field, which we know to depend on the material content of the world,
enters into the complete proposition as a contingent factor, and also
an individually exhibited point P on which we lay our finger by a
demonstrative act such as is expressed in words like ‘I,” ‘here,” ‘now,’
‘this.” Only if we are sure that the truth of the complete statement
is not affected by free variation of the contingent factors and of those
that are individually exhibited (here the gravitational field and the
point P) have we a right to omit these factors from the statement
and still to claim objective significance for it. Epicurus’s belief is
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shattered as soon as it is realized that the direction of gravity is
different in Princeton and in Calcutta, and that it can also be changed
by a redistribution of matter. Without claiming to give a mechani-
cally applicable criterion, our description bears out the essential fact
that objectivity is an issue decidable on the ground of experience only.
It also accounts for the two main sources of the error so often com-
mitted in the history of knowledge, that of mistaking a statement for
objective that is not: (1) one overlooked certain relevant circumstan-
tial factors on which the meaning of the statement depends although
they are not mentioned explicitly in its elliptic form, (2) though these
factors were recognized, one did not investigate carefully enough
whether or not the truth of the statement is affected by their variation.
It is no wonder then that at several phases in the course of the history
of science the realm of that which is considered objective has shrunk.

Whereas the philosophical question of objectivity is not easy to
answer in a clear and definite fashion, we know exactly what the ade-
quate mathematical concepts are for the formulation of this idea.
Let us start with a completely axiomatized science like Euclidean
geometry. For simplicity’s sake we assume only one fundamental
category, the points of space. According to Hilbert the fundamental
relations that enter into the axioms would then be (1) the ternary
relation: three points lie on a straight line, (2) the relation: (three
distinet points 4, B, C lie on a straight line and) B lies between A4
and C; (3) the relation: four points lie in a plane; (4) the relation of
congruence AB = CD between two pairs of points AB and CD.
What we are going to say applies to any domain of objects the axioms
of which deal with a few basic relations. Without prejudicing what
the objects are we may call them points and thus speak of the domain
as the point-field.

In Section 4 the notion of isomorphic mapping was introduced.
We now consider the special case when our domain of objects is
mapped not upon another domain but upon itself, and thus arrive
at the notion of automo:phism: an automorphism is a one-to-one
mapping p — p’ of the point-field into itself which leaves the basic
relations undisturbed; i.e. whenever points a, b, . . . satisfy the
basic relation R(ab . . . ) then the points a’, b’, . . . into which
a, b, . . . are carried over by the mapping satisfy the same relation,
and vice versa. In other words R(ab . . . ) implies R(a’d’ . . . ),
and R(a’d’ . . . ) implies R(ab . . . ). A mapping o carries every
point of the point-field into a point p’ = pe. The simplest mapping is
the identity ¢ carrying every point p into p itself. Two mappings ¢:
p — p’ and 7: p’ — p’’ may be carried out one after the other and then
give rise to a new mapping or: p — p’’. A mappinge: p — p’is one-to-
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one if it has an inverse ¢! that carries p’ back into p: g6™! = ¢l = .
Then 0! is also one-to-one. The identity is a one-to-one mapping;
and if ¢ and 7 are, so is o7, its inverse being 7~'¢~!, The word trans-
formation will be used as a synonym for one-to-one mapping. The
fundamental fact about the automorphisms is that they form a group.
This means the following three things: (1) the identity is an auto-
morphism; (2) if ¢ is an automorphism, then ¢! is; (3) if ¢ and 7 are
automorphisms, then or is. These three facts are an immediate
consequence of the definition.

A figure F in its widest sense, or a configuration of points, is nothing
but a point-set; F is given if for every point p it is determined whether
or not it belongs to F. A ternary relation R(zxyz) between points is
invariant with respect to a given transformation ¢: p — p’ and its
inverse p’ — p if R(abc) always implies B(a’b’c’) and vice versa. We
can now say in precise terms what is meant by the objective equality
or ‘indiscernibility’ of all points in Euclidean space. It means that,
given any two points p; and p,, there is always an automorphism
carrying p, into p;,. Two figures F and F’ are stmilar if one can be
carried into the other by an automorphism. That is now our inter-
pretation of Leibniz’s definition of similar figures as figures that are
indiscernible if each is considered by itself. The three postulates
for a group simply state that each figure is similar to itself and that
similarity is symmetric and transitive (see the axioms for equivalence
on p. 9). A point relation is said to be objective if it is invariant
with respect to every automorphism. In this sense the basic relations
are objective, and so is any relation logically defined in terms of them
by means of the principles enumerated in Section 2, provided no use
is made of Principle 5 permitting a blank to be filled out by an indi-
vidually exhibited point. (Whether every objective relation may be
so defined raises a question of logical completeness which is as unlikely
to be answerable as the corresponding question of completeness for the
axioms in the form whether every true universal statement about
points can be deduced from the axioms.)

When our task is to investigate the real space, neither the axioms
nor the basic relations are given to us. On the contrary: in our
attempt to axiomatize geometry we select as our basic relations some
of the point relations of which we are convinced that they have an
objective significance (for instance Epicurus would have included
the basic relation: A, B lie on a vertical; Euclid did not). Hence in
order to do justice to the real state of affairs we shall have to invert
the order in the development of our ideas. We start with a group T"
of transformations. It describes, as it were, to what degree our point
field is homogeneous. Once the group is given we know what like-

73



MATHEMATICS

ness or similarity means — namely two figures are similar (or alike, or
equivalent) that arise from each other by a transformation of T' —,
and also under what condition a relation is objective, namely if it is
invariant with respect to all transformations of I'. It is in this sense
that Felix Klein in his famous Erlanger Program (1872) promulgated
the conception that a geometry is determined by a group of trans-
formations. The question of axiomatizing this geometry is now
relegated to the background. (As a first step it would require the
finding of a few objective relations R,, R,, . . . such that the group
of all transformations leaving R,, K., . . . invariant is not larger
than T but coincides with I'.) While we need not close our eyes to the
fact that objective relations can be logically constructed from other
such relations, we refrain from making a distinction between basic
and derived. We are equally interested in all invariant relations.

-[If Newton were right in ascribing to space an absolute center O,
the true group Ty of automorphisms would consist of those transforma-
tions of the Euclidean group T of automorphisms which leave O fixed;
Newton’s Ty is a subgroup of Euclid’s I'. On the other hand, in
studying Euclidean geometry we may be primarily interested in such
properties as are invariant with respect to all affine or all projective
transformations. (The affine and the projective transformations of a
plane are those that result from carrying out one after the other any
number of parallel projections or central projections respectively.)
The groups I'" and I'"’ of these transformations are wider than I'; more
precisely, T is part of I, and I’ part of T/. The importance of affine
and projective geometry for the theory of perspective is obvious. One
sees how helpful Klein’s point of view proves in surveying, and bring-
ing to light the mutual relationship of, various kinds of geometries such
as are either suggested by the nature of things or spring from arbitrary
but logically useful abstraction. (Klein had a predecessor in Mébius
who stressed the group-theoretical viewpoint for a number of special
types of geometries.) The widest group of automorphisms one can
possibly envisage for a continuum consists of all continuous transforma-
tions; the corresponding geometry is called topology. It was a lucky
chance for the development of mathematics that the relativity problem
was first tackled, not for the continuous point space, but for a system
consisting of a finite number of distinct objects, namely the system of
the roots of an algebraic equation with rational coeflicients (Galois
theory). This circumstance has greatly benefited the exactness of the
relevant concepts. The objective relations are here those which can
be constructed by means of the four basic operations of algebra
(addition, subtraction, multiplication, division), in other words the
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algebraic relations with rational coefficients. This sort of problems
gave rise to a general theory, not only of transformation groups, but
also of abstract groups. }

Having explained automorphism we now come to a second phase
of the relativity problem. How is it possible to assign to the points
of a point-field marks or labels which could serve for their identification
or distinction? The labels are supposed to be self-created, distinctive
and always reproducible symbols, such as names, numbers (or number
triples z, ¥, 2, etc.). Only after this has been accomplished can one
think of representing the spectacle of the actually given world by con-
struction in a field of symbols. All knowledge, while it starts with
intuitive description, tends toward symbolic construction. No serious
difficulty is encountered as long as one deals with a domain consisting
of a finite number of points only, which can be ‘called up’ one after the
other. The problem becomes a serious one when the point-field is
infinite, in particular when it is a continuum. A conceptual fixation
of points by labels of the above-described nature that would enable one
to reconstruct any point when it has been lost, is here possible only
in relation to a coordinate system, or frame of reference, that has to be
exhibited by an individual demonstrative act. The objectification,
by elimination of the ego and its immediate life of intuition, does not
fully succeed, and the coordinate system remains as the necessary
residue of the ego-extinction.!® It is good to remember here that in
practice two- or three-dimensional point-sets are usually given by actu-
ally putting a body or a figure drawn with pencil on paper before our
eyes, and not by a logico-arithmetical construction of set-defining prop-
erties. It took a long time for mathematics before it had acquired
the constructive tools to cope with the complexity and variety of such
intuitively given figures. But once it had reached that stage the
superiority of its symbolic methods became evident.

{Take as an example the points on a line. The coordinate system
consists here of a point O and a unit segment OF, or of two distinct
points O, E. When this frame of reference is given, any point P can
be characterized by its abscissa z, the number measuring the length
OP with OE as the unit yardstick (z is positive for points lying on the
same side of O as E, negative for points on the opposite side). Any

16 Against the establishment of an essential difference between conceptual
determination and intuitive exhibition, the objection might be raised that even
the objective geometrical relations upon which the conceptual determination is
based require intuitive exhibition. But these are a few isolated relational con-
cepts, while the points themselves form a continuum. I am inclined to admit that
this fact alone constitutes the essential difference.
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two frames of reference, OF and O'E’, are objectively alike, for there is
exactly one automorphism (similarity) that maps O into O’ and E
into E’. Hence by exhibiting an individual coordinate system no
more is exhibited than is absolutely necessary. The field for the
symbol z consists of all real numbers. Relative to a given coordinate
system the correspondence P < z is a one-to-one mapping of the
point-field onto the variability range of the symbol. The coordinates
z and z’ of the same arbitrary point in two coordinate systems are
connected by a relation z = az’ 4+ b where a > 0 and b are two con-
stants characteristic of the relative position of the two coordinate
systems.}

With this example in mind, one will be able to understand the
following general description. A class = of frames of reference f is
supposed to be given. The class as such should be objectively dis-
tinguished; i.e. if f belongs to it, so does any similar frame fo = §’
arising from f by an automorphism ¢. But the class is supposed to
contain no more elements than this requirement makes absolutely
necessary, i.e. any two frames f, {f' of the class are similar. Moreover
an objective rule A is supposed to be given by which each point p
with respect to any frame { of the class = determines a definite (repro-
ducible) symbol 2z = A(p; f) as its coordinate. For a given f the
correspondence p &2z between points p and symbols z is one-to-one.
That z is objectively determined by p and { means that

(1 A(p; ) = A(po; fo)

for any automorphism o.

From these conditions there flow the following consequences.
Let ¢ be an automorphism p — p’ of the point-field and f be a fixed
frame of class £. The coordinates z of p and z’ of p’ in this frame are
connected by a transformation S, z’ = z8, which represents the
automorphism ¢ in terms of f. To the identity ¢ = « there corresponds
the identity 8 = I; ¢! and o7 are represented by S—! and ST if S and
T represent ¢ and r. In this sense the transformations S correspond-
ing to the several ¢ of T form a group G that is isomorphic with T.
G is nothing but the representation of I' in terms of f. Take, on the
other hand, a fixed frame | of our class Z and an arbitrary frame
f’ = fo that arises from f by the automorphism ¢. I maintain that
the coordinates z, z’ of the same arbitrary point with respect to f and
f’ are connected by the equation z = z’S. Indeed, denote the arbi-
trary point by po instead of p; we then have x = A(ps; f) and, because
of (1),

z' = A(po; fo) = A(p; ),
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and thus our assertion follows. The group G that represents T' in
terms of f must be independent of f. Indeed, representation of T' by
two different groups G, G* in terms of the two similar frames f and
f* would constitute an objective difference between f and f*, which is
impossible. It is easy to verify this explicitly. Let {* = fy, where
v is an automorphism. Moreover, let £ and 2’ be the coordinates of
an arbitrary point p and its image p’ = po with respect to f, and y
and y’ with respect to f*. The transformations representing v and

¢ in terms of f may be called C and 8. Write the equation 2’ = z8 in
(8)
the more suggestive form & — z’. After what has been said, we then

have the following diagram

8

z—z

@1 L(C.
y vy

Hence the transformation that leads from y to y’ and thus represents
o in terms of the frame f* is S* = CSC-!. With S also CSC-! = S*
is in the group G, and vice versa: S = C-18*C.

As long as the points could not be characterized conceptually, the
transformations of the point field could not be either, and it was thus
perhaps not perfectly clear what was meant by saying that the group of
automorphisms is known or given. A stage has now been reached
where this last shadow of obscurity disappears. Every point is
replaced by its coordinate x (with respect to a fixed frame), and thus
the group T of automorphisms ¢ appears as a group G of transforma-
tions 8. The individual transformation S carrying z into z’ = xS,
is a reproducible symbol like any individual value of z. But while
the coordinate z is not only dependent on p but also on f, the group G
is independent of f and hence free from anything in need of individual
exhibition. To fulfill the demand of objectivity we construct an image
of the world in symbols. The pure mathematician will say: Given a
group G of transformations in a field of symbols, a geometry is
established by agreeing to study, and consider as objective, only such
relations in that field as are invariant under the transformations of G.

{ A last remark of a purely logical nature concerns the frames. It
is quite legitimate to regard as the frame of reference f the coordinate
assignment p — z = f(p) itself established by §. This seems even
preferable if one has to be prepared for a group of automorphisms so
wide as to comprise all continuous transformations. The symbol f§ is
then simply a token for the function f whose argument ranges over the
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points p and whose value is an element z in the field of symbols. If
o: p — p’ is any transformation, then the transformed function f' = fo
will be defined by the equation f'(p’) = f(p) for p’ = pa, or f'(p)
= f(pa—!). When we write z = A(p; ) for £ = f(p) then A stands
for the universal logical operator ‘value of’; z = A(p; f) means: z
is the value of the function f for the argument p.}
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714. CONGRUENCE AND SIMILARITY.
LEFT AND RIGHT

There is no doubt that the conviction which Euclidean geometry
carries for us is essentially due to our familiarity with the handling of
that sort of bodies which we call rigid and of which it can be said that
they remain the same under varying conditions. The portions of
space which such a solid fills in two of its positions are called congruent.
Measurement depends on rigid bodies to the same degree as counting
does on the use of concrete number symbols. (About the physical
foundation of geometry cf. also Sections 16 and 18.) Once geometry
has been abstracted from the behavior of actual bodies that are
approximately rigid it provides a standard for the physical investiga-
tion of all bodies, and we can judge how far a given body realizes the
ideal of rigidity. This process is not essentially different from the one
by which a scale of temperature is first based on the behavior of actual
gases and then reduced to the ‘ideal gas scale’ by postulating the exact
validity of such laws as are approximately satisfied by the existing
gases. Since places on a rigid body can be tagged, congruence is a
point-by-point mapping of the two congruent volumes ¥V and V’. The
notion of congruence at first is relative to a given rigid body b. Its
factual independence of b is one of our most fundamental experiences.
Indeed, let V, V' be two portions of space filled by the solid b in two
of its positions. Let b* be another solid that fits into V; then it may
be so moved as to fill V. Since one may extend a rigid body so as to
cover any given point, the mapping ¥V — V'’ can be extended to the
whole space. The congruent mappings of space form a group A+ of
transformations which we call the group of Euclidean motions. Once
this group is known, congruent volumes may be defined as portions
of space that can be carried into each other by a transformation S of
A+. The facts suggest an interpretation according to which the
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group At of congruent mappings expresses an intrinsic structure of
space itself; a structure stamped by space on all spatial objects.

If this view is correct, congruence should be made the one and only
basic concept of geometry. Let us first investigate what the conse-
quences of this conception of geometry are for the automorphisms of
space (stmilarities). We know quite generally that once the basic
relational concepts of a geometry are fixed the group T' of automor-
phisms is also fixed. In our case the criterion for an automorphism
C is this: C as well as C—! must transform any pair of congruent por-
tions of space v, v, into a congruent pair. Consider the pair vy, vy
arising from v;, v, by the transformation C. Let S be the motion that

(S)

V1 — V2
(€1 1(C)
CHIE

carries v, into v, As the above diagram indicates, v} goes
into vy by the mapping C-'SC. Hence the criterion demands that
the transformations C-!SC and CSC-! should belong to A+ when-
ever S does. A transformation C is said to commute with a given
group A of transformations if C-'SC and CSC-! are in A whenever
Sis. The transformations commuting with A form a group called the
normalizer of A. This group necessarily contains A as a subgroup, be
it that A is identical with its normalizer or a proper part of it. Qur
analysis can now be summarized thus: The group T of similarities is the
normalizer of the group At of motions. Hence congruent figures are
necessarily similar. The converse need not be true. Indeed, since
At happens to be a proper subgroup of its normalizer there exist
similar figures in Euclidean space which are not congruent; as for
instance a body and its mirror image, or a building and a small scale
model of it.

Let us now invert the procedure and follow Klein by starting with
a given group T' of automorphisms. Take a subgroup A of I' and
declare two figures to be A-equivalent if one is carried into the other
by a transformation of A. Under what circumstances has this relation
of A-equivalence objective significancc? If and only if A-equiva-
lent figures are carried into A-equivalent figures by every transforma-
tion C of T, or in other words, if every element C of I' commutes with
A. In that case the mathematician says that A is an invariant sub-
group of I'. Hence A-equivalence is an objective relation provided A
is an invariant subgroup of I'. For instance, the parallel displace-
ments form an invariant subgroup of the group of Euclidean similari-
ties; and indeed the relation || between two figures arising from each
other by parallel displacement is clearly of objective geometric sig-
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nificance — although our language lacks a suggestive word for it.
The normalizer of the group of parallel displacements consists of all
affine transformations; hence affine geometry may be based on the one
relation || between figures. Or, still more simple, the subgroup con-
sisting of the identity only is an invariant subgroup, and indeed the
relation of identity between two figures is of objective significance.
(There is none that has a better claim to objectivity, owing to the
fact that the identity is contained in every possible group I' of trans-
formations.) The smaller the group A the larger its normalizer, and
thus the wider the gap between congruence and similarity; or more
precisely, if A’ is a subgroup of A then the normalizer I’ of A’ contains
the normalizer T of A. The normalizer of an invariant subgroup
A of T always comprises I A geometry whose group of automor-
phisms is T' can be based on the objective relation of A-equivalence
alone, provided the normalizer of A is not larger than T' but coincides
with T,

{A last remark will conclude this analysis. Space is a continuum,
and when we speak of any transformation in space it is reasonable to
interpret this as meaning any continuous transformation. We indi-
cate by @ the group of those transformations that are taken into
account at all; in the case of a continuum this would be the group of
all continuous transformations. By putting this explicitly in evidence
our definition of normalizer may be repeated as follows. Given a
subgroup A of the group 2; those elements of @ that commute with A
constitute the normalizer ' of A. In this form the notion of normalizer
makes sense even for abstract groups € and A.

Kant speaks about the divergence between congruent and similar
in Prolegomena, §13, and claims that ‘‘by no single concept, but only
by pointing to our left and right hand, and thus depending directly
on intuition [Anschauung] can we make comprehensible the difference
between similar yet incongruent objects (such as oppositely wound
snails)’’; and in his opinion only transcendental idealism offers a solu-
tion for this riddle. No doubt the meaning of congruence is based on
spatial intuition, but so is similarity. Kant seems to aim at some
subtler point, but just this point is one which can be completely
clarified by an analysis in terms of a group T' and its invariant sub-
groups A, or of a group A and its normalizer T. Whenever A is a
proper invariant subgroup of T, the notions of congruence = A-equiva-
lence and similarity = I'-equivalence do not coincide although the
former is of objective significance (= TI-invariant). The phenomenon
about which Kant wonders can thus be most satisfactorily subsumed
under general and abstract ‘concepts.’ }
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Whoever raises congruence to the rank of the only basic relation of
geometry is obliged to develop geometry from this one notion. Several
ways are open to accomplish this. A deeper insight than by the
elementary approach in the style of Euclid’s axioms would be gained
if one succeeded in formulating the fundamental facts of geometry as
simple axioms concerning the group A+ of Euclidean motions. Fol-
lowing Ueberweg, Helmholtz first carried out this program with sur-
prising success in his essay ‘‘Ueber die Tatsachen, die der Geometrie
zugrunde liegen.” Later S. Lie, who established a general theory of
transformation groups, resumed the problem with his more powerful
mathematical tools and generalized it from 3 to n dimensions. The
Euclidean group of motions A+ turns out to be almost completely
characterized by the fact that it permits the rigid body that measure
of free mobility with which we are familiar by experience. In more
exact terms: it is possible by suitable congruent mappings to carry
any point into any other, and, if a point is kept fixed, to carry any line
direction at that point into any other at the same point; furthermore,
if a point and line direction are kept fixed, it is possible to carry by
congruent mapping any surface direction through them into any other
such direction, and so forth, up to the (n — 1)-dimensional direction
elements. If, on the other hand, a point and a line direction through
it, and a surface direction through the latter, and so forth, up to an
(n — 1)-dimensional direction element, are given, then there exists no
congruent mapping besides the identity under which this system of
incident elements remains fixed. We just said that this axiom almost
completely characterizes the Euclidean group of motions. In fact one
thus obtains the group of congruent transformations of a slightly
more general space, namely of a projective space endowed with a
Cayley metric. That group contains a numerically indeterminate
parameter A, the constant space curvature, of which nothing but the
sign is essential. According as \ is positive, zero, or negative, the
resulting space is of the elliptic, parabolic (i.e. Euclidean), or hyper-
bolic type. These then are the only homogeneous spaces, in which all
points are equivalent, likewise all directions at a point, and so on.

{It is hard to talk intelligently about these problems without an
exact description of the Euclidean groups I' and A* before our eyes. A
Cartesian frame of reference in three-dimensional Euclidean space
consists of a point O, the origin, and three mutually perpendicular

vectors ej, e, e;of equal length. The coordinates z,, z, 25 of a point
P are defined by
OP = ) e +1‘2€2+1‘3(’3.
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Relative to such a frame a similarity mapping the point (xi, zs, 23) into
the point (z}, }, ;) is represented by a linear transformation

(1) S: Zi=ait a4+ Fanr, @GE=1,2--:,n)
with constant coefficients @i, a: that satisfy the following condition:
(i —a)?+ - -+ 4+ (=, — a,)? is a constant positive multiple
aof 21 + + -+ + . (Here the number n of dimensions has been

left indeterminate.) The similarity is ‘non-enlarging’ and called an
orthogonal transformation if @ = 1. The orthogonal transformations
form an invariant subgroup A of I'. The condition mentioned above
as one satisfied by every similarity implies the equation d? = a* for
the determinant d of the aix. Hence an orthogonal transformation
is either of signature + (d = +1) or of signature — (d = —1). The
orthogonal transformations of signature -+ form the group At of
Euclidean motions. A% is a subgroup of A of index 2, i.e., if S, S; are
any two transformations of A of signature — then S7'S. has the sig-
nature +. (The fundamental fact of the distinction of left and right:
two screws oppositely winding to a given screw turn in the same sense.)
It makes little difference whether we claim A* or A as the group of
congruent mappings. Assume we decide in favor of the larger group
A. Then the continuous motion of a rigid body would be represented
by an orthogonal transformation S(¢) depending continuously on the
time parameter ¢ and reducing to the identity I at the initial moment
t = 0. Since the determinant of S(t) is capable of the two values +1
and —1 only, since it equals +1 at the beginning { = 0 and varies
continuously with ¢, it must always remain equal to +1. Hence even
if we had admitted arbitrary orthogonal transformations, the require-
ment of continuity for S(¢f) automatically eliminates those of signa-
ture —; a rigid body could go over into its mirror image only by a
discontinuous jump. }

A far deeper aspect of the group A than that of describing the
mobility of rigid bodies is revealed by its role as the group of automor-
phisms of the physical world. In physics we have to consider not only
points but also various types of physical quantities, velocity, force,
electromagnetic field strength, etc. But it is a fact that relative
to a Cartesian frame, not only points but all physical quantities
can be represented by numbers; e.g. a force by its components f;
(z=1,2, - - - n), an electromagnetic field strength by a set of skew-
symmetric componentseF;, = — Fy; etec. And under the influence of
any orthogonal mapping S, (1), of the points of space they undergo a
related transformation that is uniquely determined by S; e.g. the
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force components transform according to the equations

f:{:Eaixfx (GA=1,2—+-"-,n),

Iy

the components of the electromagnetic field strength according to the
rule
Fio= Y aaaul Gk N w=1,2 " n),

Ay

etc. All the laws of nature are invariant under the transformation
thus induced by the group A. It is not true however that they are
invariant under all similarities, although it seems so on a certain level
of natural phenomena. But the facts of atomism teach us that
length is not relative but absolute. The atomic constants of charge and
mass of the electron and Planck’s quantum of action A fix an absolute
standard of length, that through the wave lengths of spectral lines is
also made available for practical measurements. Thus we no longer
depend on the preservation of the platinum-iridium meter bar that is
kept in the vaults of the Comité International des Poids et Mesures in
Paris. We now prescribe the absolute length 1 for the basic vectors
of a Cartesian frame of reference. The orthogonal transformations
of signature — must be included in A. For there is no indication in
the laws of nature of an intrinsic difference between left and right.
Now it is clear why a body all of whose places undergo a transforma-
tion S(t) of the group A depending continuously on the time parameter
¢t and whose physical characteristics change accordingly, has a perfectly
good claim to say of himself: I have remained physically the same
during my motion.

{ The extensive medium of the external world is one of time as well
as space. How time is included as a fourth coordinate in the above
scheme will be discussed in Section 16. It was in preparation for this
step that we left the number n of dimensions indeterminate. For
physics the case n = 4 is even more important than n = 3. At
present however we shall limit ourselves to space. }

We summarize: The group of physical automorphisms in space is
the group A of orthogonal transformations. The group of geometric
automorphisms, by virtue of the very meaning of this term, is the
normalizer T' of A. It is larger than A, inasmuch as it includes the
dilatations z; = ax; with any constant a > 0. This divergence
between A and T' proves conclusively that physics can never be reduced
to geometry as Descartes had hoped.
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{Left and right. Were I to name the most fundamental mathe-
matical facts I should probably begin with the fact (F,) that the count-
ing of a set of elements leads to the same number in whatever order
one picks up its elements, and mention as a second the fact (F,) that
among the permutations of n (> 2) things one can distinguish the
even and the odd ones. The even permutations form a subgroup of
index 2 within the group of all permutations. The first fact lies at
the bottom of the geometric notion of dimensionality, the second of
that of ‘sense.’ Consider affine vector geometry. A basis for its

—_ —_
vectors consists of n vectorse,, . . . , e, such that every vector can be

uniquely expressed as a linear combination xlg; 4+ - 4 x,.e-:,, and
the theorem of the invariance of dimensionality states that every basis
necessarily consists of the same number 7n of vectors. This assertion
clearly implies the fact (F,); for by any regrouping of the basic vectors
one passes to a new basis. Vice versa, the theorem of invariance is an
algebraic proposition easily deduced from the fact (F;) in conjunction
with the rule for addition and multiplication of numbers. Any
arrangement of n given linearly independent vectors fixes a ‘sense,’
and two arrangements fix the same sense provided they arise from each
other by an even permutation (definition by abstraction). An odd
permutation changes the sense into its opposite. That is clearly the
combinatorial root of the distinction between left and right. Again, in
combination with the basic operations of affine vector geometry (addi-
tion of vectors, multiplication of a vector by a number) it leads to a

— —
comparison of sense for any two basese;,, . . . , e, and e%, . . ., e*.

When one expresses the vectors e* in terms of the vectors e,

— — —
ef =aner+ A+ Gniea,

the coefficients ai; have a non-vanishing determinant. The senses of
the two bases are the same or opposite according to whether the
determinant is positive or negative. But the definition of a determi-
nant is based on the distinction between even and odd permutations!

Kant finds the clue to the riddle of left and right in transcendental
idealism. The mathematician sees behind it the combinatorial fact
of the distinction of even and odd permutations. The clash between
the philosopher’s and the mathematician’s quest for the roots of the
phenomena which the world presents to us can hardly be illustrated
more strikingly.}

15. RIEMANN’S POINT OF VIEW. TOPOLOGY

The notions of dimensionality and sense are not restricted to metric
Euclidean or affine space. They apply to continuous manifolds in
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general. Riemann was the first to analyze mathematically the general
concept of an n-dimensional manifold. A sufficiently small neighbor-
hood of an arbitrary point in an n-dimensional manifold may be
mapped one-to-one and continuously upon a region of the n-dimen-
sional number space, the points of the latter being the n-tuples of real

numbers (£, Z2, . . . , Z»). Any one-to-one transformation of the
coordinates

Yi = @i(T1, . . ., Ta) =1 ...,m);

e =YYy, - - -, Ym) k=1...,n)

yields a new coordinate assignment suitable for the representation of
the same neighborhood. Is m necessarily equal to n? This is the
question of the topological invariance of dimensionality.

{Let P = (z,, - + +, z.) be a given point and P* = (z, + dx,
* *, T + dz,) any point infinitely near to P. If the transformation
functions are differentiable then the components (dz,, . . . , dza.) of

all infinitesimal vectors PP* issuing from P transform according to
linear formulas

(1 dy; = z Q- dzi, dxy = z b - dy:
% T
the coefficients a, bx; of which depend on the point P but not on P*.
(Infinitesimal quantities may be avoided by introducing an imaginary
time 7 and letting a point move in the manifold according to an arbi-
trary law z, = zx(r). Suppose the point passes P at the moment
r = 0; its velocity at that moment will be a vector at P with the z-com-
ponents u; = (dzx/dr),—0. The y-components »; of the same velocity
are related to the z-components by the equations (1),

v; = zaik Uk, Uk = Zbki Vs,
k 3

which hold for all possible velocities in P.) But these linear trans-
formations can be inverse to each other only if m = n and the deter-
minant of the a;, the so-called Jacobian, is different from zero. Only
such ‘differentiable’ transformations of the coordinates are now
admitted at all to the totality @. Under these circumstances one
speaks of a differentiable manifold. As the Jacobian varies con-
tinuously with P, it is either positive throughout the region covered
by the two coordinate assignments, or negative throughout. We give
the transformation the signature 4 in the first case, — in the second.
Hence a ‘sense’ can be fixed over the whole region. One sees that both
dimensionality and sense derive from the fact that affine geometry
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holds in the infinitely small. While topology has succeeded fairly well
in mastering continuity, we do not yet understand the inner meaning
of the restriction to differentiable manifolds. Perhaps one day physics
will be able to discard it. At present it seems indispensable since
the laws of transformation of most physical quantities are intimately
connected with that of the differentials dz:, (1). }

Inspired by Gauss’s theory of curved surfaces, Riemann assumed
that Euclidean geometry holds in the infinitely small. Then the

square of the length ds of the infinitesimal vector PP* with the com-
ponents dz; will be expressed by a positive quadratic form

(2) ds? = z Gik dx.- d.’Ck
ik

of the dz;. Its coefficients g;: are independent of the vector Pf—"'* with
the components dz; but will in general depend on the point P with the
coordinates z; and be continuous functions of these coordinates. It is
clear from the invariant significance of ds? how the components g;; of
the ‘metric field’ will transform under transition to a new coordinate
system y;. The metric of a 3-dimensional Riemann space of this kind
imposes itself upon any surface lying in it, which is thereby branded
as a 2-dimensional Riemann space. For a 3-dimensional Euclidean
space, however, it is not true that every surface in it is a 2-dimensional
Euclidean space; rather, all possible 2-dimensional Riemann spaces
occur as subspaces of a Euclidean 3-space. Thus in Euclid’s geometry
the space appears as something much more special (namely, non-
curved) than the possible surfaces in it, while Riemann’s space concept
has just the right degree of generality to do away with this discrepancy.

As the true lawfulness of nature, according to Leibniz’s continuity
principle, finds its expression in laws of nearby action, connecting only
the values of physical quantities at space-time points in the immediate
vicinity of one another, so the basic relations of geometry should con-
cern only infinitely closely adjacent points (‘near-geometry’ as opposed
to ‘far-geometry’). Only in the infinitely small may we expect to
encounter the elementary and uniform laws, hence the world must be
comprehended through its behavior in the infinitely small.

If one requires the space to be metrically homogeneous — and a
space that can serve as ‘form of phenomena’ is necessarily homogen-
eous — then one is thrown back at once from the Riemannian to the
classical space concept, to which Helmholtz’s postulates for the group
of motions lead. But Riemann had an entirely different conception
of the nature and origin of the metrical properties of space. For him
the metric field is not given rigidly once and for all, but is causally
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connected with matter and thus changes with the latter. He considers
the metric not as part of the static homogeneous form of phenomena,
but of their ever-changing material content. Riemann asks for the
inner reason of the metrical relationships in space, and having dis-
tinguished (in the words quoted on p. 43) between the cases of discrete
and continuous manifolds, he continues, ‘‘ Therefore, either the reality
on which our space is based must form a discrete manifold, or else the
reason for the metrical relationships is to be looked for externally in
binding forces acting upon it.”” The metric field makes itself felt
through the physical effects which it has upon rigid bodies, upon light
rays, and all events in nature, and these effects alone permit us to
ascertain the quantitative state of the metric field. But whatever
acts must suffer too; it must itself be something real and cannot be
enthroned in unattackable ‘geometric’ rigidity above the forces of
matter. Thereby, in spite of the non-homogeneity of the metric
field, the free mobility of bodies without changes in measure is regained,
since a body in motion will ‘take along’ the metric field that is gen-
erated or deformed by it. Einstein, after having extended space by
the inclusion of time to the full four-dimensional medium of the
external world, has developed Riemann’s idea into a detailed physical
theory of gravitation and, in particular, has ascertained the laws accord-
ing to which- matter acts upon the metric field.

Riemann and Einstein maintain that the group of — geometric or
physical — automorphisms coincides with the totality Q of all differen-
tiable transformations. In this respect their theories differ radically
from the standpoint expounded in the previous section. Their prin-
ciple of general relativity is acceptable only after inserting the metric
field among the physical quantities that act upon, and are reacted
upon by, matter. Nevertheless Euclidean geometry is preserved
for the infinitesimal neighborhood of any given point P,. For it is a
mathematical fact that for all line elements at a given point P, the
metric equation (2) takes on the special form

ds? = dz} +dz} + - - - +di?

if appropriate coordinates z, are chosen for the neighborhood of P,.
In this form there is no room for any indeterminacy, and we may
therefore say that the nature of the metric is the same at every point.
But the coordinate system in which the metrical law assumes this
fixed standard form and which, as we shall say, is characteristic for the
ortentation of the metric is in general different from place to place.
We use an analogous phrase in Euclidean geometry when we say that
all cubes (of given size) are of the same nature and differ only by their
ortentation. The nature of the metric is one, and is absolutely given;
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only the mutual orientation in the various points is capable of con-
tinuous changes and dependent upon matter. Euclidean space may
be compared to a crystal, built up of uniform unchangeable atoms in
the regular and rigid unchangeable arrangement of a lattice; Rieman-
nian space to a liquid, consisting of the same indiscernible unchange-
able atoms, whose arrangement and orientation, however, are mobile
and yielding to forces acting upon them.

Perhaps this is brought out better by a different formulation of
Riemann’s conception, which has become indispensable in quantum
physics when the quantities characterizing a spinning electron are
to be fitted into general relativity theory. From the above illustration
by velocities it is clear what is meant by the body of tangent vectors
(velocities) at P. They form an n-dimensional vector space. The

coordinate assignment P — z, determines a vector basis e;, . . . , e,
in this tangent vector space V(P) at P such that ue, + - - - + u,e,
is the vector with the z-components u;. Assuming that the vector
space at P bears a Euclidean metric (with an absolute standard of
length) we can introduce in it a local Cartesian frame of reference
f = f(P) consisting of » mutually perpendicular vectors of length 1.
The arbitrariness in the choice of this frame is expressed by the
group Ao of Euclidean rotations. That group consists of all linear
transformations

S: Z'p=za5727 By=1...,n

~
for which

A+t =ad4 0 2
Here the variables z; designate the components of an arbitrary vector
of V(P) with respect to the Cartesian frame f. The numerical values

esg B=1, .-, n) of the components of each of the vectors ;:-
(=1, - -, n) with respect to { describe the embedment of the

frame f into space. Thus the n? quantities e;s, which depend on the
choice of the coordinates z; as well as on the Cartesian frame f(P) at
P and are functions of P, now serve to characterize the metric field.
Riemann’s g;; are easily computed to have the values

Gix = €n€r1 + ° ° ° + €inbin.

Only after coordinates z; and a Cartesian frame f(P) at each point P
have been chosen can all physical quantities be represented by num-
bers. The laws of nature are invariant (1) with respect to arbitrary
transformations of the coordinates z;, and (2) with respect to a rota-
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tion S of the frame f(P) that may depend in an arbitrary (continuous)
manner on the point P. Hence there is this double invariance, the
one described by the group € of all transformations of the coordinates
z;, the other by an element of the group A, that can vary arbitrarily
with the position P.

What has happened in the transition from special to general
relativity theory is obviously this. The physical automorphisms
forming the group A as described in the previous section have been
split into their translatory and rotatory parts. The group of transla-
tions has been replaced by that of all possible transformations of the
coordinates, whereas the rotations have remained Euclidean rotations
but are now tied to a center P and must be allowed to vary freely while
the center P moves over the manifold. Space, the extensive medium
of the material world, is clearly the seat of the group € of coordinate
transformations; but the group A, seems to have its origin in the ulti-
mate elementary particles of matter. The quantities e; thus mediate
between matter and space.

{The question arices for what inner reasons nature has picked
Ao among all possible groups of homogeneous linear transformations.
One answer is provided by Helmholtz’s theory, according to which
A is completely characterized by the axiom of free mobility: Any
incident set ¢ of 1-, 2-, . . . (n — 1)-dimensional directions can be
carried into any other such set by a transformation of A, while those
transformations of A, that leave a given set ¢ of incident directions
fixed form a subgroup containing two elements only (namely the
identity and the reflection in o). However, this characterization
carries less conviction now where the group can no longer be inter-
preted as describing the mobility of a rigid body. (Moreover it
breaks down for the Lorentz group, which in the four-dimensional
world takes the place of the orthogonal group in 3-space.)

The group A, could be considered as an abstract group of which
various representations by linear transformations are characteristic
for various physical quantities; e.g. the representation A, by orthogonal
transformations itself for the vectors, a certain ‘tensor’ representation
for the electromagnetic field strength, and a very remarkable one, the
so-called spinor representation, for the electronic wave ﬁeld.]-

Topology. In general a coordinate assignment covers only part of
a given continuous manifold. The ‘coordinate’ (z,, . . . , za) is a
symbol consisting of real numbers. The continuum of real numbers
can be thought of as created by iterated bipartition. In order to
account for the nature of a manifold as a whole, topology had to
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develop combinatorial schemes of a more general nature. By this
combinatorial approach it also got rid of the restriction to differen-
tiable manifolds.

In order to subject a continuum to mathematical treatment it is
necessary to assume that it is divided up into ‘elementary pieces’ and
that this division is constantly refined by repeated subdivision accord-
ing to a fixed scheme (which in the one-dimensional case consists in
the bipartition of each elementary segment). The effect is that the
continuum is spun over with a subdivision net of increasing density.
Thus, properly speaking, every continuum has its own arithmetical
scheme which is already completely determined by the combinatorial
description of the manner in which the individual elementary pieces
of the initial division border on each other; we call this the ‘topological
skeleton’ of the manifold. The introduction of numbers as coordi-
nates by reference to the particular division scheme of the open one-
dimensional continuum is an act of violence whose only practical
vindication is the special calculatory manageability of the ordinary
number continuum with its four basic operations. The topological
skeleton determines the connectivity of the manifold in the large. It
is an important but difficult mathematical question to decide when
two such skeletons are equivalent, i.e. when they represent two differ-
ent ways of decomposition of the same continuum into elementary
pieces. In the case of an n-dimensional closed manifold, the skeleton
consists of a finite number of elements of rank 0, 1,2, . . . , n (vertices,
edges, . . . ); these elements are to be represented by arbitrary
symbols. An element of the :** rank is bounded by certain elements of
rank 7 — 1, and the skeleton is completely described by telling which
element is bounded by which. The requirements such a skeleton has
to meet, the properties which it possesses, and the question of equiva-
lence constitute the subject of combinatorial topology.

-[Topology has the pecularity that questions belonging in its
domain may under certain circumstances be decidable, even though
the continua to which they are addressed may not be given exactly but
only vaguely, as is always the case in reality. For instance, the
topological skeleton of an undamaged brick is recognizable with
certainty. Or an endless thread, which determines only approxi-
mately a curve in the exact sense of geometry, is definitely either
knotted or not. Whenever the possible cases form a discrete mani-
fold, an individual case can be fixed with absolute accuracy. Thus
the rational analysis of continua proceeds in three steps: (1) mor-
phology, which operates with vaguely circumscribed types of forms;
(2) topology, which, guided by conspicuous singularities or even in
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free construction, places into the manifold a vaguely localized but
combinatoriaily exactly determined skeleton; and (3) geometry proper,
whose ideal structures could only be carried with exactness into a real
continuum after this has been spun over with a subdivision net of a
fineness increasing ad infinitum. (Such geometrical properties of
configurations in the continuum as are independent of the arbitrariness
involved in the construction of the subdivision net may be conceived
as based on a structural field spread over the continuum after the
fashion of the metric field.) The significance which the idealizing
geometry has for reality, in spite of the evident impossibility of ful-
filling the above requirement for its application, will be discussed in
Part II. The three steps described reveal the sensual-categorical
ambivalence of geometry, which caused Plato to assign to geometrical
configurations an intermediate position between ideas and sensory
objects. For a more careful phenomenological analysis of the con-
trast between vagueness and exactness and of the limit concept, the
reader may be referred to the work by O. Becker quoted at the end of
Section 9. Carrying out the subdivision of the topological skeleton
according to a fixed scheme implies the assumption that in dealing
with a concretely given continuum we were not in error as to the
topological character of the pieces generated by the first division.
That is to say, we disregard the possibility that a more detailed
scrutiny of a surface might disclose that, what we had considered an
elementary piece, in reality has tiny handles attached to it which
change the connectivity character of the piece, and that a microscope
of ever greater magnification would reveal ever new topological com-
plications of this type, ad infinitum.

The Riemann point of view allows, also for real space, topological
conditions entirely different from those realized by Euclidean space.
I believe that only on the basis of the freer and more general concep-
tion of geometry which had been brought out by the development of
mathematics during the last century, and with an open mind for the
imaginative possibilities which it has revealed, can a philosophically
fruitful attack upon the space problem be undertaken.]-
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CHAPTER 1

Space and Time, the Transcendental
External World

16. THE STRUCTURE OF SPACE AND TIME
IN THEIR PHYSICAL EFFECTIVENESS

THE possible space-time locations or world-points form a four-dimen-
sional continuum. Only to spatio-temporal coincidence and imme-
diate spatio-temporal proximity can we assign an intuitively evident
meaning. A definite structure is already ascribed to the four-dimen-
sional extensive medium of the external world if one believes in a
severance of the universe in the sense that it is objectively significant

t
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Figure 1. Graphic representation of stratification and fibration of the world.
World line ¢ of uniform translation. Light cone K.

to say of any two different events, narrowly confined in space-time,
that they are happening at the same place (at different times) or at the
same time (at different places). All simultaneous world-points form
a three-dimensional stratum, all world-points of equal location a one-
dimensional fiber. According to this view we may describe the struc-
ture of the world as possessing a stratification whose layers are
traversed by fibers. (Through each world-point runs one stratum and
one fiber; any one fiber intersects a stratum in but a single world-
point.) Let us, for the sake of graphical representation, drop one of
the spatial dimensions, thus concerning ourselves merely with the
happenings on a surface, more particularly a plane. Let us represent
the latter by a horizontal plane E and lay off the time ¢ in the direction
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perpendicular to it. Then we are able to draw a picture of the world
in intuitive space; a picture in which the layers of simultaneous world-
points all appear as horizontal planes while the fibers of equally
located world-points are represented by vertical straight lines.

One attributes furthermore to time and space a metrical structure
by assuming that equality of time intervals and congruence of spatial
configurations have an objective meaning. The statements of
Euclidean geometry describe the spatial structure in greater detail.
If in our graphical image segments of equal length on the perpendicular
time axis correspond to equal time intervals, then the graphical time
table of the motion of a body travelling with uniform speed along a
straight line will be an inclined straight line. On this world-iine lie
those, and only those, space-time places which are occupied by the
body in the course of its history. The world-lines of bodies at rest are
vertical straight lines. Two bodies will meet if their world-lines
intersect in some space-time point.

The conceptual separation of its structure from the underlying
amorphous continuum, the recognition that space as such is merely
the mgdium of ‘contact,’ is already indicated in the Aristotelian idea
of space. Lobatschewsky says (Urkunden zur Geschichte der michteu-
klidischen Geometrie, ed. by Engel and Stickel, I, p. 83), “Contact
forms the differentiating feature of bodies, and to it they owe the
name of geometric bodies, inasmuch as we concern ourselves with this
property alone to the exclusion of all others, be they essential or
accidental.”” However, this thought is here expressed not for space-
time but for space alone. Whatever the inner reason of the world
structure may be, all laws of nature show that it influences in the most
trenchant manner the course of physical events. Among its mani-
festations we find the behavior of rigid bodies and of clocks; the uni-
form straight-line motion of a body which is free from all outside
influences; the straightness of a light ray in empty space (used when
sighting); the propagation in concentric spheres or circles of a light
or sound wave, or of a wave in water, etc. It is our task to recognize
this structure through these its physical effects. How can we, so we
must ask, ascertain objectively the equi-locality or the simultaneity
of events, the equality of time intervals and the congruence of spatial
configurations?

Concerning the first part of the question we note that the theory
of the relativity of motion has always been opposed to the dogma of
absolute space. Aristotle designates location (rémos) as the relation
of one body to the bodies of its vicinity. Descartes (Princtpia, Chap.
II) defines motion as ‘‘transportation of a portion of matter or a body
from the neighborhood of those bodies which are in immediate contact
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with the former and which are considered at rest into the neighborhood
of other bodies.” A penetrating discussion of the relativity of location
is given by Locke (Enguiry concerning Human Understanding, Book
I1, Chap. 13, Sections 7-10). Galileo illustrates it rather neatly with
the example of the scribe who makes his notes aboard a moving vessel
and who will therefore draw with his quill ‘in reality,” i.e. relatively
to the earth, a smooth slightly undulating line extending from Venice
to Alexandrette (Dialogo, Opere V11, p. 198). In his controversy with
Clarke (and Newton), Leibniz defends with all thoroughness, also in
logico-epistemological respects, the relativity of location in space. On
that occasion (Leibniz’s fifth letter to Clarke, §47) he uses the happy
illustration of positions in a family tree.

{Also of importance is the argumentation of Leibniz in his third
letter, §5. ““Under the assumption that space be something in itself,
that it be more than merely the order of bodies among themselves, it is
impossible to give a reason why God should have put the bodies
(without tampering with their mutual distances and relative positions)
just at this particular place and not somewhere else; for instance, why
He should not have arranged everything in the opposite order by
turning East and West about. If, on the other hand, space is nothing
more than just the order and relation of things, if without the bodies
it is nothing at all except the possibility of assigning locations to them,
then the two states supposed above, the actual one and its transposi-
tion, are in no way different from each other. Their apparent differ-
ence is solely a consequence of our chimerical assumption of the reality
of space in itself. In fact, however, each of them would be the same
as the other since the two are completely indistinguishable, and there-
fore it is a quite inadmissible question to ask why one state was pre-
ferred to the other.”! In contrast, Newton, the absolutist, considers
motion a proof for the creation of the world out of God’s arbitrary
will; for otherwise it would be inexplicable why matter moves in this
rather than in any other direction (Preface to the second edition of

! Compare with this the statement of Kant concerning left and right which was
quoted at the end of Sec. 14, p. 80. Kant has been interpreted as follows: If the
first creative act of God had been the forming of a left hand, then this hand, at
the time even when it could be compared to nothing else, would already have
possessed that definite character of the left one (in contrast to the right one) which
can only intuitively but never conceptually be apprehended. This is incorrect, as
Leibniz points out, if we intend this to mean that something else would have hap-
pened had God created a ‘right’ hand first, rather than a ‘left’ hand. One must
follow the process of the world’s genesis further in order to uncover a difference:
Had God, rather than making first a left and then a right hand, begun by making a
right one and proceeded to form another right one, then He would have changed

the plan of the universe not in the first but in the second act, by bringing forth a
hand which was equally rather than oppositely oriented to the first-created one.
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Principia by Cotes, ed. Cajori, p. XXXII, and Principia, ed. Cajori,
p. 546). Leibniz is prevented by his theology from burdening God
with such decisions as lack ‘sufficient reason.’ }

The body of reference upon which we rely with good reason most
of the time in our daily lives when we speak of rest and motion is the
““well-founded permanent earth.”? For practical purposes this choice,
suggested to us as a matter of course, is by far the most expedient.
Only a sovereign imagination, breaking the bonds of sensuous appear-
ance and freely constructing in space, could disengage itself from it.
Thus Anaxagoras projected the conical shadow of the earth into space
and deduced from the eclipses and the phases of the moon the correct
spatial arrangement of the earth, the sun, the moon, and the stars;
in the ‘Moon’s face’ he recognized the effect of her mountains’
shadows. Following the same method the Pythagoreans arrived at
the hypothesis of the motion of the earth. In conscious opposition to
the Pythagorean and Platonic spirit of a prior:i mathematical con-
struction, Aristotle returned to the geocentric system. At the same
time it is a definite religious attitude toward the universe that finds
expression in reserving for the earth, the dwelling place of mankind, an
absolute prerogative among all other bodies of reference. It is the
attempt to uphold within the realm of objective reality the idealistic
position, according to which I am the center of the world disclosed to
me. But here where the recognition of the thou is required of the ego
and the ego has to be extended so as to include the whole of mankind,
the idealistic position of necessity takes on a historical and cosmo-
theo-logical character. This is the reason why the book of Coper-
nicus became a turning point of world conception; and in this direction
Bruno drew the conclusions with stormy enthusiasm. The supreme
act of redemption by the Son of God, crucifixion and resurrection, no
longer the unique pivot of world history but the hurried small-town
performance of a road show repeated from star to star — this blas-
phemy displays perhaps in the most pregnant manner the religiously
precarious aspect of a theory which dislodges the earth from the center
of the world. (Bruno had to pay for it at the stake.) ‘‘The state-
ment, found equally with Kepler, Galileo, and Descartes, that it be
foolish to think of the purpose of the universe as lying in man,” says
Dilthey (Der entwicklungsgeschichtliche Pantheismus, Gesammelte
Schriften, 11, third ed., 1923, p. 353), ‘‘consummates a complete change
in the interpretation of the world. As these thinkers were led to an
immanent teleology finding its expression in the harmony and beauty

2 “Die wohlgegriindete dauernde Erde,” quotation from Goethe, Grenzen der
Menschheit, verse 3.
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of the universe, the character of the hitherto prevailing Christian
religiosity was changed.”” And Goethe, in his Geschichte der Farben-
lehre (3 Abteilung, 2 Zwischenbetrachtung), ‘ Perhaps never before
has a greater demand on mankind been made; for what did not go up
in smoke with this acknowledgment: a second paradise, a world of
innocence, of poetry and piety, the testimony of the senses, the con-
viction of a poetical-religious faith. Small wonder then that one did
not want to let go of all this, that one opposed in every conceivable
manner a theory which involved for him who accepted it the right and
the challenge of a hitherto unknown, nay undreamed-of, freedom of
thought and elevation of mind.”

From the viewpoint of the relativity of motion there can be no
quarrel as to the truth or falsity of the Copernican system. It is
merely that the laws of planetary motion become much simpler if this
motion is described as relative to the sun instead of relative to the
earth.

{Newton bases the development of his mechanics in the Principia
upon the ideas of absolute time, absolute space, and absolute motion.
‘“ Absolute, true, and mathematical time, of itself, and from its own
nature, flows equably without relation to anything external. . . .
Absolute space, in its own nature, without relation to anything exter-
nal, remains always similar and immovable. . . . Absolute motion is
the translation of a body from one absolute place into another.”
(Principia, ed. Cajori, Scholium following the Definitions, I, II and
IV, pp. 6-7.) As a kinematic differentiation of the various possible
states of motion of a body is undeniably impossible, Newton strives
to distinguish the state of rest among all possible states of motion
dynamically, on the basis of phenomena such as the centrifugal forces.
“The causes by which true and relative motion are distinguished, one
from the other, are the forces impressed upon bodies to generate
motion. . . . It is indeed a matter of great difficulty to discover, and
effectually to distinguish, the true motions of particular bodies from
the apparent; because the parts of that immovable space, in which
those motions are performed, do by no means come under the observa-
tion of our senses. Yet the thing is not altogether desperate; for we
have some arguments to guide us, partly from the apparent motions,
which are the differences of the true motions; partly from the forces,
which are the causes and effects of the true motions. For instance, if
two globes, kept at a given distance one from the other by means of a
cord that connects them, were revolved about their common center
of gravity, we might, from the tension of the cord, discover the
endeavor of the globes to recede from the axis of their motion, and
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from thence we might compute the quantity of their circular motions.
. . . But how we are to obtain the true motions from their causes,
effects, and apparent differences, and the converse, shall be explained
more at large in the following treatise. For to this end it was that I
composed it.”” (Principia, ed. Cajori, pp. 10 and 12.)

Newton’s belief in absolute space is theologically influenced.
Thus he says of God in his Opticks that ‘“in infinite space, as it were
in his Sensory, [He] sees the things themselves intimately, and thor-
oughly perceives them, and comprehends them wholly by their imme-
diate presence to himself” (ed. Whittaker, p. 370). Newton adopts
here the theology of Henry More. For More, space is the first and
authentic witness for the verity and necessity of ‘‘immaterial natures” ;
in its properties he rediscovers the characteristics of the divine sub-
stance; space is the link between the latter and the individual objects.
The nature of the world structure, that it consists of a fibration, is
thus laid down by Newton in terms of an a priori metaphysical idea.
But the actual course of the fibration in the real world has to be ascer-
tained through its effects upon observable real phenomena. That is
his scientific program. Incidentally, Newton does not succeed in
mastering the problem completely. He accomplishes only the
dynamic separation of uniform translation as the pure inertial motion
of a body uninfluenced by external forces, from the other states of
motion; but he does not succeed in isolating the state of rest among
these translations. In this he must fail on account of the so-called
special relativity principle, which is satisfied by the laws of Newtonian
mechanics and whose validity for all natural phenomena has been
confirmed today by a series of the most exact experiments: In the
cabin of a ship sailing a straight course with uniform speed all events
will take place in the same manner as if the vessel were at rest; given
any event in nature, the one which arises from it by imparting to all
participating bodies a uniform translation is equally possible. The
principle has been developed by Galileo in his “Dialogo” (Opere,
VI1I, pp. 212-214) in clear and lucid manner. Newton at this point
resorts to a hypothesis unfounded in experience and a dialectical dodge
which strike a discordant note in the midst of the magnificent and
cogent inductive development of his system of the world in the
third book of the Principia. The hypothesis states that the universe
has a center and that this center is at rest. The common center of
gravity of the solar system, like that of any system of bodies not sub-
jected to external forces, moves uniformly along a straight line; thus
he concludes correctly from the mechanical laws. And now we read
(Princtpia, ed. Cajori, p. 419), ¢ . . . but if that center mcved, the
center of the world would move also, against the hypothesis,” no
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attempt whatever being made to give a reason for this identification
of the center of gravity of the planetary system with the hypothetical
stationary center of the world (unless it be in the consideration that
the stationary center ought to be a point, constructible on the basis of
material events, whose motion according to the laws of mechanics is a
uniform translation). }

The experiences which prove the dynamic inequivalence of differ-
ent states of motion teach us that the world bears a structure. But
in the concept of absolute space this inertial structure is evidently not
sized up correctly; the dividing line does not lie between rest and
motion but between uniform translation and accelerated motion.
Referring to the graphical representation described above we can say
that it is in the world as it is in space: straight lines can be objectively
distinguished from curves, but in the family of all straight lines one
can single out the ‘vertical’ ones only by a convention based on
individual exhibition.

And what about the stratification, the concept of simultaneity?
The trust placed in its objective significance rests on the fact that
everybody considers as a matter of course the events he observes as
happening at the moment of their observation. In this manner I
extend my time to the whole world which enters my field of vision.
Although this naive opinion lost its basis through the discovery that
light has a finite velocity of propagation, there yet remained (beyond
the reluctance to abandon a prejudice once held) some reason for
adhering to that belief. In our graphical representation the hori-
zontal plane passing through a world point O separates past and future
as seen from 0. ‘Past’ and ‘future,” what is the reality behind these
words? By shooting bullets from O in all possible directions with all
possible velocities I can only hit those world points which are later
than O; I cannot shoot into the past. Likewise any event happening
at O has influence only upon the events at later world points; the past
cannot be changed. That is to say, the stratification has a causal
meaning; it determines the causal connection of the world. This was
recognized by Leibniz, who explains in his ‘“Initia rerum mathemati-
carum metaphysica” (Math. Schriften VII, p. 18), “If of two elements
which are not simultaneous one comprehends the cause of the other,
then the former is considered as preceding, the latter as succeeding.”
A simple method of instantaneously transferring time from one place
A to another place B consists in giving a jerk to the end A of a rigid
rod extending from A to B; the jerk observed at B is simultaneous
with the one given at A.

But in regard to the causal structure of the world the modern
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development of physics has led to an essential correction. Let the
segment representing one second on the ¢-axis of our graphical diagram
be of the same length as the segment on the horizontal plane E repre-
senting the distance covered by a light ray in one second. A light
signal issuing from O and spreading in all directions with the same
velocity ¢ will be received at all those world points which lie on the
surface of a vertical circular cone with vertex at O and a vertex angle
of 90°. According to Einstein’s special theory of relativity, the ‘light
cone,’ consisting of the above surface and its prolongation backward
beyond O, rather than the horizontal plane through O, accomplishes
the separation of the world into past and future. No effect is propa-
gated at a greater speed than that of light (including the jerk given
to a rigid rod for the purpose of transferring time); the velocity of any
body remains of necessity below ¢. This is an inevitable consequence
of the principle of special relativity and the fact that the light cone

Figure 2. Causal structure. Light cone K, life line L.

issuing from O depends on O alone and not upon the state, in particular
the state of motion, of the light source which emits the signal at O.
(Unfortunately the somewhat inadequate phrase ‘constancy of the
velocity of light’ has been chosen to describe the latter fact.)

If I am at O, then O will divide my life line, that is the world line
of my body, into two parts, past and future; in this respect nothing has
been changed. But the situation is different as far as my relation to
the world is concerned. In the interior of the forward part of the
cone are found all those world points upon which my doings at O are
of influence, in its exterior all those events which lie closed behind me,
about which nothing can be done any more; the front cone compre-
hends my active future. In the interior of the backward part of the
cone, on the other hand, are located all those events of which I either
was a witness or of which I might have received some message; only
these events might possibly have influenced me at all; it is the domain
of my passive past. The two regions, active future and passive past,
do not border on each other without a gap as had been the case accord-
ing to the older conception.

{It is our task, moreover, to describe in physical terms how to
ascertain the equality of time intervals and the congruence of material
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bodies. A clock is a closed material system which will return to
exactly the same state S in which it found itself at some earlier
instant. Let us assume the principle of causality, which asserts that the
state of a system at any moment uniquely determines its entire history.
Then the same process, the same cyclic sequence of states, leading
from S to S will be repeated again and again, and each of these periods
has by definition the same duration. What is measured in this way
is the ‘proper time’ of the clock; it can be directly employed for all
events occurring along the world line of the clock. Helmholtz says
(Zahlen und Messen, Waissenschaftliche Abhandlungen, 111, p. 379),
““Measurement of time presupposes that we have found physical
processes, repeating themselves under equal conditions and in invaria-
bly the same manner such that if they are begun at the same instant
(it would be more correct to say ‘in contiguous space-time points’)
they also end simultaneously ; such as days, the strokes of a pendulum,
the running-down of sand- or water-clocks. The justification for the
assumption of invariable duration rests on the circumstance that all
different methods of measuring time, if carefully executed, always lead
to concordant results.” Concerning the empirical determination of
spatial congruence he says on another occasion (Wissenschaftliche
Abhandlungen, 11, p. 648), “I call two spatial magnitudes physically
equivalent if under equal conditions and in equal intervals of time the
same physical events can occur within them. The process which,
with appropriate caution, is employed most frequently to determine
the physical equivalence of spatial magnitudes is the transfer of rigid
bodies such as compasses and rulers from one place to another.”” The
physical geometry founded on this concept of physically observable
congruence is considered by Helmholtz to be an empirical science, in
fact “‘the first and most perfect of the natural sciences.” Speaking
of this physical geometry in his inaugural lecture, Riemann points out
what may conceivably become of major significance in the physics of
the future, that ‘‘the empirical concepts upon which the spatial metric
is based, the concepts of the rigid body and of the light ray, cease to be
valid in the domain of the infinitely small.”” As a matter of fact it
can be shown that the metrical structure of the world is already fully
determined by its inertial and causal structure, that therefore mensura-
tion need not depend on clocks and rigid bodies but that light signals
and mass points moving under the influence of inertia alone will
suffice.

A three-dimensional continuum when referred in some way to
coordinates z,, 1, z2 is thereby mapped upon the three-dimensional
number space, i.e. upon the continuum of all number triples. Using
a more familiar mode of expression, we shall replace the number space
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by the three-dimensional intuitive space equipped with a Cartesian
coordinate system. It does little harm that, in applying the pro-
cedure to the four-dimensional world, we shall have to deprive it in
imagination of one of its dimensions. A two-dimensional example is
provided by the planar geographical maps. On a Mercator map, for
instance, I find that San Francisco, the southernmost point of Green-
land, and the North Cape, lie on a straight line, but I am not surprised
to discover that on an orthographic map of the northern hemisphere
this fails to be the case. Likewise a certain mapping of the world
serves as the basis for the application of the customary geometrical-
kinematical terms, with the z,-axis being interpreted as the axis of
time. (For instance, we shall say of a body that it is at rest if its
world line is a vertical straight line, i.e. a line along which zi, z,, x; are
constant and merely z, varies.) Only such relations will have objec-
tive meaning as are independent of the mapping chosen and there-
fore remain invariant under arbitrary deformations of the map. Such
a relation is, for instance, the intersection of two world lines. If
we wish to characterize a special mapping or a special class of map-
pings, we must do so in terms of the real physical events and of the
structure revealed in them. That is the content of the postulate of
general relativity. According to the special theory of relativity, it is
possible in particular to construct a map of the world such that (1) the
world line of each mass point which is subject to no external forces
appears as a straight line, and (2) the light cone issuing from an
arbitrary world point is represented by a circular cone with vertical
axis and a vertex angle of 90°. In this theory the inertial and causal
structure and hence also the metrical structure of the world have the
character of rigidity, they are absolutely fixed once and for all. It is
impossible objectively, without resorting to individual exhibition, to
make a narrower selection from among the ‘normal mappings’ satisfy-
ing the above conditions (1) and (2). }

The discrepancy between the kinematical and the dynamical
analyses of motion calls for a solution. Huyghens, as we know from
his letters, endeavored to carry through the viewpoint of the equiva-
lence of all states of motion even in their dynamical aspect; an attempt
in this direction has been preserved in his posthumous papers (reprinted
in Jahresberichte der Deutschen M athematiker-Vereinigung, Vol. 29,
1920, p. 136). In our days Mach undertook the same thing in his
Mechanik (seventh ed., 1912). He would see in the polar flattening
of the earth an effect of its rotation relative to the fixed stars; the
fixed stars are to hold and to carry with them the plane of Foucault’s
pendulum. Leibniz, on the other hand, however determinedly he
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rejects Newton’s metaphysics of space, holding firmly to the opinion
that space is nothing more than ‘‘the mere order of things among
themselves,”” evidently agrees with Newton’s mechanical program to
separate true from apparent motion by dynamical criteria. (Compare
the letter to Huyghens dated June 12/22, 1694, Math. Schriften, 11, p.
184, and the explanation in In. rerum math. metaph., Math. Schriften,
VII, p. 20: ‘““We say that an object moves if it changes its position and
if in addition the cause of this change lies within the object itself.”’)
Euler (Theoria motus, 1765, especially §81) also is of the opinion that
the principle of the relativity of motion, evident as it may be to our
reason, has to be abandoned in the face of dynamical experiences.
With some good will one may read into Kant’s exposition in the
Metaphysische Anfangsgrinde a correct formulation of the problem,
but they certainly throw no light on its solution.

Incidentally, without a world structure the concept of relative
motion of several bodies has, as the postulate of general relativity
shows, no more foundation than the concept of absolute motion of a
single body. Let us imagine the four-dimensional world as a mass of
plasticine traversed by individual fibers, the world lines of the material
particles. Except for the condition that no two world lines intersect,
their pattern may be arbitrarily given. The plasticine can then be
continuously deformed so that not only one but all fibers become
vertical straight lines. Thus no solution of the problem is possible as
long as in adherence to the tendencies of Huyghens and Mach one
disregards the structure of the world. But once the inertial struc-
ture of the world is accepted as the cause for the dynamical inequiva-
lence of motions, we recognize clearly why the situation appeared so
unsatisfactory. We were asked to believe that something producing
such enormous effects as inertia — for instance, when in combat with
the molecular forces it rends the cars of two colliding trains — is a
rigid geometrical property of the world, fixed once and for all. Leibniz
(opposing Descartes) has emphatically stressed the dynamic character
of inertia as a tendency to resist deflecting forces; for instance, in a
letter to de Volder (Philosophische Schriften, 11, p. 170) he writes,
“It is one thing if something merely retains its state until some event
happens to change it — a circumstance which may occur if the subject
is completely indifferent with respect to either state; it is another thing
and signifies much more if the subject is not indifferent but possesses
a power, an inclination as it were, to retain its state and to resist the
causes of change.”” Hence the solution is attained as soon as we dare
to acknowledge the inertial structure as a real thing that not only exerts
effects upon matter but in turn suffers such effects. This step was taken
by Riemann as early as the middle of the nineteenth century regarding
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the metrical structure of space; for indeed the inertial and the metrical
structures of the world are so intimately connected (the metric after
all determines the straight lines) that the metrical field will of necessity
become flexible as soon as the inertial field is deprived of its geometric
rigidity.

Einstein rediscovered this idea independently of Riemann, com-
pleting it by an important insight that rendered it physically fruitful.
From the equality of tnertial mass and weight — before him an enig-
matic fact well-established but not understood — he concluded that,
in the dualism of force and inertia, gravitation has to be put on the side
of inertia rather than on the side of force. The phenomena of gravita-
tion thus divulge the flexibility of the field of inertia, or, as I prefer to
call it, the ‘ guiding field,” and its dependence on matter. The splitting
of the unified guiding field into a homogeneous part obeying Galileo’s
law of inertia and a much weaker deviation called gravitation, which
surrounds the individual stars, cannot be accomplished in an absolute
manner but is relative to a system of coordinates. The laws replacing
Newton’s law of attraction and governing the action of matter upon
the field of inertia follow conclusively from this conception. Their
consequences have been fully confirmed by experience.

{The guiding field is (very slightly) disturbed by matter, just
as the surface of a lake is disturbed by the steamships cruising on it;
it will go over into the undisturbed state described by the special
theory of relativity when all matter disappears, as the surface of the
lake becomes a smooth homogeneous plane when the ships ride at
anchor. Although Einstein, too, flirts with that idea of Mach’s, it is
impossible, according to an earlier remark, to eliminate the field of
inertia, or the ‘ether,’ as an independent power from the natural
phenomena. It is not the stars that guide the plane of Foucault’s
pendulum, but the joint motion of both — of Foucault’s pendulum
and of the star compass formed by the light rays reaching the terres-
trial observer from the stars — is due to the overwhelming power of
the ether in its interaction with matter. The old conception, separat-
ing inertia and gravitation in an absolute fashion, erred only in this
point, that it saw in the actual position of all water particles of the
lake, to return to our illustration, the resultant of a unique state of
rest and a displacement caused by the cruising steamers. This is
incorrect; indeed, as the water comes to rest at night when all ships
ride at anchor, we shall undoubtedly have the same ‘ qualitative state’
as in the morning before the ships got under way, the unruffled plane
surface; but the ‘material state’ which is concealed behind this, i.e.
the location of the various water particles, may have shifted com-
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pletely. This does not contradict the principle of sufficient reason
which calls for a uniquely determined state of equilibrium in the lake.
For if all water particles are alike, the two states S and S’ of the lake
which arise from one another by having the particles interchange their
locations in some arbitrary fashion are not different from each other if
either is considered by itself. Only after ‘a coordinate system has
been introduced,” meaning in this case that numbers have been
assigned to the particles, which introduce artificial differences among
them and adhere to them during their motion, only then will it be
meaningful to speak of the two material states S and S’ as such (ef.
Appendix B). In truth, however, it is not the individual material
state S, the arrangement, which one can Jay hands on, but only the
permutation, that is the transition from the material state S to S’.
This should be compared with the previously quoted remarks of
Leibniz regarding the relativity of location (p. 97).

The group A, of the Euclidean rotations (see Section 15) in the
three-dimensional space has now been replaced by the so-called Lorentz
group. It consists of all homogeneous linear transformations

z:-_—'Eaika 4,k =0,1,2,3)
%

which leave the indefinite quadratic form —z + 2} + z; + 2! invari-
ant. For each such transformation the absolute values of the coeffi-
cient @ = aq and of the determinant d of the 3 X 3 coefficients
ar (1, k =1, 2, 3) are >1. We ascribe to the transformation the
temporal signature + or — according to whether ¢ > 1 or a < —1;
in the same manner the sign of d determines the spatial signature.
The Lorentz transformations of temporal signature 4+ form a sub-
group of index 2 of the total group, and so do the transformations of
spatial signature 4. Their common part is contained in each of them
again as a subgroup of index 2. The transformations of temporal
signature — interchange past and future, those of spatial signature —
interchange left and right. The most fundamental experiences of our
life seem to indicate that A, should be limited to the Lorentz trans-
formations with temporal signature + (but include those of spatial
signature —). But physics has found it rather hard to decide this
question (cf. Section 23, C). A third signature, the topological sig-
nature, attaches to the coordinate transformation and is determined
by the sign of its Jacobian.]-

With the ‘general theory of relativity’ we may sum up the final
result of the historical development of the structural problem of space
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and time as follows: The world is a four-dimensional Riemannian space.
There is associated with every line element, issuing from the point P
with the coordinates zo, 1, Z2, 3 and connecting it with the infinitely
closely adjacent point P’ = (z; 4+ dz:), a numerical measure
3
ds? = z gux dzi dxy (gir = gas)
k=0

which is independent of the arbitrary coordinate system employed.
The coefficients g depend on the coordinates x,, zi, z2, s of P but
not on the dz;. The metric ground form on the right is not positive-
definite but possesses one negative dimension; i.e. in an appropriate
coordinate system at the point P it assumes the universal normal form

ds? = —dz; + dx} + dz; + dzl.

In consequence of this circumstance, the ‘light cone at P,’ containing
all line elements emanating from P that make ds? equal to zero,
separates a domain of active future for P from a domain of passive
past. The metric ground form determines, in a manner readily
describable in detail, the behavior of clocks and rulers, it defines the
light cones in their entire extension, and it separates the world lines of
purely inertial motion (traced, for instance, by the planets) from the
totality of all possible world lines. Its coefficients, the continuous
functions g:x(xo, 1, T2, 23), describe, in terms of the chosen coordinate
system, the metrical field or the ‘state of the ether,” which interacts
with matter.

When raising the question about the total extent of the universe one
must distinguish between the purely topological and the metrical
aspects. The transition from the Aristotelian world system, enclosed
in a crystal sphere and rotating about a center, to the indifferent
expanse of the infinite Euclidean space, uncentered and populated by
stars throughout, was welcomed by Bruno as a mighty emancipation.
Nevertheless the Aristotelian space (the interior of the crystal sphere)
differs only in its metrical relations, not topologically, from the
infinite one. The infinite Euclidean space leads to absurdities if we
assume that the masses are on the whole uniformly distributed
throughout the universe and that Newton’s law of attraction is valid.
Even though the gravitational force of a constant mass decreases with
the inverse square of the distance, the far-off masses would then be so
predominant in the entire gravitational effect that the total force
exerted upon any one star would remain completely indeterminate.
It is possible, however, that space is finite and yet unbounded; indeed
it may be a closed manifold, like the two-dimensional surface of a
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sphere. It is an appealing interpretation of A. Speiser’s (Klassische
Stiicke der Mathematik, 1925, p. 53) that Dante, without denying the
validity of Aristotle’s conception of perceptive space, assumes the
real space of creation (of which the former is but an image) to be
closed rather than bounded. The radii emanating from the center of
the earth, the seat of Satan, converge toward an opposite pole, the
source of divine force. The force of the personal God must radiate
from a center, it cannot embrace the world sphere reposing in spatial
quiescence like the ‘‘unmoved primal mover” of Aristotle (compare
Divina Comedia, Paradiso, beginning with the 28" Canto). When
Einstein tried, in the framework of his theory of gravitation, to carry
through Mach’s principle, he constructed a static universe U, with a
closed three-dimensional space in which matter is evenly distributed;
the total mass in the world determines the volume of the space.
Einstein's space, of course, in contrast to that of Dante, lacks a pair
of distinguished opposite poles. It is as homogeneous as Euclid’s
space. U, results as a possible solution of the laws of gravitation,
provided they are made to include the so-called cosmological term
which introduces a universal constant a of the dimension of a distance
(and of the order of magnitude of the ‘world radius’).

Dropping two of its spatial dimensions we may picture U, as the
surface of a straight vertical cylinder of radius e and of infinite extent
in both directions. This shows that U, has two separate ‘fringes,’
that of infinitely remote past and that of infinitely remote future, and
in this topological sense U, extends from eternity to eternity. With
the same reduction of dimensions the map of the universe U. of the
common Euclid-Bruno conception, i.e. of an empty world whose
metrical structure is described by special relativity, is a vertical plane,
and it therefore has but one connected fringe. It is this topological
difference between U, and U, (two fringes as opposed to one fringe)
to which in the last analysis the terms closed and open space allude.

{In Einstein’s cosmology the metrical relations are such that the
light cone issuing from a world point is folded back upon itself an
infinite number of times. An observer should therefore see infinitely
many images of a star (unless they are washed out by rarefied clouding
media in interstellar space or by diffraction), showing him the star
in states between which an ‘eon’ has elapsed, the time needed by
the light to travel around the sphere of the world. The present
would be shot through with the ghosts of the long ago. Moreover
the solution is unstable. Yet de Sitter found that the laws of gravita-
tion also admit the possibility of a mass-free world extending from
eternity to eternity in which the domain of the future emanating from
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a world point does not overlap with itself. The systematic shift of
the spectral lines of the most remote celestial objects, the spiral
nebulas, to the red side of the spectrum has been interpreted in terms
of an expanding universe, of which de Sitter’s construction provides
the simplest model (Weyl, Friedmann, Lemaitre, H. P. Robertson,
and others). For a one thus obtains a value ~ 10* cm. Incidentally
the behavior of every world satisfying certain natural homogeneity
conditions in the large (whether it is void or carries mass) follows this
model asymptotically when, in the process of expansion, the world
radius becomes essentially larger than a. (Compare also Section
23 C.) The postulate that for each world point O the two world
domains of active future and passive past are disjoint (not only in the
immediate vicinity of O but in their entire extent) rules out the possi-
bility of a world which is closed in its spatial as well as its temporal
dimensions. In such a world, that which happened once would,
to the tradition handed down from generation to generation, appear
as an eternal recurrence of the same events (Nietzsche’s ‘ewige
Wiederkunft’). }
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17. SUBJECT AND OBJECT (THE SCIENTIFIC
IMPLICATIONS OF EPISTEMOLOGY)

The doctrine of the subjectivity of sense qualities has been inti-
mately connected with the progress of science ever since Democritus
laid down the principle, ‘‘Sweet and bitter, cold and warm, as well as
the colors, all these things exist but in opinion and not in reality
(vépw, ob ploet)’’; what really exists are unchangeable particles, atoms,
which move in empty space. Also Plato (Theaetetus, 156¢) holds that
‘““properties such as hard, warm, and whatever their names may be,
are nothing in themselves,” but arise in the encounter of ‘“motions”
originating in the subject and in the object. Reality is pure activity;
only in the ‘“‘image,” in the consciousness suspended between the
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motions is suffering. Galileo may be mentioned as another witness,
““White or red, bitter or sweet, noisy or silent, fragrant or malodorous,
are names for certain effects upon the sense organs.” He holds that
they can no more be ascribed to the external objects than the titilla-
tion or the pain which might be felt when things are touched. A
detailed discussion of this is given in the final sections of Descartes’
Principia and in his T'raité de la Lumiére (the theory of optical percep-
tion is indebted to him for important advances), likewise in Locke’s
Enquiry Concerning Human Understanding (Book 1I, Chap. 8, §§15-
22). The subjectivity of sense qualities must be maintained in two
regards, one philosophical, the other scientific. In the first place, such
a quality by its very nature can only be given in our consciousness
through sensation. One sees in it either an inherent attribute of
sensation itself or, upon deeper analysis, an entity belonging to the
intentional object which the act of consciousness puts before me. But
it remains manifestly incomprehensible how quality disjoint from
consciousness can be attributed as a property as such to a thing as
such. This is the fundamental tenet of epistemological idealism. In
the second place, the qualities in which the objects of the outer world
garb themselves for me do not depend on the objects alone. They also
depend quite essentially upon the concomitant physical circumstances,
for instance, in the case of color, on illumination and on the nature
of the medium between the object and my eye, and furthermore upon
myself, on my own psycho-physical organization. My sense of vision
does not grasp the objects where they are; rather, what I see is deter-
mined by the condition of the optical field in its zone of contact with
my sensuous body (the retina). These are scientific facts which even
the realist cannot deny. How differently the world would appear to
our vision if the human eye were sensitive to other wave lengths or if
the physiological processes on the retina were to transform the infinite-
dimensional realm of composite physically different colors not merely
into a two-dimensional but into a three- or four-dimensional manifold!

{To Locke we are indebted for the classical distinction of ‘sec-
ondary’ and ‘primary’ qualities; the primary ones are the spatio-
temporal properties of bodies — extension, shape, and motion.
Democritus, Descartes, and Locke held them to be objective. Locke
expresses himself as follows: ‘‘ The ideas of primary qualities of bodies
are resemblances of them, and their patterns do really exist in the
bodies themselves; but the ideas produced in us by the secondary
qualities have no resemblance of them at all”’ (op. cit., Book II, Chap.
8, beginning of §15). Although Descartes teaches that between an
actual occurrence and its perception (sound wave and tone, for
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instance) there is no more resemblance than between a thing and its
name, he yet maintains that the ideas concerning space have objective
validity because in contrast to the qualities we recognize them clearly
and distinctly. And a fundamental principle of his epistemology
claims that whatever we comprehend in such a way is true. In sup-
port of this principle, however, he has to appeal to the veracity of God,
who does not want to deceive us. Obviously one cannot do without
the idea of such a God who guarantees truth, once one has grasped the
principle of idealism and yet insists on building up the real world out of
certain elements of consciousness that for one reason or another seem
particularly trustworthy. ‘“He is the bridge . . . between the lonely,
wayward and isolated thinking, which is certain only to its own
selfawareness, and the external world. The attempt turned out some-
what naive, but still one sees how keenly Cartesius measured out the
grave of philosophy. It is strange, though, how he uses the dear God
as the ladder to climb out of it. Yet even his contemporaries did not
let him get over the edge’’ (quotation from Georg Biichner’s philosoph-
ical notes, G. Biichner, Werke, Inselverlag Leipzig, 1922, pp.
268-269). Hobbes in his treatise De Corpore starts with a fictitious
annihilation of the universe (similar to Husserl’s ‘“epoché”’) in order to
let it rise again by a step-by-step construction from reason. But
even he uses as building material the general notions which form the
residue of experience, in particular those of space and time. This
viewpoint has its counterpart in the physics of Galileo, Newton, and
Huyghens; for here all occurrences in the world are constructed as
intuitively conceived motions of particles in intuitive space. Hence
an absolute Euclidean space is needed as a standing medium into which
the orbits of motion are traced. Well-known is Galileo’s pronounce-
ment in the ‘““Saggiatore’ (Opere, VI, p. 232), ‘“ The true philosophy
is written in that great book of nature (questo grandissimo libro, 7o
dico U'universo) which lies ever open before our eyes but which no one
can read unless he has first learned to understand the language and to
know the characters in which it is written. It is written in mathe-
matical language, and the characters are triangles, circles, and other
geometric ﬁgures.”]-

Leibniz seems to have been the first to push forward to a more
radical conception: ‘‘Concerning the bodies I am able to prove that
not only light, color, heat, and the like, but motion, shape, and
extension too are only apparent qualities” (Philos. Schriften, VII,
p- 322). Also Berkeley and Hume are to be named here. For
d’Alembert, the justification for using the ‘‘residue of experience” in
the construction of the objective world no longer lies in the clarity and
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distinctness of the ideas involved as it did for Descartes, but exclusively
in the practical success of this method. According to Kant, space
and time are merely forms of our intuition. Stumpf (Uber den
psychologischen Ursprung der Raumvorstellung, 1873, p. 22) finds it
impossible to imagine the atoms as spatial bodies without color, whose
play of motion only engenders those oscillations of the ether which are
the carriers of color by virtue of their wave lengths; for no more than
color without spatial extension could space (according to Berkeley’s
and Hume's doctrine) be imagined without the raiment of some
quality of color. Intuitive space and intuitive time are thus hardly
the adequate medium in which physics is to construct the external
world. No less than the sense qualities must the intuitions of space
and time be relinquished as its building material; they must be
replaced by a four-dimensional continuum in the abstract arithmetical
sense. Whereas for Huyghens colors were ‘in reality’ oscillations of
the ether, they now appear merely as mathematical functions of
periodic character depending on four variables that as coordinates
represent the medium of space-time. What remains is ultimately a
symbolic construction of exactly the same kind as that which Hilbert
carries through in mathematics.

The distillation of this objective world, capable only of representa-
tion by symbols, from what is immediately given to my intuition,
takes place in different steps, the progression from level to level being
enforced by the fact that what exists on one level will reveal itself as
the mere apparition of a higher reality, the reality of the next level.
A typical example of this is furnished by a body whose solid shape
constitutes itself as the common source of its various perspective
views. This would not happen unless the point from which it is
viewed could be varied and unless the different viewpoints actually
taken present themselves as instances of an infinite continuum of
possibilities laid out within us. We shall return to this in the next
section. A systematic scientific explanation, however, will reverse
the order; it will erect the world of symbols as a realm by itself and
then, skipping all intermediate levels, attempt to describe the rela-
tion that holds between the symbols representing objective conditions
on the one hand and the corresponding data of consciousness on the
other.

{Thus perspective teaches us to derive the optical image from the
solid shape of a body and from the observer’s location relative to the
body. A physical example, taken from among the upper levels, is
the constitution of the concepts ‘electric field’ and ‘electric field
strength.” We find that in the space between charged conductors a
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weakly charged ‘test particle’ experiences a certain force F = F(P)
when put at a given place P. Well determined as to size and direc-
tion, the force turns out to be the same whenever the test particle is
brought back to the same place P. Employing various test particles
we find that the force depends on the latter, yet in such a manner that

;(P) may be split up into two factors:
F(P) = - E(P),

where the vectorial factor E{P), the ‘electric field strength,’ is a point
function independent of the state of the test particle, while the scalar
factor e, the ‘charge’ of the test particle, is determined exclusively
by the inner state of the particle, depending neither on its position nor
on the conductors, and is thus found to be the same no matter into
what electric field we may place the particle. Here we start from the
force as the given thing; but the facts outlined lead us to conceive
of an electric field, mathematically described by the vectorial point

function E(P), which surrounds the conductors and which exists, no
matter whether the force it exerts on a test particle be ascertained or not.
The test particle serves merely to render the field accessible to obser-
vation and measurement. The complete analogy with the case of

perspective is obvious. The field E here corresponds to the object
there, the test particle to the observer, its charge to his position; the
force exerted by the field upon the test particle and changing according
to the charge of the particle corresponds to the two-dimensional aspect
offered by the solid object to the observer and depending on the

observer’s standpoint. Now the equation 124: = ¢ - E is no longer to

be looked upon as a definition of E but as a law of nature (to be cor-
rected if circumstances warrant it) determining the ponderomotoric

force which an electric field E exerts on a point charge e. Light,
according to Maxwell’s theory, is nothing but a rapidly alternating
electromagnetic field; in our eyes, therefore, we have a sense organ
capable of apprehending electric fields in another manner than by
their ponderomotoric effects. A systematic presentation will intro-

duce E, the electric field strength, in a purely ‘symbolic’ way without
explanations and then lay down the laws it satisfies (for instance, that
the line integral of E extended over a closed curve in space is zero) as
well as the laws according to which ponderomotoric forces are con-

nected with it. If forces are considered observable, the link between
our symbols and experience will thus have been esta'blished.}
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One may say that only in the general theory of relativity did
physics succeed in emancipating itself completely from intuitive space
and time as means for the construction of the objective world. In the
framework of this theory (which by the way includes all previously
adopted standpoints either as particular or as limiting cases), the
relation of subject and object may be illustrated by means of a typical
example, the observation of two or more stars. By way of simplifica-
tion we assume the apprehending consciousness to be a point eye whose
world line may be called B. Let the observation take place at the
moment O of its life. The construction is to be carried out in the
four-dimensional number space, only for the sake of readier intelligi-
bility we shall use a geometrical diagram instead. Let = be the world
lines of two stars. The rearward light cone K issuing from O will
meet each of the two star lines = in a single point, and the world lines

Figure 3. Data on which observation of angular distance of two stars depends.

A of the light signals which arrive at O from the stars join these points
to O on the cone K. With the help of a construction, describable in
purely arithmetical terms, it is possible to determine from these data
the numerical measure of the angle ¢ under which the stars will appear
to the observer at 0. This construction is invariant, that is, of such a
kind as to lead to the same numerical measure ¢ if, after an arbitrary
deformation of the entire picture, it is carried out anew on the deformed
image according to the same prescription. And everything is con-
tained in it — the dependence of the angle on the stars themselves, on
the metrical field extending between the stars, on the observer’s
position in the world (spatial perspective), and on his state of motion
(i.e. on the direction with which the line B passes through O; this is the
velocity perspective, known under the name of aberration). The
angles ¢ between any two stars of a constellation determine the objec-
tively indescribable, only intuitively experienced, visual shape of the
constellation, which appears under the equally indescribable assump-
tion that I myself am the point eye at 0. If they coincide with those
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of a second constellation, then both constellations at the moment O
appear to be of equal, otherwise of different, shapes.

The objective world simply s, it does not happen. Only to the
gaze of my consciousness, crawling upward along the life line of my
body, does a section of this world come to life as a fleeting image in
space which continuously changes in time.

{An important role in the construction of the angles ¢ is played
by the ‘splitting’ of the world into space and time carried out at every
moment O of my consciousness. Objectively this is to be described
as follows: If eo, e1, eq, €3 are the components of a vector indicating the
direction of B at O, then my immediate spatial vicinity will be spanned
by the totality of all line elements (dx,, dzi, dz,, dzs) issuing from O
which are orthogonal to e, i.e. which satisfy the equation

3
z girdzioex = 0, ik = g;k(O).}
k=0

Thus the objective state of affairs contains all that is necessary to
account for the subjective appearances. There is no difference in
our experiences to which there does not correspond a difference in the
underlying objective situation (a difference, moreover, which is
invariant under arbitrary coordinate transformations). It comprises
as a matter of course the body of the ego as a physical object. The
immediate experience is subjective and absolute. However hazy it
may be, it is given in its very haziness thus and not otherwise. The
objective world, on the other hand, with which we reckon continually
in our daily lives and which the natural sciences attempt to crystallize
by methods representing the consistent development of those criteria
by which we experience reality in our natural everyday attitude —
this objective world is of necessity relative; it can be represented by
definite things (numbers or other symbols) only after a system of
coordinates has been arbitrarily carried into the world. It seems to
me that this pair of opposites, subjective-absolute and objective-
relative, contains one of the most fundamental epistemological
insights which can be gleaned from science. Whoever desires the
absolute must take the subjectivity and egocentricity into the bargain;
whoever feels drawn toward the objective faces the problem of rela-
tivity. This thought is vividly and beautifully developed in the intro-
duction of Born’s book on relativity theory, quoted earlier.

Within the natural sciences the conflicting philosophies of idealism
and realism signify principles of method which do not contradict each
other. We construct through science an objective world which, in
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order to explain the sense data, must satisfy the following fundamental
principle that was already mentioned on p. 26: A difference in the
perceptions offering themselves to us is always founded on a difference in
the real conditions (Helmholtz). Lambert, in his Photometria (1760),
enunciates as an axiom the following special case: ‘‘ An appearance is
the same whenever the same eye is affected in the same way.”” Here
the natural sciences proceed realistically.

{For as long as I do not go beyond what is given, or more exactly,
what is given at the moment, there is no need for the substructure of an
objective world. Even if I include memory and in principle acknowl-
edge it as valid testimony, if I furthermore accept as data the con-
tents of the consciousness of others on equal terms with my own, thus
opening myself to the mystery of intersubjective communication, I
would still not have to proceed as we actually do, but might ask
instead for the ‘transformations’ which mediate between the images
of the several consciousnesses. Such a presentation would fit in with
Leibniz’s monadology. Instead of constructing the perspective view
which a given body offers from a given point of observation, or con-
versely constructing the body from several perspective images, as it is
done in photogrammetry, we might eliminate the body and formulate
the problem directly as follows: let A, B, C each represent a conscious-
ness bound to a point body, and let K be a solid contained in their
field of vision. The task is to describe the lawful geometrical con-
nections between the three images which each one of the three persons
A, B, C receives of K and of the locations of the other two persons.
This procedure would be more unwieldy; in fact, it would be bound to
fail on account of the limitations and gaps in any single consciousness
as compared to the complete real world. At any rate, there can be
no doubt that in this respect science proceeds in tune with a realistic
attitude.}

On the other hand science concedes to idealism that its objective
reality is not given but to be constructed (nicht gegeben, sondern
aufgegeben), and that it cannot be constructed absolutely but only
in relation to an arbitrarily assumed coordinate system and in mere
symbols. Above all the central thought of idealism comes into its
own in the converse of the above fundamental principle: the objective
image of the world may not admit of any diversities which cannot manifest
themselves in some diversity of perceptions; an existence which as a
matter of principle is entirely inaccessible to perception is not admitted.
Leibniz says concerning the fiction of absolute motion (Leibniz’s fifth
letter to Clarke, §52): “I reply that motion is indeed indepeudent of
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actual observation, but not of the possibility of observation altogether.
Motion exists only where a change accessible to observation takes
place. If this change is not ascertainable by any observation then it
does not exist.” To be sure, many physically different colors will
produce the same sensation of red; but if one sends all these various
reds through the same prism, then the physical differences will mani-
fest themselves in the perceptible differences between the streaks of
colored light emerging from the prism. 7The prism, so to speak,
unfolds the hidden differences to our senses. A difference which
can in no way be broken down for our perception is non-existent.
This is of great importance as a methodical principle of theoretical
construction.

{The formula customarily given (Schwarzschild formula) for
the metrical field surrounding a mass, such as the sun, can be inter-
preted as follows, if the coordinates occurring in it are taken to stand

e A
Reality /7177

Figure 4. Schematic representation of a theory with a redundant part Z.

for a mapping of the real space into a Euclidean one: ‘(I) In reality
Euclidean geometry holds. But the spherically symmetric field of
gravity surrounding the mass center O acts upon rigid bodies in such a
fashion that a radially directed rod at P is foreshortened in the ratio
v/1 = 2a/r:1 (where r = OP and « is a constant determined by the
mass), while a rod perpendicular to OP remains unchanged.” Rods
after all are known to change their length with changing temperatures,
why should they not react in a similar way to a gravitational field?
But in making use of a certain other coordinate system one arrives at
the following description: ‘(II) In reality Euclidean geometry holds.
But the rod at P, no matter what its direction, will be changed in the
ratio (1 + a/2r)%:1 by the field of gravitation.’” Both descriptions
express the same factual situation. To every possible coordinate
system there corresponds a corrective prescription salvaging Euclidean
geometry. Yet one is as good as the other. Each introduces into the
factual state of affairs an arbitrary element which has no perceptually
confirmable consequences and which therefore must be eliminated.
And it can be eliminated by employing, with Einstein, none but the
physical geometry as it is defined by the direct comparison of measur-
ingrods. (That geometry is, of course, not the Euclidean one.) Each
of the two theories can, if properly formulated, be split into two parts:
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the theory (E) of Einstein, and an addition (Z) which is neither con-
nected with (E) nor touching on reality and which must therefore be
shed (compare the schematic diagram in Figure 4).

In Bohr’s model of the hydrogen atom the period of the emitted
light has nothing to do with the time in which the electron completes a
revolution around the nucleus. Though it explains the spectrum as
satisfactorily as could be wished, this lack of observable data corres-
ponding to the period of revolution of the electron is felt as a disturb-
ing feature which ought to be removed. In order to clarify the idea
of relativity, Poincaré once set up the fiction that overnight, while all
consciousness was asleep, the world with all its bodies in it, including
my own, had been magnified in a definite ratio; awake again, neither
I nor anyone else would notice the change in any way. In the face of
such an event science makes common cause with the idealist; for what
on earth could be meant under such circumstances by the statement
that the world was magnified? A difference may be posited only
where the assumption of equality would conflict with the principle
that equals under equal conditions (especially equal objective char-
acteristics, location, and motion, of the observer) will be perceived as
equal® (and with the principle of causality).

Between the real world and the given there is a correspondence, a
mapping in the mathematical sense. Yet, while on one side there is
the one, quantitatively determined, objective world, we have on the
other not only what is actually given at the moment but also the
possible perceptions (perhaps remembered, or expected in response to
definite intentions of will) of an ego; and further there enter into this
correspondence, besides the unique objective state of the world, the
possible objective states of this perceiving ego (world line of its body,
etc.). Helmholtz sets up the principle of the ‘‘empiristic view”
(Phystologische Optik, 111, p. 433): ‘““The sensations are signs to our
consciouness, and it is the task of our intelligence to learn to under-
stand their meaning.” In this one may agree with Helmholtz as he
means it and yet be of the opinion with Husserl that the spatial object
which I see, notwithstanding all its transcendency, is perceived as
such bodily in its concreteness (Husserl, Ideen zu einer reinen Phéino-
menologie, in his Jahrbuch fiir Philosophie, Vol. 1, 1913, pp. 75, 79);
for within the concrete unity of perception the data of sensation are
animated by ‘interpretations,” and only in union with them do they
perform the ‘function of representation’ and help to constitute what
we call ‘the appearance of’ color, shape, etc. A dog approaching

3 This principle cannot be taken as a definition of objective equality but only
as an implicit requirement, because the concept of equality occurs in it twice:
equals under equal conditions. . . .
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another dog will see and smell ‘a fellow dog,” an integrated whole that
is more than a ‘bundle of sensations.” We merely describe here one
of the levels through which the proc¢ess of constitution of the external
world will pass. And there is no denying that the definite manner in
which a thing is bodily put before me by means of those animating
functions will be directed by a multitude of previous experiences.
For how else should we describe this than by saying that “we always
imagine such objects to be present in our field of vision as must be
present in order to bring about the given impression under ordinary
normal conditions for the use of our eyes” (Helmholtz, Physiologische
Optik, 111, p. 4). Helmholtz speaks here of ‘‘unconscious inferences.”’
This sounds somewhat questionable; yet he stresses explicitly that only
in their result do they resemble inferences, more accurately inferences
by analogy, although the underlying psychic acts probably are quite
different from acts of conscious inference and although their effects
cannot be annulled by better knowledge. The sense impression of a
mirror image, or of a broken rod immersed in water, or of the rainbow,
does not deceive; only the bodily object which, as Husserl says, is put
before me by this impression is an error. What truly exists can be
ascertained only by taking into consideration all sensuous signs, which
in the examples adduced above will soon reveal the prevalence of
‘abnormal’ conditions. Only imagine our eyes to be sensitive to light
whose wave length is of the order of magnitude of the atomic distances
in solids; how difficult it would then become for us to interpret the
optical ‘signs’ (the Laue interference patterns)! In the ultimate
description of the connection between appearance and reality one
therefore does better to ignore all intermediary levels of constitution. ]-

And what significance does this objective world, representable only
in symbols, have for the everyday life of man, taking place as it does
in the sphere of integrated data of perceptions? Helmholtz answers
(op. cit.,, p. 18), “Once we have learned to read those symbols cor-
rectly we shall be able with their help to design our actions so that
they yield the desired result, namely, that the expected new sensa-
tions will arise. A different comparison between conceptions and
things not only does not exist in reality — all schools agree on this
point — but a different manner of comparison is inconceivable and
would be devoid of meaning. . . . Thus such a presentation (Vorstel-
lung) of a single individual body is indeed already a concept (Begriff)
which comprises an infinite number of intuitions in temporal sequence
all of which can be derived from it.# The presentation of a single

4In agreement with a number of philosophers writing in English the term
presentation has been chosen here as the equivalent of Kant’s and Helmholtz’s
Vorstellung and Locke’s idea. [Translator’s note.]
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individual table that I carry within me is correct and accurate if I
am able to derive from it correctly and accurately the sensations I
shall experience when I bring my eyes or my hands into this or that
definite position with respect to the table. What other kind of
similarity there can subsist between such a presentation and the
object represented by it I cannot comprehend’” (op. cit., p. 26). In
the same sense, Leibniz remarks concerning the Cartesian principles
(Philosophische Schriften, IV, p. 356), “Of the sense data we cannot
know more, nor do we have to require more, than that they are in
agreement with each other as well as with the indisputable dictates
of reason and that thus to a certain extent the future may be predicted
from the past. To search for a truth or reality other than thus
vouched for would be futile — the sceptic may not demand, the
dogmatist not promise more.” Or Husserl (Ideen, p. 311), “To the
essence of a thing-noema there belong ideal possibilities of unlimited
development of concordant intuitions that follow, moreover, prescribed
directions of determinate type.”” But in the erection of empirical
reality discrepancies will occur which will force us to make ‘“correc-
tions.” Owing to its empirical character cognition of reality must of
necessity pass through errors. “ What is given never implies material
existence as certain and necessary but merely as presumptive reality.
This means that it can always happen that the further course of
experience will force one to abandon what with good empirical justi-
fication had earlier been posited.”” (Husserl, Ideen, p. 86.) It
might well be within the range of possibility that in the moving pic-
ture of perceptions every beginning of concordance would irreparably
“explode.” In that case the attempt to harmonize them according to
principles of reason would fail, and no real world would be constituted.

The requirements which emerge from our discussion for a correct
theory of the course of the world may be formulated as follows:

1. Concordance. The definite value which a quantity occurring in
the theory assumes in a certain individual case will be determined
from the empirical data on the basis of the theoretically posited con-
nections. Every such determination has to yield the same result. Thus
all determinations of the electronic charge e, that follow from observa-
tions in combination with the laws established by physical theory,
lead to the same value of e (within the accuracy of the observations).
Not infrequently a (relatively) direct observation of the quantity in
question (for instance, of the location of a comet among the stars at a
certain moment) is compared with a computation on the basis of other
observations (for instance, the location at the desired moment com-
puted according to Newton’s theory from the locations on previous

121



NATURAL SCIENCE

days). The demand of concordance implies consistency,’ yet trans-
cends the latter in that it brings the theory in contact with experience.

2. It must in principle always be possible to determine on the
basis of observational data the definite value which a quantity occur-
ring in the theory will have in a given individual case. This expresses
the postulate that the theory, in its explanation of the phenomena,
must not contain redundant parts.

Hume attempted to uphold with inexorable consistency the view-
point that the given is the whole of reality. Since it became apparent
through him that this viewpoint fails completely in the explanation
of those cognitive positions which play a basic role in everyday life
and in science, he was indeed the first to reveal the problem of reality
in its full difficulty. Reason in its function of constituting reality is
described by him as the faculty of imagination. With complete
sincerity he confesses the irreconcilable conflict between thought and
life, into which he finds himself thrown. To carry his approach
through is as impossible as to found arithmetic on nothing but the
concretely existing numerals. The positivism of a Mach or Avenarius
appears to me merely as a less consistent renewal of Hume’s attempt;
for in their systems theoretical hypostases, strictly avoided by Hume,
play once more a considerable role. But then we are back in the
midst of theoretical construction, which supplements the given in the
interest of totality, and we are no longer forced to use sense data as
our building material. Kant's transcendental idealism reestablished
the insights already gained by Leibniz. The content of this Section
may be considered as an elucidation of Kant’s concept of reality as
““that which is connected with perception according to laws.”’ He
advances beyond Leibniz in transmuting the old metaphysical onto-
logical concepts of substance and causality into methodical principles
for the construction of empirical reality.

{In the part on logic we had insisted that existence could not be
stated about something exhibited, that the logical symbol =, carries
an index x which refers to a blank. This seems to be contradicted by
a proposition such as ‘this chair is real.” But the assertion of real
existence contains either, idealistically interpreted, the prediction of a
multitude of concordant impressions expected in response to certain
intentions of will, or, realistically interpreted, the statement that a
thing z exists which stands in a certain metaphysical relation to the
given chair phenomenon.

® Indeed in an inconsistent theory the formula ¢ = 2e would be deducible, and
hence the actual value e as well as 2e for the electronic charge could be derived
from such a theory in combination with the observational data.
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Concerning the problem of realism versus idealism we find a
striking analogue in geometry, which has a factual connection with it
in so far as in the objective world the coordinate system is, as it were,
the residue of the annihilation of the ego. As in Section 12, we con-

-
sider vectors z in a plane and represent them in terms of a basis con-

sisting of two linearly independent vectors ey, e;, thus: z = &1 + £se9
(compare p. 69). The numbers £, £, which are uniquely determined

by z and e, ey, are called the coordinates of z with respect to the basis

(e, e2). We construe the vectors in our plane as analogues of the
objects in the real world, bases as analogues of real observers, the
numbers as analogues of subjective phenomena, and thus speak in
our analogy of the pair of coordinates (£, £2) as the ‘appearance of the

object z for the observer (e, e2).” For the geometric vector plane we
can construct an algebraic model, defining a vector z as a pair of
numbers (z1, z2) and the operations of adding two vectors z, ¥ and of

multiplying a vector z by a number « as follows:
(z1, T2) + (¥, ¥2) = (@1 + Y1, 2 + y2), a(z1, T2) = (ar,, azs).

Calling the numbers z;, z» the absolute coordinates of z = (x1, z,)

and 7; = (1, 0), 7, = (0, 1) the absolute basis in our model, we realize
at once that the absolute coordinates of a vector are its relative
coordinates with respect to the absolute basis. Transition from the
geometric vector space, in which all bases are equally admissible, to
its algebraic model is effected by assigning, as it were, to an arbitrarily
chosen basis the role of absolute basis. On the other hand, the indi-
vidual character of the various bases in the model can be extinguished
and all bases put on an equal footing by ascribing objective significance
only to such properties and relations as are definable in terms of the
two fundamental operations, or, what is the same, as are invariant
under arbitrary linear coordinate transformations. The relation of a
vector to its absolute coordinates is not objective, but is a special case

of the objective relation prevailing between a vector z, a basis (e, e2),

and the coordinates £, £ of « relative to (e1, e2). Our analogy assumes
that only the realm of numbers (the appearances) but not the geo-
metrical space (the things themselves) is open to our intuition.
Hence the model is the world of my phenomena and the absolute basis
is that distinguished observer ‘I’ who claims that all phenomena are
as they appear to him: on this level, object, observer and appearance
all belong to the same world of phenomena, linked however by rela-
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tions among which we can distinguish the ‘objective’ or invariant
ones. Real observer and real object, I, thou, and the external world
arise, so to speak, in unison and correlation with one another by sub-
jecting the sphere of ‘algebraic appearances’ to the viewpoint of
invariance. On this issue our theory bears out Leibniz (compare, for
instance, Nouveauz Essats, Libre IV, Chap. 11) as opposed to Des-
cartes, who through his ‘“cogito ergo sum”’ assigns to the reality of the
ego a precedence in principle over the reality of the external world.
The analogy renders the fact readily intelligible that the unique ‘I’ of
pure consciousness, the source of meaning, appears under the viewpoint
of objectivity as but a single subject among many of its kind.

Yet in truth, the absolute subject, I, remains forever unique, not-
withstanding the objective equivalence of the various subjects. This
is in agreement with the facts as I find them. On purely cognitive
grounds conscientalism is irrefutable, it can be carried through com-
pletely. But for all this the recognition of the ‘thou’ is demanded of
me not only in the sense that in my thinking I yield to the abstract
norm of ‘objectivity,” but in an absolute sense: Thou art for thyself
once more what I am for myself, conscious-existing carrier of the world
of phenomena. This step can be taken in our analogy only if we
pass from the algebraic model of affine vector geometry to its axio-
matic description, where the concepts of a vector and of the two
fundamental operations enter as undefined terms. In the axiomatic
system it is no longer necessary to enforce the equivalence of all

coordinates by abstraction, for in it a definite pair of vectors (e, es)
can be distinguished only by an individual act of exhibition. Pattern
and source of any such demonstrative act is the word ‘I’ Thus
axiomatics reveals itself once again (compare p. 66) as the method
of a purified realism which posits a transcendental world but is content
to recreate it in symbols.

The postulation of the ego, of the ‘thou,” and of the external world
is without influence upon the cognitive treatment of reality. It isa
matter of metaphysics, not a judgment but an act of acknowledgment
or belief (as Fichte emphasizes in his treatise Uber die Bestimmung des
Menschen). Yet this belief is the soul of all knowledge. From the
metaphysico-realistic viewpoint, however, egohood remains an
enigma. Leibniz (Metaphysische Abhandlung, Philosophische Schrif-
ten, TV, pp. 454-455) believed that he had resolved the conflict of
human freedom and divine predestination by letting God (for suffi-
cient reasons) assign existence to certain of the infinitely many possi-
bilities, for instance to the beings Judas and Peter, whose substantial
nature determines their entire fate. This solution may objectively
be sufficient, but it is shattered by the desperate outery of Judas,
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“Why did I have to be Judas?’ The impossibility of an objective
formulation of this question is apparent. Therefore no answer in the
form of an objective insight can ensue. Knowledge is incapable of
harmonizing the luminous ego with the dark erring human being that
is cast out into an individual fate.

Postulation of the external world does not guarantee that such
a world will rise from the phenomena through the cognitive work of
reason which attempts to create concordance. For this to take place
it is necessary that the world be governed throughout by simple
elementary laws. Thus the mere positing of the external world does
not really explain what it was meant to explain, the question of the
reality of the world mingles inseparably with the question of the
reason for its lawful mathematical harmony. The latter clearly
points in another direction of transcendency than that of a trans-
cendental world; towards the origin rather than the product. Thus
the ultimate answer lies beyond all knowledge, in God alone; emanat-
ing from him, the light of consciousness, its own origin hidden from it,
grasps itself in self-penetration, divided and suspended between sub-
ject and object, between meaning and being. }

18. THE PROBLEM OF SPACE

{A. OricIN oF THE PRESENTATION OF SpPACcE. A detailed
investigation into the psychological origin of the presentation of space
was not undertaken until the 19th century. The sense regions which
contribute above all to the constitution of space are the visual and
tactile impressions. Bain added to these the sensations of motion and
the muscular feelings.

A single eye sees the qualities spread out in a two-dimensional
field of vision. The latter is two-dimensional because it is dissected
by any one-dimensional curve which runs through it. It is a basic
physiological fact that the place in the field of vision at which we
localize a visual impression is determined by the portion of the retina
that is stimulated. We have here a one-to-one continuous ‘mapping’
in the mathematical sense. The places in the field of vision are con-
tinuously connected in the same way as the places on the retina to
which they correspond. J. Miiller, the originator of the law of the
specific sense energies, even says (Zur vergleichenden Physiologie des
Gesichtssinnes, p. 54), “In any field of vision, the retina sees only itself
in its spatial extension during a state of affection. It perceives itself
as spatially dark when the eye is at rest and completely closed.” A
great step forward is marked by Helmholtz’s Physiologische Optik, as
he no longer speaks of identity but of correspondence. The same
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remark clarifies the famous problem as to why things are seen upright
(in the objective space, the image on the retina is turned through 180°
as compared to the original). If we confront the ‘objective’ space on
one side and my intuitive space on the other, and if we assume both
to bear a Euclidean metrical structure, then the utmost in faithfulness
that could be demanded of the correspondence between objective
thing and its image given in my intuition is an isomorphic (or similar)
mapping in the sense defined in Section 4. Such an isomorphism
would mean that all geometrical characteristics of the thing, describ-
able in terms of the metrical concepts of objective space, are reflected
in geometrical characteristics of the image expressed in terms of the
synonymous metrical concepts of intuitive space. But it is nonsensi-
cal to ask questions which would be meaningful only if the thing as
well as its image were located in the same space.

The field of vision has indeed a metrical structure; the resting eye
undoubtedly is capable of apprehending something like shape, which
here appears as a quality of what is seen, and of distinguishing different
shapes. Such shape, however, is similar neither to the thing seen nor
to the objective image produced on the retina. (The deformation
with respect to the configuration formed by the rays of vision is
described by Helmholtz in Physiologische Optik, 111, pp. 151-153.)
A more detailed shaping and partial correction of this metrical struc-
ture is achieved through the movements of the eyes; if a shift in the
direction of my glance has the effect of changing image I into image
II (i.e., objectively, if the same portion of the retina stimulated prior
to the movement by the visual impression I is stimulated after the
movement by the visual impression II), then I and II are mutually
congruent. Consequently, in the domain of ocular movements, shape
is no longer a given quality but a concept obtained by abstraction
from the relation of congruence (compare Section 2).

Lotze demands the existence of ‘local signs’ on the basis of his
physiological principle “that only the qualities of sensation may be
considered as directly perceptible and intellectually differentiable”
(Wagners Handwirterbuch der Physiologie, 111, Section 1, 1846, p. 183)
and that from these qualities the mind has to build up the presentation
of spatial extension. The local signs are sensations whose qualitative
gradations form the basis of the different locations in the field of vision.
He has attempted to characterize them more precisely as impulses to
move the eyes so as to bring the place in question into the center of the
field of vision, and the feelings in the ocular muscles that would accom-
pany such a movement. But here that is taken as basic which itself
calls for a basis. For the eye at rest has its continuously spread field
of vision, independently of the ocular movements, which belong to the
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next higher level in the constitution of space. An attempt by Wundt
to stamp color gradations as local signs is better passed over in silence.
Helmbholtz, though accepting Lotze’s thesis, admits that the local signs
are qualitates occultae. In view of the indissoluble connection between
color and extension in the field of vision, Lotze’s thesis leads to the
problem (cf. Poincaré, La valeur de la science, ed. Flammarion, p. 91)
of explaining how the cone sensation can split up into the two com-
ponents of color and extension — how, in other words, it is possible
that two sensations of the same red produced at two different points
P, @ of the retina should have a close affinity which is absent in the
case of a red at P and a green at Q. But if one understands well the
punctiform character of a simple sensation, one will hardly be inclined
to consider that which gives the red its extensiveness again as a con-
tinuously graded sensation, but will acknowledge with Kant and
Fichte (Bestimmung des Menschen, ed. Medicus, I1I, p. 326): “I am
originally not only sentient but also intuiting.”” There 7s something
for me only inasmuch as a continuum of quality covers a (temporal
or spatio-temporal) continuum of extension. This conceded, sensa-
tions as local signs become redundant.

How about the visual impressions of rest and motion? When I
glance up and down I have the impression that the things in my field
of vision stay at rest, although their images are produced at varying
places of the retina. But this is true only when the ocular movement
is produced voluntarily by the motor apparatus of the eye. Thus it
is here not a question of the muscular feelings connected with the
ocular movement but of the voluntary intentions. There exists an
original impression of rest and motion (change). A thing gives the
impression of being at rest, if its retina image does not shift about and if at
the same time no ocular movements are intended. Between the dis-
placements of the retina image and the voluntary intentions directing
the ocular movements there exists a system of compensations which
experience apparently has developed to considerable refinement. The
task is simplified by a circumstance known as Listing’s law. It states
that the eye cannot be voluntarily rotated while fixing a definite point
in the field of vision, but that any one such point determines (except
for minute fluctuations) only one corresponding position of the eye.
Thereby the three degrees of freedom of the eye ball are reduced to
two. The possibility of turning freely the direction of sight in response
to the will is made use of when certain changes in the field of vision are
‘interpreted’ as motions.

The immediate impression of rest may not be invoked as ‘testi-
mony of the senses’ for a refutation of the physical theory of
relativity. For we saw that the objective ‘explanation’ of this phe-
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nomenon (which after all can only consist in exhibiting an objective
difference where a difference exists among intuitive data) takes
recourse only to the idea of relative motion of physical entities cover-
ing each other (displacement of the image on the retina) and to the
dynamical concept of motion (voluntary intentions, which, through mus-
cular forces, cause the eye ball to deviate from its natural movement
as it is conditioned by the field of inertia and by the eye’s imbedded-
ness into the human body). The same holds for the motory sensations
of our body; they do not tell of ‘absolute motion’ but are invari-
ably sensations of acceleration, indicating that the body or part of it is
torn out of its natural inertial motion and registering the ensuing
dynamical disturbances.

The optical perception of depth, as Wheatstone has shown strik-
ingly by the stereoscope, is closely tied up with binocular vision. (In
addition, sensations produced by the accommodation effort come into
play.) The positions in the fields of vision of the two eyes are in
one-to-one correspondence, with the effect that the images formed at
corresponding places are seen as one. The stereoscopic apperception
of depth depends on the disagreement between the two images, which
results when the same color quality and in particular the same con-
tours do not appear at corresponding places of the two fields of vision.
The details form a matter of dispute between two rival theories, a
“nativistic’’ theory, represented especially by Hering, and the
““empiristic”’ theory of Helmholtz. The former places all responsi-
bility on the sensations, maintains that the stimulation of correspond-
ing points on the two retinas, e.g. of the two retinal foveas, produces a
simple sensation, and ascribes to the places on the retina, in addition
to local signs indicating direction, a depth value modifying the sensa-
tion. Helmholtz’s theory, on the other hand, considers optical depth
as the result of a constitutive process. Only the latter theory is easily
reconcilable with the facts. Yet it must be added, in the sense of the
nativistic theory, that with the dimension of depth something new and
original emerges. With its help the material of the two preceding
levels — the two-dimensional purely visual field and the field of ocular
movement — serves to constitute the centered three-dimensional space
in which the body of the ego finds its position, though still the dis-
tinguished position of the center. (On the two previous levels we
evidently do not yet have such a body-ego.) In the case of the
(involuntary or voluntary) ‘reversal’ of the perspective interpretation
of a plane figure (compare, for instance, Helmholtz, Physiologische
Optik, 1I1, p. 239), the ‘animating’ or ‘integrating’ function which
converts the figure in the field of vision into the appearance of an
object hit by the visual ray in centered space is felt particularly
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clearly. It is on this level, too, that the tie-up with the localization
field of the sense of touch and of the movements of limbs occurs. The
grasping for the seen object is constantly used as a control in the
pertinent psychological experiments on vision. Husserl emphasizes
that ‘“all these facts, allegedly mere contingencies of spatial intuition
that are alien to the ‘true,’ ‘objective’ space, reveal themselves,
except for minor empirical particularities, as essential necessities”
(Ideen, p. 315); and in this sense O. Becker has given a more detailed
phenomenological description of the constitutive levels of spatiality.

By walking toward the indefinitely far horizon of the centered
space and by the displacements connected therewith, by the feeling
of the free possibility of bodily movement in response to voluntary
intentions, the homogeneous space arises from the centered one.
Only at this stage the body becomes an equal among other spatial
objects, and we become capable of adopting in imagination someone
else’s standpoint. Only this space can be conceived as being one and
the same for several subjects; it is the presupposition for the construc-
tion of the intersubjective world. And thus the ascertainment of the
orientation of objects in it is capable of intersubjective control and
correction.

As opposed to Aristotle, who held that space is an aicdyrov kowvéw,
Berkeley has taken the view that there are only distinct sense spaces.
Stumpf (op. cit., p. 287) objects to this by asking, ‘“Are we to believe
that also the duration of a tactile sensation and that of a visual sensa-
tion are heterogeneous contents?”’ Berkeley may be right in that the
pre-spatial localization fields (of the first and second levels) are
separate ones for the senses of touch and vision. But beginning with
the third level it can only be a question of one space, which compre-
hends the sense data of touch as well as vision. Thus space becomes
the connecting link between the various sense domains. Bain's
association theory of space aims at bringing out this function of it.
In more precise form, such a theory has been developed by Poincaré.
He first distinguishes qualitative changes and motions by pointing out
that the latter can be reversed by a movement of the ego-body, which
betrays itself by voluntary intentions and accompanying kinesthetic
sensations (La valeur de la science, Chap. IV, §§1-4). He then
attempts to set up criteria for the coincidence of two points in space
arrived at by different series of kinesthetic sensations and voluntary
intentions; and finally he investigates the ‘mapping’ upon one another
— usually interpreted as identification — of the spaces appertaining
to different sense organs (for instance, to the two finger-tips, or to
the visual sense of the left eye and the tactile sense of the right thumb).
According to this view, the statement that the sense of vision, but not
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that of touch, reaches into the distance merely brings out the fact that
two places in the space of any sense organ must be coincident if they
correspond to two coincident places in the space of a tactile organ;
while to two non-coincident places in a tactile space there may corres-
pond two coincident places in the visual space. J. S. Mill accepted
Bain’s view, except that his presentation of space is not made up of
Bain’s sensations and their associations but emerges from them by
creative synthesis (‘psychic chemistry’). All these theories ignore
the undeniable data on the lowest levels of constitution that do not
possess the character of sensations, such as juxtaposition in the pure
field of vision. }

B. THE EssencE oF Space. The penetration of the This (here-
now) and the Thus is the general form of consciousness. A thing
exists only in the indissoluble unity of intuition and sensation, through
the superimposition of continuous extension and continuous quality.
Phenomenologically it is impossible to go beyond this. If, meta-
physically, with Plato, one lets the passive consciousness spring from
the encounter of two ‘motions,” one originating with the ego, the other
with the object, then one will tend to relegate quality to the sphere
of the object, extension to that of the ego (and not vice versa, since
extension is the qualitatively undifferentiated field of free possibilities,
while the concrete variety resides in the qualities). ‘‘Translucent
penetrable space pervious to sight and thrust, that purest image of my
knowledge (Wissen),” so Fichte says (Werke, ed. Medicus, III, p.
325), ‘““is not seen but intuited, and in it my seeing itself is intuited.
The light is not without but within me, and I myself am the light.”
But the manner in which this intuition as an integrating force pene-
trates the sense data and utilizes their material is largely conditioned
by experience.

The fact that both constituents, extension and quality, are bound to
each other is the root of Aristotle’s thesis of the impossibility of empty
space. Thus Hume interprets it (7Treatise, Book I, Part II) (in which
connection it must be remembered that the spatial — or, more exactly,
the spatio-temporal — separation is a fact as immediately ascertain-
able as spatio-temporal contact). But only through a metabasis eis
allo genos can this essential epistemological fact be turned about into
an assertion concerning substantial-physical events, leading to such
conclusions as Descartes drew (and which were ridiculed by Hume),
namely, that the walls of a box would have to touch if the latter were
pumped empty. Leibniz denies emptiness on grounds connected with
the perfection of the world and the principle of sufficient reason. He
explains the fact that space is bound to the sensuous qualities by
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denoting space, together with time, as the order of the phenomena.
Stumpf (op. cit., pp. 15, 26) objects, ‘“ When we distinguish different
orders, we have to acknowledge in each case a specific absolute content
with respect to which the order takes place,” and consequently he
asserts that ‘‘space denotes, rather, that positive absolute content
upon which order is based.” He demands that positional relations
between points in space must be founded in a ‘position’ of the indi-
vidual points severally, and by adopting this logical principle of the
self-insufficiency of relations (which he may have taken over from
F. Brentano, Zur Lehre von Raum und Zeit, Kant-Studien, XXVI) he
bars himself from an understanding of the relativity of position.

Since the mere Here is nothing by itself that might differ from any
other Here, space is the principium individuationis. It makes the
existence of numerically different things possible which are equal in
every respect. That is why Kant contradistinguishes it as the form
of tntuition from ‘‘the matter of phenomena, i.e. that which corre-
sponds to sensation.” Here lies the root of the concepts of similarity
and congruence. Leibniz infers from this the ideality of space and
time; for they violate the principle of the identity of indiscernibles,
which — along with Spinoza — he postulates as necessary in the
domain of substances (namely as a consequence of the principle of
sufficient reason).

The dual nature of reality accounts for the fact that we cannot
design a theoretical image of being except upon the background of the
possible. Thus the four-dimensional continuum of space and time is
the field of the a prior: existing possibilities of coincidences. That is
why Leibniz calls the ‘““abstract space the order of all positions assumed
to be possible” and adds that ‘‘consequently it is something ideal”
(Leibniz’s fifth letter to Clarke, §104).

{If we state the distance of the earth from the sun in yards, this
statement acquires a meaning verifiable through what is given only
if a rigid ladder, on which a scale has been marked off by means of a
movable yardstick, is placed with one end upon the earth and with the
other against the sun. The physically clearest realization of a rigid
body is the crystal. If coordinates are to have an immediately
ascertainable meaning, we must imagine the whole world to be filled
out by a crystal. Among the motions of the crystal lattice that carry
it into itself (covering motions) we can distinguish the translations by
their peculiar properties; the covering translations can be used (by
actually carrying out the translative motions) to introduce number
triples as coordinates for the atoms of the lattice, and these can then
be employed as position marks in the entire space. But that ladder
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joining the earth and the sun is non-existent, its mensuration by a
rigid yard stick is not actually carried out. Similarly the ‘coordinate
crystal’ fails to exist and the covering translations are not carried out.
Indeed their ideality is essential, for their existence would produce real
forces which would influence the course of world events. As to the
structure discussed in Section 16, we may assert only the possibility
of ascertaining it from events producible by the experimenter’s free
interference. The geometrical statements, therefore, are merely ideal
determinations, which taken in individual isolation lack any meaning
verifiable by what is given. Only here and there does the entire
network of ideal determinations touch upon experienced reality, and
at these points of contact it must ‘check.” That, expressed in the
most general terms, may well be called the geometrical method. ‘1t
must be admitted that he who undertakes to deal with questions of
natural sciences without the help of geometry is attempting the
unfeasible,” Galileo says (Dialogo, Opere, VII, p. 229). Enemies of
this method are, on the one hand, the empiricists, because any aprioris-
tic construction is a thorn in their flesh; they fondly imagine it to be
possible to grasp reality as a thing of one stratum, as it were, without
aprioristic ingredients, by a purely descriptive approach (Bacon versus
Galileo, Hume versus Kant, Mach versus Einstein). On the other
hand, out of hatred for the freedom, the open field of geometrical con-
struction, those metaphysicians oppose the method who build up a
rigid dialectical world of concepts as the true reality (Hegel versus
Newton). From both angles Aristotle (versus Archytas-Plato) is the
great anti-mathematician. }

C. A Priorr or A PosteEriori? The belief in the aprioristic
character of geometrical cognition, in particular of Euclidean geometry,
had taken deep roots in former times. Thus Kepler says (in his
famous letter to Galileo, April 1610; Galileo, Opere, X, p. 338), ‘“The
science of space is unique and eternal and is reflected out of the spirit
of God. That men may partake of it is one of the reasons why man is
called the image of God.” Leibniz has tried to show that the geo-
metrical truths are analytic. With respect to geometry Kant raises
the problem of the Critique of Pure Reason: How are synthetic judg-
ments a prior: possible? And he believes that he has answered this
question for geometry by his thesis that space is pure non-empirical
intuition. “That in which sensations are merely arranged, and by
which they are susceptible of assuming a certain order, cannot itself be
sensation; hence indeed the matter of all phenomena is given to us
a postertort only, while its form must lie ready a priori in the mind and
therefore must be capable of investigation independently of all
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sensation. . . . Hence our explanation alone renders comprehensible
the possibility of geometry as synthetic knowledge a priori.”” This
certainty is shaken by the development of non-Euclidean geometry.

{Proclus already, in his commentary on Euclid, sounded a warn-
ing in connection with the axiom of parallels not to make undue use of
intuitive evidence. Gauss writes to Olbers (1817, Werke, VIII, p.
177), ““I am coming more and more to the conviction that the necessity
of our geometry cannot be demonstrated, at least neither by, nor for,
the human intellect. Perhaps in some other life we may arrive at
other insights into the nature of space that are at present inaccessible
to us. Until such time geometry should be ranked, not with arith-
metic, which is purely aprioristic, but with mechanics.” Or, in 1830,
to Bessel (op. cit., p. 201), “We must admit humbly that, while the
number is a product of our intellect alone, space has a reality beyond
our mind whose rules we cannot completely prescribe.” }

Helmholtz shows that the two parts of the Kantian doctrine of
space, namely, (¢) that space is pure form of intuition, and (¢%) that
the science of space, Euclidean geometry, holds a priori, are not so
closely connected that (if) follows from (7). He is willing to accept
() as a correct expression of the state of affairs; but nothing can be
inferred from that, according to him, beyond the fact that all things
of the external world have spatial extension. In accord with Riemann
he points out the empirical physical content of geometry and refers
to Newton, who in the introduction to Principia had declared, ““ There-
fore geometry is founded in mechanical practice, and is nothing but
that part of universal mechanics which accurately proposes and
demonstrates the art of measuring.” If there were, aside from the
“physical equivalence” of spatial quantities (cf. p. 103), an equality
given by immediate transcendental intuition, then the agreement of
the two concepts could after all be only a matter of experience, while
in the case of conflict the transcendental equality ‘‘ would be degraded
to the level of a sense illusion, i.e. an objectively false semblance”
(Helmholtz, Wissenschaftliche Abhandlungen, 1I, p. 654). Against
the argument that non-Euclidean geometry is devoid of intuitivity
(Anschaulichkeit), he sets up a definition of intuitivity. The latter
consists, he says, in ‘“‘the complete imaginability of those sense
impressions which the object would produce in us according to the
known laws of our sense organs under any conceivable observational
conditions and by which it would differ from other similar objects.”
We may refer to the description given in Section 17 of the relation
between the objective world and its subjective image as conceived by
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the point eye moving along a world line. Against the argument
that an attempted experimental test of geometry always involves
physical statements about the behavior of rigid bodies and light rays
it may be pointed out that the individual laws of physics no more than
those of geometry admit of an experiential check if each is considered
by itself, but that a constructive theory can only be put to the test
as a whole.

Under the influence of modern mathematical axiomatic investiga-
tions one has come to distinguish the ‘mathematical space,’ whose
laws are logical consequences of arbitrarily assumed axioms, from the
‘physical space,” the ordering scheme of the real things, which enters
as an integral component into the theoretical construction of the world.
With regard to this distinction Einstein says (Geometrie und Erfahrung,
p. 3), ““As far as the propositions of mathematics refer to reality they
are not certain, and in so far as they are certain they do not refer to
reality.”” The general philosophical development, on the other hand,
has since taken a course that led to a split of Kant’s judgments a
priori into two directions. On the one hand, there are the non-
empirical laws (Wesensgesetze), which express the manner in which
data and strata of consciousness are founded upon each other, but do
not claim to involve statements of fact; this line of pursuit culminated
in Husserl’s phenomenology, in which the a priori is much richer then
in the Kantian system. On the other hand, principles of theoretical
construction are formulated, which according to the most extreme
point of view (Poincaré) rest on pure convention.

After what has been said in Part I we need not enter here into a
detailed discussion of the general mathematics of continua and of the
more important structures with which they can be endowed. In the
case of physical space it is possible to counterdistinguish aprioristic
and aposterioristic features in a certain objective sense without, like
Kant, referring to their cognitive source or their cognitive character.
In fact, according to the Riemann-Einstein view, we may contrast the
one absolutely given Euclidean-Pythagorean nature of the metric,
which does not participate in the irradicable vagueness of that which
occupies a variable place on a continuous scale, with the mutual
orientation of the metrics in the various points, i.e. the quantitative
course of the metrical field; the latter is accidental, dependent on the
distribution of matter, ever-changing, and ascertainable only approxi-
mately and with the help of immediate intuitive reference to reality.
Thus the general theory of relativity does not altogether deny that
there is in this sense something aprioristic to the structure of the
extensive medium of the external world, but the line betweea a prior:
and a posteriors is drawn at a different place. (To be exact, this
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juxtaposition, or separation, must be understood as meaning — as
always in cases of this kind — that the aprioristic factor can be isolated
from the whole without thereby exhausting the latter; there is no
residue of purely a posteriori character, however, that would be left
after the first part has been ‘subtracted’ from the whole.) Among the
aprioristic features of the world, beside and above the one nature of
the metrical field, there is the topological connectivity, which is fixed
once and for all, especially the dimension number 4. The quantitative
course of the metrical field obeys exact natural laws, namely, the
Einstein laws of gravitation, which resemble the Maxwell laws of the
electromagnetic field. Within the a posteriori one has thus to make
yet another distinction, between what is necessitated by natural law
and what even under their rule remains free and thus appears as
contingent. The binary gradation is replaced by a ternary one.

{In addition to the physical space one may acknowledge the
existence of a space of intuition and maintain that its metrical struc-
ture of necessity satisfies Euclidean geometry. This view does not
contradict physics, in so far as physics adheres to the Euclidean
quality of the infinitely small neighborhood of a point O (at which the
ego happens to be at the moment). For the angles which are formed
by the spatial directions of the light beams issuing from the various
stars and striking the point eye do indeed fulfil the laws of spherical
trigonometry in Euclidean space. But then it must be admitted
that the relation of the intuitive to the physical space becomes the
vaguer the farther one departs from the ego center. The intuitive
space may be likened to a tangent plane touching a curved surface
(the physical space) at a point O; in the immediate vicinity of O the
two coincide, but the larger the distance from O the more arbitrary
will the one-to-one correspondence between plane and surface become
that one tries to establish by continuing the relation of coincidence
near O. This does not mean that the intuitive space as such must
necessarily be of a vague character. The intuitive space after all does
not overcome the discrepancy created by binocular sight by vacillation
or compromise (provided extreme circumstances, or attention directed
toward the visual perceptions as such, do not cause a contest between
the fields of vision to break out) but is intuitively of unobscured
clarity, though in the objective construction the state of affairs can
only be represented as a compromise. }

Regarding the aprioristic features of space the task arises to under-
stand on rational grounds the peculiarities that give them their dis-
tinctive position within the range of the more general possibilities
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revealed by formalized mathematics. Thus there are three different
possibilities as to the nature of a four-dimensional Riemann manifold,
according as its fundamental metrical form possesses 0, 1, or 2 negative
dimensions. If the world corresponded to the case 0, no propagation
of effects from a world point O would be possible, while in the case of
2, past and future would be melted into one world domain. Thus it
can be argued that the middle case of 1 negative dimension is realized
by the metrical field of the real world because of the necessity of a
causal structure by virtue of which an ego may be actively and pas-
sively connected with the world in such a manner as to separate past
from future, what is known from what is planned. Likewise it must
be asked in connection with n-dimensional Euclidean or Riemannian
geometry, which resulted by cogent formalization from the three-
dimensional one (Section 12), what inner reasons there are for the
distinction of the case n = 3 realized by the actual space. Aristotle
gave several answers to this, which still move in the sphere of mythical
thought. Galileo discusses and rejects them at the beginning of his
‘““ Dialogo.”” The solution which he himself proposes is merely a clearer
formulation of the problem but is no answer. The best chances for
success seem to me to lie in theoretical physical construction.® Thus
it can be shown by means of the wave equation of light (which can be
immediately extended to n dimensions) that only in a space of an odd
number of dimensions is the extinction of a candle followed by com-
plete darkness about the candle (within a radius that increases as
rapidly as light travels). This, at least, shows up an important ipner
difference regarding the propagation of effects between even and odd
numbers of dimensions. Those particularly simple and harmonious
laws which Maxwell had developed for the electromagnetic field in
empty space are invariant with respect to an arbitrary change of the
standard unit length at every world point, provided the world is four-
dimensional. This principle of ‘gauge invariance’ holds for no other
number of dimensions.

{The group structure of the Euclidean group of rotations (which
still dominates the metrical nature of the world even if the Riemann-
Einstein infinitesimal geometry is adopted) is decidedly different for
the various numbers of dimensions. This circumstance suggests
that the mathematical and physical laws may cease to be indifferent
to the number of dimensions on some deeper level that has hardly
been touched by the physics of today. There is thus good reason

¢ One blushes at the thought of the naive geometrical blunders committed again
and again in an attempt to solve this deep problem. A recent example of this can
be found in Natorp’s Logische Grundlagen der exakten Wissenschaften, pp. 303 ff.
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to hope that our problem will one day find a cogent solution along such
lines. An attempt to make the three-dimensionality of space com-
prehensible through its role in the constitution of the external world
for the consciousness was made by Bolzano (Abhandlungen der Boh-
mischen Gesellschaft der Wissenschaften, 1843). A more recent attack
by O. Becker in the same direction is less absurd, but still far from
satisfactory.

A way to understand the Pythagorean nature of the metric (which
finds its expression in the Euclidean group of rotations) exactly
through the separation of a priori and a posterior: has been pointed out
by the author. Only in the case of this particular group does the
contingent quantitative distribution of the metrical field, however
that distribution is chosen within the framework of its a prior: fixed
nature, uniquely determine the infinitesimal translation, the non-
rotational progression from a point into the world. This assertion
involves a rather deep group-theoretical theorem which was proved
by the author. The space problem, thus solved, plays a similar part
within the Riemann-Einstein theory as the Helmholtz-Lie problem
(Section 14) plays for the rigid Euclidean space. It may be that the
postylate of the unique determination of ‘straight progression’ can be
justified on the basis of the requirements posed by the phenomenologi-
cal constitution of space. Becker persists in attempting to base the
signifieance for intuitive space of the Euclidean group of rotations
upon Helmholtz’s postulate of free mobility. If in agreement with a
remark made in Section 15 the transformation group A, in 3 or 4
dimensions is considered as representation of an abstract group, then
more emphasis should be placed on the distinctive features of the
structure of this abstract group than on the special concrete repre-
sentation Ao.]-
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CHAPTER II

Methodolog y

79. MEASURING

THE opinion that cognitive connections can be found in the real
world only in so far as qualitative determinations are reduced to quan-
titative ones, which asserted itself in modern times in opposition to
Aristotle’s philosophy, has assumed fundamental importance for
natural science. This is Kepler’s succinet formulation, ““ Ut oculus ad
colores, auris ad sonos, ita mens hominis non ad quaevis sed ad quanta
intelligenda condita est.”” The standard of our knowledge is found
in its approximation to the ‘‘nudae quantitates.” Galileo enunciates
the principle, ‘“to measure what is measurable and to try to render
measurable what is not so as yet.”” A splendid illustration of the
second part of this postulate is his invention of the thermometer.

But what does the process of measuring consist in? Let us take
inert mass as an example.

According to Galileo the same inert mass is attributed to two bodies
if neither overruns the other when they are driven against each other
with equal velocities (they may be imagined to stick to each other
upon colliding). This is a definition by abstraction. The physically
defined equality of mass is a relation of the character of equality (see
Section 2), as can be confirmed by experience. Experiment must
show, in addition, that equality is independent of the attendant cir-
cumstances of the defining process, such as the speed of collision.
Equality, this first requisite of all mensuration, usually carries with
it the relation of ‘smaller’ and ‘larger.’” In our case: that body has
the larger mass which, at equal speeds, overruns the other. Finally
a process of addition must be given; in the case of masses this consists
simply in joining the two bodies. By assuming certain axioms con-
cerning these fundamental concepts (which Helmholtz for instance
discusses in his repeatedly quoted essay on Zdhlen und Messen) one
can establish a measuring scale which characterizes every value of the
quantity in question by a number. It may be necessary to fix arbi-
trarily a certain unit of measure (herein lies 2 new component of relativ-
ity, and this is actually the case with line-segments and masses, for
example); while under other circumstances a natural unit of measure
exists, like the complete rotation (360°) in the realm of angles. From
a practical viewpoint the unit must fulfill the requirement that it be
reproducible everywhere and at all times as accurately as possible.
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A type of quantities different from the ‘additive’ quantities just
characterized are the absolute and material constants that occur in such
functional relations between additive quantities as are accepted as
laws of nature. In this category belongs the coefficient of refraction
n, whose significance is evinced by Snell’s law of refraction: the sine
of the angle of incidence equals n times the angle of refraction (the
two angles are the additive quantities put in relationship to each other
by this law). Helmholtz calls constants of this sort ‘““intensive’”
quantities, in contrast with the additive or extensive quantities.
In particular all numerical valuations of properties are intensive
quantities.

{A good example is the measuring of temperature. Bodies have
equal temperature if they produce no change in each other when in
contact. It is by no means a self-evident fact, but one to be confirmed
through experience, that when 4 and B, and B and C, possess equal
temperature, A and C also have equal temperature. An addition that
would lead to a definite measuring scale does not exist in the field of
temperatures. Yet on the basis of the experience that bodies of
unequal temperature cause changes of length between one another, one
proceeded to define temperature by means of the length of a standard
body which is brought into contact with the body to be measured.
This determination of the temperature is always reproducible and
independent of past history, while to our sense of temperature a body
of physically constant temperature feels warm or cold, according to
the degree of warmth to which our skin was exposed immediately
before. Wood and iron of equal temperature feel different to the
touch — when warm, iron feels warmer; when cold, iron feels colder.
The external conductivity of heat is a codeterminant for theresultant
sensation. The objective concept of temperature is thus pretty far
removed from the sense data of heat perception. The temperature
scale is dependent on the choice of the standard body. At least all
gases, however, react approximately alike, and their behavior can be
described within relatively small errors by a simple law, which in turn
is laid down as characteristic for an ‘ideal gas.” But only by deriving
from the ideal-gas law the so-called second theorem of thermody-
namics, which holds for all bodies, did it become possible to reaiize in
an unambiguous way the temperature scale of the ideal-gas thermo-
meter. The absolute temperature is characterized, aside from the state-
ment that bodies of equal temperature have the same temperature
value 7, by the following law: the integral of dQ/T over any cycle of
virtual states is zero. Here T is the temperature of the individual
state ¢ and d@ the infinitesimal increment of heat that takes place in
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passing on from ¢ to the next state along the cycle. The heat is
measured as energy and thus an additive quantity. Consequently
the temperature T is an intensive quantity in the Helmholtz sense.
Its definition is an implicit one and as such presupposes the validity of
certain natural laws. It leaves arbitrary only the unit of measure,
but not the zero point. 7 is by necessity always positive, and there
exists an absolute zero point of temperature. (On defining as 100°
the difference between the boiling and freezing temperatures of water
under atmospheric pressure these temperatures turn out to be 373°
and 273° respectively in the absolute thermodynamic scale.)

The laws of ‘mechanical similarity,” of which Galileo speaks
on the second day of his “Discorsi,”’ are based on the relativity of
quantitative determinations in regard to arbitrarily chosen standards.
These laws make it possible to use small models in order to study real
events, just as the proportion of the sides of a triangle whose angles
are known can be found from a small model. If, in a problem of float-
ing or flying, the viscosity of the medium (water or air) must be taken
into account, then, when changing over to the model, the medium
must generally be replaced by one whose viscosity is changed accord-
ing to the size of the model. Yet the physical laws of similarity have
their limits. Thus, according to the set-up of the special theory of
relativity, only one arbitrary unit of length for time and space remains,
the velocity of light ¢ becoming the absolute standard of velocity.
However, the existence of an absolute unit for velocities is no more
extraordinary in relativity theory than the existence of an absolute
angular unit in geometry. It is merely a consequence of the metrical
structure of the four-dimensional world. If the gravitational constant
is added, there remains just one unit for all physical mensuration that
has to be chosen arbitrarily, say the time unit of the second. Thus
far one can get without taking the atomistic structure of matter into
consideration. As for the atomic theory and the absolute constants
of nature to be obtained from the atomic laws, see Section 22 E
(p. 184) and Appendix F. }

The theory of mensuration involves the question of how 1t is possi-
ble to determine quantities much more accurately than the differentiating
capacity of our senses permits. What good is it to differentiate between
two shades of yellow (such as the yellows of the two adjacent D-lines
in the sodium spectrum), if they are sensually indiscernible? A simple
example is the exact determination of the duration of a pendulum
oscillation: one waits for, say, 1,000 oscillations and divides the entire
time by 1,000. The accuracy has thus been increased a thousandfold
compared to that obtainable by observing a single oscillation. To be
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sure, a theoretical assumption has been made here; namely, that all
single oscillations are of equal duration. For the intuitionist, who
respects the limits of sensory accuracy and does not want to transgress
them a thousand times, this assumption is just as meaningless as
the indirectly obtained assertion concerning the duration of a single
oscillation. Yet the assumption can be confirmed to some extent by
observing that the ratio of the duration of m successive oscillations to
that of n oscillations (m and n being large integers) is m:n, of course
within the limits of accuracy of direct observation. (The test is
carried out with several series of oscillations picked at random.) In
general the situation is as follows: By virtue of the exact laws of the
basic theory, the quantity z to be determined is functionally dependent
on several others. By observing the latter, one can arrive at con-
clusions regarding the value of z by which z can be determined more
exactly than by direct observation. The basic theories are confirmed
if within the expected margin of error all indirect methods for the
determination of z lead to the same result. In particular, a fact is
determined the more exactly the further its causal consequences
continue to develop in time. A deviation in direction of two missiles
which at first may not be noticeable eventually leads to the most
obvious difference; one hits the mark and the other misses. It must
be remembered, however, that any such indirect quantitative deter-
mination and any establishment of a difference not manifest to the
senses is possible only on the basis of theories. Their verification takes
place by testing them in all their numerical consequences and finding
that they yield concordant results. (Otherwise the observations
enforce modification of the theory.)

{In this field belong all the indirect methods of experimental
physics, beginning with the simplest tools — the vernier, the mirror
reflections for the measurement of small deviations, the rotating
mirrors which help to resolve the sound-generating vibrations of
Iuminous bodies, the microscope — up to the experimental and instru-
mental refinements of modern atomic research that aim at making the
single atomic particle visible through its effects. Mach, in the chapter
““Das physische Experiment und seine Leitmotive” in Erkenntnis und
Irrtum (1905), makes an interesting survey of, and an attempt to
organize, the various methodical principles involved. Here is a wide
field for the inventiveness of the experimenter. }

Even if the opinion can thus be justified that the world is far more
accurate than it appears to the senses, or even that it is absolutely
accurate, nevertheless this absolutely accurate state could only be
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ascertained by me as the observer if I waited for the resulting develop-
ments till the end of time (as well as for the perfection of theoretical
physics which has to provide the exact laws). Complete accuracy is
therefore a limiting idea and by no means immediately given. Leib-
niz’s thought of preestablished harmony — which he himself illus-
trates by the example of two entirely independent clocks that are
synchronous, not because they exert a regulating influence upon each
other but because they are identically constructed — contradicts,
therefore, the nature of the continuum. In his T'reatise, Hume states
that the refinement of mensuration is based on repeated mutual cor-
rection, but that ‘‘the notion of any correction beyond what we have
instruments and art to make is a mere fiction of the mind, and useless
as well as incomprehensible” (Book I, Part II, Section 4). Even so
one can understand the necessity and expedience of exact mathe-
matics: the exact theory provides the framework for approximate
verifications. If, for example, we adopt Euclidean geometry as the
theory of space, then, with the theorem that the diagonal of a square
is to the side as v/2:1, we are prepared for all future refinements in
direct or indirect methods of mensuration; it will lead us again and
again to new predictions (approximative in character) or to ever finer
criteria by which to check the standard measuring bodies as to whether
they satisfy the ideal assumptions of Euclidean geometry up to the
degree of accuracy attainable at each step.

-[Recently the Danish geometer Hjelmslev has espoused a purely
approximative geometry (Abhandlungen des Mathematischen Seminars
der Universitit Hamburg, Vol. 2, p. 1), with the same arguments as
Hume, who remarked, ‘“Our ideas seem to give a perfect assurance,
that no two right lines can have a common segment; but if we consider
these ideas, we shall find, that they always suppose a sensible inclina-
tion of the two lines, and that where the angle they form is extremely
small, we have no standard of right line so precise as to assure us of the
truth of the proposition” (T'reatise, Book I, Part I1I, Section 1). But
when Hjelmslev continues by formulating the Pythagorean theorem
thus, ‘“In a right triangle, numbers can be assigned to the sides in such
a manner that the square of the number assigned to the hypotenuse is
equal to the sum of the squares of the numbers assigned to the other
sides,” then one can already see the tendency to reduce the range of
indeterminacy of directly observed measurements by declaring the
functional relationship enunciated in the ordinary theorem of Pythag-
oras to be an inviolable exact law. If one keeps in mind that the
same segment which here functions as the hypotenuse may be a con-
stituent in infinitely more figures, with whose remaining parts it is
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linked by similar functional relations, one reaches that concept of an
exact theory which dominates constructive physics. Hjelmslev,
incidentally, is far too concerned with figures drawn on a blackboard
and is apt to forget that geometry must also serve as an ideal basis for
astronomy and atomic physics. Constructive science can sustain
the intuitionism of Brouwer; but the sensualism of Hume and Hjelms-
lev — which on principle would recognize as real only the immediately
given, without being able to carry this through —is deadly for
science. }

Measuring, as we have considered it up to now, was based on the
fact that in many cases physical quantities are subject to the notions
of equality and addition with their characteristic axioms, by virtue
of which their values are projected on a numerical scale. *Thus,”
says Maxwell (Scientific Papers, I, p. 156), ‘““all the mathematical
sciences are founded on relations between physical laws and laws of
numbers.” However important the particular way discussed here of
introducing numerical symbols into natural science may be, it seems
nevertheless not to be the decisive feature of quantitative analysis.
If a basis for an arithmetical differentiation of the individual places
in a continuum is created by spreading a division net over the con-
tinuum, with a wide margin of freedom in all its steps of refinement
and sharpening (though bound by a fixed combinatorial scheme), then
the procedure is different and much looser, as it were, than it is in the
case of mensuration proper. Moreover, the measuring of many
physical observables (which are not scalar but vector or ‘tensor’
quantities, such as the metrical field) is possible only relative to a
coordinate system thus arbitrarily introduced into the world. This
free insertion of coordinates and that mensuration based on the addi-
tion of equal elements may be typical for the different levels on which
the two methods are applied: the first to the form, the latter to the
content of the world. However, the only decisive feature of all
measurements is, it seems, symbolic representation; even numbers are
in no way the only usable symbols. Measurement permits things
(relative to the assumed measuring basis) to be presented conceptually,
by means of symbols. If a part of the infinite Euclidean plane is
materialized by a flat metal disc, we can at first fix places within the
domain of the metal disc only, using material markings on the disc
that are qualitatively different and permanently recognizable. But
once two rectangular axes and a unit length have been scratched onto
the disc, then we are not only able (‘ideally’ and on the basis of a
theory concerning the behavior of rigid measuring rods) to spread over
it an arbitrarily fine net of well-characterized locations by means of
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coordinate assignments, but this indirect method enables us to put
such ideal ‘numerical marks’ even beyond the boundaries of the disc.
It is thus that we use the earth as a basis to plumb the sidereal space.
Finally, in carrying out measurements there is a tendency to reduce
the immediate sensory observations, which of course can never be
eliminated, to the safest and most exact among them, namely spatio-
temporal coincidences (in particular, one tries to do without the sub-
jective comparison of colors and light intensities). Any mensuration
should ultimately ascertain, so one wishes, whether a mark on one
scale (a movable pointer or such) coincides with a certain mark on
another scale. In the case of an astronomical observation the reading
of the graduating circle is done in just that way, while the training of
the instrument on a star utilizes a coincidence modified by the inter-
calation of light, namely the ‘coincidence’ of star and cross threads.

20. FORMATION OF CONCEPTS

Dilthey, in his essay on the autonomy of thought in the 17th
century (Gesammelte Schriften, II, third ed., 1923) describes the
development of mechanics up to Galileo. ‘‘Galileo came, and with
him there followed an actual analysis of nature, after more than two
thousand years of mere description and consideration of form in
nature, that had culminated in Copernicus’s picture of the world.”
For this analysis it is decisive to isolate simple occurrences within the
complexity of facts, and to dissect the course of the world into simple
recurrent elements. Bacon already devised the formula ‘‘dissecare
naturam.” ‘“Only the mathematicians contrived to reach certainty
and evidence, because they started with the easiest and simplest”
(Descartes, De Methodo). In no small measure is the strength of
natural science based upon its renunciation of designing a ‘system
of nature’ in one draft, its condescension to deal with the small
individual problems and its boundless patience in submitting them to a
detailed analysis. Descartes himself still sinned heavily against his
own methodical remark. Galileo’s superiority over him in the field
of natural science is partly attributable to the fact that Galileo, in his
research into the laws of falling bodies, strictly exercised that ‘‘restraint
which proves the master.”?

We can distinguish the following phases of dissection into simple
elements, the first three of which still belong to the pre-scientific stage.

{1. Dissection of the three-dimensional spatial reality into single
partial systems (bodies or things), each forming an intuitive spatially

7“In der Beschrinkung zeigt sich erst der Meister” is a familiar line from
Goethe’s sonnet Natur und Kunst,
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isolated and relatively constant unit. In its behavior each is con-
sidered as independent of the others, unless progressive analysis calls
for corrections. Closely connected with this is the dissection of the
four-dimensional spatio-temporal reality into single isolated events
that form natural intuitive units.

2. The conception of an intuitively experienced event as having
come about by spatio-temporal coincidence and amalgamation of
several simple phenomena (each of which would produce other percep-
tions than the phenomenon as a whole if the others were ‘erased’ or
replaced by ‘normal conditions’; e.g. the sun setting behind a gold-
edged cloud).

3. Apperception of the ‘being-so,” bringing out the characteristic
features (self-insufficient parts) of the phenomena. Upon this pro-
cedure is based the grouping together of similar things, the subordina-
tion under concepts, in one word: classification. Such classification
will correct itself as the wealth of our experience increases. It will
thus learn to distinguish better and better the truly essential from the
inessential and progress to the formation of more and more ‘natural’
classes. A concept is the more essential the more connotations it
entails according to the evidence of experience, namely the more
characteristics not contained in the concept itself are empirically
found to be common to the objects falling under the concept.

4, We are not satisfied with intuitively isolable elements but inter-
pret a series of properties which always appear together as an indication
of a concealed something. This leads to hypothetical elements, such
as atoms, forces, electro-magnetic field, etc. Moreover, we learn to
interpret not only the observable properties but also the reactions
that occur if one system is brought together with another as manifes-
tations of such hypothetical elements and of their intensive and
quantitative values. (Reactions instigated at will are the essence of
experiments.) Finally, we do not hesitate to dissect hypothetically
even the intuitively simple, e.g. the white sunlight into the colors of
the spectrum, or the acceleration of a planet into the partial accelera-
tions brought about by the sun and the other planets. It is evident
that along with the dissection the synthetic principles also have to be
established according to which the elements unite into a whole (e.g.
formation of the resultant of forces). }

Starting everywhere with the simplest, we find, among the recur-
ring elements thus obtained and the variations of their values, con-
stant lawful relationships which can be quantitatively explored and
expressed by mathematical functions. What is decisive is this: the
farther the analysis progresses, the more detailed the observations
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become and the finer the elements into which we dissect the phe-
nomena, the simpler — and not the more complicated, as might be
expected — become the basic laws, and the more completely and
accurately do they explain the factual course of events. And only by
way of this analysis do the right constructive concepts evolve which
serve to describe objective nature; they are bound up throughout
with definite facts and valid natural laws.

{What is it that compels us in physics to think of the uniform
white color as something composite? It is the causal law, asserting
that equals, under equal conditions, produce equal reactions. It
requires that two colors, which to the senses appear as the same white,
contain ‘hidden’ differences, since, upon passage through the same
prism, they yield different spectra. (In principle, what happens here
is no different from the case of two spherical balls of identical appear-
ance but different inertia and weight, one of which when cut open is
seen to contain a core of gray lead.) It will be found that the variety
hidden in the white light can be described most expediently in terms
of the spectrum and its intensity distribution. At first the apparatus
used in the reaction, the prism with its special properties, will get
mixed in, and it will be necessary by varying the form and substance
of the prism to learn to separate the two influences. In this way one
will arrive at the wave-length scale of spectral colors, which is inde-
pendent of the prism. In the earlier example of the ponderomotoric
force suffered by a test particle in a field generated by charged con-
ductors, we have explained in detail how such a separation can be
effected. Polarized light of a certain spectral color and intensity, on
the other hand, proves to be something simple, because its behav-
ior in all reactions is completely determined by the characteristics
mentioned. }

A typical example of the formation of physical concepts is Galileo’s
mass concept. We mentioned above the criterion of mass equality.
Here the concept of momentum appears as prior to that of mass. Two
bodies moving toward each other (each undergoing uniform transla-
tion in accordance with the law of inertia) have oppositely equal
momenta if neither overruns the other upon collision. We repeat
Galileo’s criterion by saying that two bodies have the same mass if,
at equal velocities, they possess equal momenta. We are thus dealing
with a constructive concept in the sense of the description on p. 37.
Instead of, or besides, purely intellectual manipulations in the realm
of numbers, we have here, in the material sphere, real (or at least
really possible) experiments, the results of which are used for the
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numerical determination of characteristics. This is a step of great
importance. After matter was stripped of all sensory qualities, it
seemed at first as though only geometrical properties could be attrib-
uted to it. In this respect Descartes was wholly consistent. But
it now appears that other numerical characteristics of bodies can be
gathered from the laws to which changes of motion in a reaction are
submitted. Thus the sphere of properly mechanical and physical
concepts is opened up beyond geometry and kinematics. Basically
Galileo’s definition of mass implies the law of momentum: ‘‘ An isolated

body (moving uniformly) has a certain momentum, I = my, which

is a vector having the same direction as the velocity ». The sum of
the momenta of the individual bodies of an isolated system prior to a
reaction is the same as after the reaction.” By subjecting the observed
motions to this law, it is possible to obtain data for the numerical
evaluation of the ratios of the masses m of the individual bodies before
and after the reaction. Constructive natural science has the general
task of assigning to the objects such constructive quantitative characteristics
(dependent only on the object though not necessarily directly
observable) as will make their behavior, under circumstances described
by characteristics of the same kind, completely determinate and predictable
on the basts of the natural laws. The implicit definition of character-
istics is tied to these laws. In this way science complies with the
postulate (which fails to be satisfied if nothing but sensory qualities
are admitted) that ‘“all changes which bodies undergo have their
cause in the nature and the qualities of the bodies themselves” (Euler,
Anleitung zur Naturlehre, Chap. I, §2, Opera postuma, 11, 1862). The
fact that we do not find but enforce the general principles of natural
knowledge was particularly emphasized by the conventionalism of
H. Poincaré.

Turning to the temporal analysis of the process of reaction, and

considering that for an isolated body k£ the momentum I is constant

in time, we take the change of this quantity per unit of time, dI/dt,
called force, as a measure of the effect which other bodies &, ks, . . .
have upon k. Indeed Newton recognized that the force is composed
additively (according to the parallelogram law of vector addition) of
individual forces exerted upon k by each of the bodies ki, ks . . . ,
and that this occurs in such a manner that, for example, the force
exerted by k; on k at a certain moment depends solely on the condi-
tion of these two bodies (location and velocity) at that instant. This
is the real meaning of the decomposition of the one force into several
component forces. Looking at these facts one cannot escape the
conclusion that the definition ‘force = time-derivative of momentum’
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does not reflect the nature of force adequately but that the real state
of affairs is the other way round: force is the expression of an inde-
pendent power that connects the bodies according to their inner nature
and their relative position and motion, and that power causes the
change of momentum with time. Thus the living metaphysical inter-
pretation conforms to the theoretical construction. Through the basic
mechanical law of motion, physics is given the task of exploring the
forces operating among bodies in their dependence on position, motion,
and inner condition. The latter will enter the laws of force by way of
numbers characteristic of the inner state of the reacting bodies, like the
electrical charge in the case of Coulomb’s law of electrostatic attrac-
tion and repulsion. Thus the concept of force becomes a source of
new measurable physical characteristics of matter.

While the metaphysical conception of nature is modified by the
results of theoretical construction, which should find in that conception
a suggestive and fruitful expression, there usually is already at the
bottom of concrete research a preconceived idea that is in happy
consonance with the facts. In the process of motion Galileo sees the
dynamic intensity, the driving push, the impetus or momentum.
Motion to him depends on the struggle of two tendencies, inertia and
force, force that deflects the body from the path dictated by inertia.
Mass is the dynamic coefficient according to which inertia resists the
deflecting force. With reference to Galileo, Goethe remarked in his
Geschichte der Farbenlehre (Section 4, Galileo Galilei): ““In science all
depends on what is called an aper¢u, on a recognition of what is at the
bottom of the phenomena. And such a recognition is infinitely fruit-
ful.” Given the right basic aspect, the right basic concepts will
emerge in the course of detailed research conducted under its guidance.

{In his book Substanzbegriff und Funktionsbegriff (1910) E.
Cassirer has endeavoured to show that the formation of concepts in
mathematics and physics in no way corresponds to Aristotle’s logical
scheme. In plane analytic geometry an ellipse is defined by its
equation, by setting a positive quadratic form of the coordinates equal
to unity. The individual ellipse is obtained by substituting specific
values for the coefficients of the quadratic form (which vary over a
predetermined range, namely the continuum of real numbers). We
cannot agree with Cassirer’s remark that in this procedure the more
general concept is the richer; for the properties of the individual ellipse
depend, in addition to the general form of the equation, on the specific
values of the coefficients. It is true, though, that the special cases
are obtained from the general one by assigning definite values to the
‘variables’ — within a range which is completely given or open to free
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construction. Aristotle ascends from the single object to the concept
by isolating individual features of the object and by ““abstracting”
from everything else. Thus every other object which exhibits those
same features falls under the same concept, or into the same class. In
this procedure (as in descriptive botany or zoology) only the really
existing objects are concerned, and classes are formed preferably in
such manner that, according to the testimony of experience, the con-
cepts entail as many ‘connotations’ as possible. In the mathematical-
physical or ‘functional’ formation of concepts, on the other hand, no
abstraction takes place, but we make certain individual features
variable that are capable of continuous gradation (such as the coeffi-
cients of the quadratic form in the case of the ellipse), and the concept
does not extend to all actual, but to all possible objects thus obtainable.
“The possibility of arbitrary refinement, the easy survey and the
facility in handling a whole continuum of cases with the assurance of
completeness,”’ according to Mach (Prinzipien der Wdrmelehre, third
ed., 1919, p. 459), “warrant the preference placed on such quantitative
constructions.” In this connection it is essential, though, that the
continuum is not a closed aggregate but a field of determinations open
to infinity; for otherwise we would return after all to the Aristotelian
scheme of characteristic features (‘‘a set of points (z, y) is an ellipse if
numbers a, b, ¢ exist such that all points of the set and no others satisfy
the equation ax? + 2bxy + cy? = 1”’). Thus the individual objects
falling under the functional concept have to be generated, and the
question whether a given object falls under it must not be asked in the
expectation that the ‘facts as they are’ will necessarily answer with a
clear-cut yes or no.

By means of the Platonic diagram on p. 53, which is identical
with the division net of the one-dimensional continuum, Plato assigns
their places to all beings by proceeding from the general to the specific
by bipartition (diaeresis). This scheme, as well as the Platonic
conception of ideas as numbers based on it, is not so far removed from
the modern mathematico-physical conception of the world as might
appear at a first glance. The former would merely have to be modified
to the extent that firstly some but not all of the levels and divisions —
as Plato maintains (dissection of the sacrificial animal, Phaedrus,
265¢; Politicus, 287c) — are prescribed by the facts and capable of
exact execution (for this possibility ceases whenever a uniform con-
nected continuum is present); and secondly that the process continues
ad infinitum and the individual thing appears but at the horizon as a
limiting idea. It is characteristic of Aristotle that he reverses this
diagram and begins at the bottom, with the individual beings, while
Plato starts with the ‘one.’
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In particular, the concepts obtained by mathematical abstraction
in accordance with the rule given at the end of Section 2 are of ‘func-
tional’ nature. }

21. FORMATION OF THEORIES

The constructive character of the natural sciences has become
obvious through what has been said above. Individual scientific
statements cannot be ascribed an intuitively verifiable meaning, but
truth forms a system that can be tested only in its entirety. Hobbes
developed the view (English Works, VII, pp. 183 ff.) that we cognize
with certainty only in those sciences which construct their objects
on the basis of the structural conditions resting within the cognizant
subject. Reality, to him, does not reside in the images of conscious-
ness but in that content of theirs that makes a construction of objects
possible. In contrast with the mere cognitio he sees in this synthetic
process of generating the phenomenon from its origin the scientia in
the strict sense. This, he claims, takes place within the natural
sciences as far as mathematical deduction reaches. ‘Thus the
sovereign consciousness of the autonomy of the human intellect and
its power over the physical things,”” Dilthey says (Gesammelte Schriften,
II, p. 260), “was definitely established by the great discoveries of
Copernicus, Kepler, and Galileo, and the accompanying theory of the
construction of nature by logico-mathematical elements of conscious-
ness given a priort became the dominant conviction of the most
progressive minds.”” In modern physics the building material is no
longer the elements of consciousness abstracted from reality, but
purely ‘arithmetical’ symbols. Dingler (Die Grundlagen der Physik,
p- 305, 1923) in fact defines physics as that scientific domain in which
the principle of symbolic construction is carried through completely.
But, coupled with aprioristic construction, we have experience and the
analysis of experience by the experiment. *‘The scientific imagination
of man was regulated by the strict methods which subjected the possi-
bilities that lay in mathematical thinking to experience, experiment,
and confirmation by facts. . . . The results thus obtained have made
possible a regular and connected progress in scientific research by the
common efforts of the various countries. It may be said that now
only did human reason become a unified force working concordantly
within the various civilized nations. The most difficult work of the
human mind on this planet was accomplished by this regulation of
scientific imagination, which subordinated itself to experience.”
(Dilthey, Der entwicklungsgeschichtliche Pantheismus, op. cit., 1I,
p. 346.)
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-[Let us illustrate what has just been said by the theory of electro-
magnetic phenomena. Since we only want to bring out the essentials,
it may be permissible in order to spare the reader the difficulties of
relativistic physics to assume the velocity of propagation as infinite.
We suppose that there are elementary material quanta to which fixed
masses and charges are attached once and for all. Position and
velocity of these electrons at a moment ¢ uniquely determine the
electromagnetic field by virtue of certain generating laws. This
field, in accordance with further laws, is connected with spatially
distributed momentum and energy, and exerts, by virtue of the flux
of momentum, certain ponderomotoric forces upon the generating
electrons. The force, finally, produces the acceleration of the elec-
trons, according to the fundamental law of mechanics; but velocity
and acceleration give us the change in position and velocity during
the next time interval dt, thus determining from position and velocity
at the time ¢ these same data at the time ¢ 4+ dt. By iterating this
infinitesimal transition { — ¢ + dt again and again the entire motion
is obtained through the mathematical process of integration. Only
this complete theoretical context, in which also geometry plays its
obvious part, is capable of an experimental test; and even this only
under the idealizing assumption that the motion of the electrons is
what we are able to observe directly. An individual law taken out of
this theoretical context, however, hangs in the air. Thus, in the last
analysis, all parts of physics and geometry grow together into one
indivisible unit.

For the same reasons a theory develops by way of continual cor-
rection, as it is driven on by the ever-growing richness and precision of
experience. ‘‘Thus the progress of science is dependent upon science
itself, it is an extension and not a creation’’ (Enriques, Problems of
Science, translated by Royce, Chicago and London, 1914, Chap. III,
§37, p. 165). When the Kepler-Newton theory of planetary motion
was established by observation, each event was tacitly assumed to
take place at the instant of its perception. Only later, Roemer dis-
covered the finite velocity of propagation of light through the apparent
deviations of the motion of the Jupiter satellites from the motion
required by theory. Thus a theory is employed (instantaneous
propagation of light) which is later proved to be false. But the
assumption of its rough correctness (together with other premisses
taken from experience) leads to the recognition of its finer inaccuracy
and to its correction. But without the preliminary assumption not
even the first step could have been taken. Newton’s fourth rule for
the study of nature refers to this (Principia, ed. F. Cajori, p. 400):
“In experimental philosophy we are to look upon propositions inferred
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by general induction from phenomena as accurately or very nearly
true, notwithstanding any contrary hypotheses that may be imagined,
till such time as other phenomena occur, by which they may either
be made more accurate, or liable to exceptions.” }

To facilitate the task of the theorist, the experimenter endeavours
to arrange the experiment in such a way that it is most sensitive to one
law and as insensitive as possible to all others that play a part, namely
by dampening the influence of such circumstances as are governed
by the latter. This accounts, among other things, for the tedious
efforts involved in screening off all kinds of ‘sources of error.” All
the same, the influence of certain elements such as the metrical
field can never be eliminated. If a fact is in discord with the entire
theoretical stock of science, it is finally left to the theorist to find the
place where the theory is to be modified. It is hardly possible to
formulate general rules for this, nor for the relative weight with which
the known facts should bear upon the theoretical interpretation; this
must be left to the discretion of the genius. Thus the general theory
of relativity came about because Einstein realized the fundamental
nature and the particular import of one fact, the identity of heavy
and inert mass. The possibility must not be rejected that several
different constructions might be suitable to explain our perceptions; in
this recognition of the ‘ambiguity of truth,” Hobbes and D’Alembert
preceded the modern positivists. In an address on the occasion of
Max Planck’s sixtieth birthday in 1918, Einstein described the real
epistemological situation with great justice as follows: “ The historical
development has shown that among the imaginable theoretical con-
structions there is invariably one that proves to be unquestionably
superior to all others. Nobody who really goes into the matter will
deny that the world of perceptions determines the theoretical system
in a virtually unambiguous manner, although no logical way leads to
the principles of the theory.”

At any given stage of the theoretical construction there exists a
hierarchy of laws, inasmuch as different degrees of stability are ascribed
to the different laws. Certain ones among them are adhered to as
principles with great tenacity. For a long time the laws of Euclidean
geometry were held to be sacrosanct. The principles of the conserva-
tion of energy and momentum are of comparable, if not higher, sta-
bility. It is certain that a considerable portion of the theoretical
system can be maintained in the face of any experiences as long as
modifications of the remainder are permitted. Thus in the practice
of scientific research the clear-cut division into a prior: and a posteriors
in the Kantian sense is absent, and in its place we have a rich scale of
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gradations of stability. It is the simple form and the instinctively
convincing character of a law, together with its decisive significance
for an extensive domain of facts, which gives it the rank of a principle.
For instance, the convincing and simple law of inertia, which at first
appears to be sufficiently confirmed by our experiences regarding
motions relative to the earth, is maintained even when more refined
experiences (Foucault’s pendulum experiment) contradict it, by
resorting to the ‘subterfuge’ of claiming the law not for motions
relative to the earth but for an ‘absolute motion’ that is to be deter-
mined from the phenomena. The law of momentum is based on
the ‘evident’ fact that a system of bodies, originally at rest, cannot be
set into a progressive translatory motion under its own force; more
exactly, interior reactions of an isolated system of bodies at rest are
incapable of imparting to a portion of the system a common uniform
translatory motion while the remainder stays put. When we are
laughing at Miinchhausen’s tale of having extricated himself from the
swamps by his own pigtail, we betray our intuitive knowledge of that
fact. Further examples are the rule for the composition of velocities,
taken for granted almost unnoticedly by Galileo (Discorsi, 4th day),
and the energy principle.

{In the special form stating that the bodies of a system in a homo-
geneous gravitational field cannot lift themselves under their own
force to a higher level, the latter is employed by Galileo and Stevin to
derive the law of the inclined plane, by Huyghens to reduce the com-
pound to the ‘mathematical’ pendulum (Horologium oscillatorium,
1673). Huyghens already conceived the general idea of the energy
principle. He says (op. cit., p. 95), “If only the inventors of new
machines, who vainly endeavor to build a perpetuum mobile, would
follow this hypothesis [!] of mine, they would soon recognize their
error and would see that their goal is wholly unattainable.”” Leibniz
reads the energy principle into the formula “‘causa aequat effectum”
and considers it a special consequence of the principle of sufficient
reason required by the ‘“logic of quantity”’; he bases on it his measure
of the ““force vive.” Much greater weight than by a single confirming
experiment is carried by a universal negative experience of the type,
‘“This will never happen, whatever the circumstances.” Thus the
energy principle is supported by the failure of all attempts at con-
structing a perpetuum mobile; and of the same character are the
principles of relativity theory, the special relativity principle and the
principle of the ‘constancy of the velocity of light.’ Attacking
scholastic philosophy, Newton says (Opticks, ed. Whittaker, pp. 401-
402), “To tell us that every Species of Things is endow’d with an
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occult specifick Quality by which it acts and produces manifest Effects,
is to tell us nothing: But to derive two or three general Principles of
Motion from Phenomena, and afterwards to tell us how the Properties
and Actions of all corporeal Things follow from those manifest Prin-
ciples, would be a very great step in Philosophy, though the Causes of
those Principles were not yet discover’d.” }

Simplicity is considered as stgillum veri. ‘‘Nature loves simplicity
and unity,” Kepler says (Opera, ed. Frisch, I, p. 113). The same
principle is formulated by Aristotle as follows (De coelo, I, 4, 217a):
‘At deus et natura nihil prorsus faciunt frustra,” and it is held as an
axiom: ‘‘frustra fit per plura quod potest fieri per pauciora.” Galileo,
on the third day of the ‘‘ Discorsi,” reconstructs the chain of thoughts
which led him to the laws of falling bodies (Opere, VIII, p. 197):
‘““When, therefore, I observe a stone initially at rest falling from a
considerable height and gradually acquiring new increments of speed,
why should I not believe that such increases come about in the
simplest, the most plausible way? On close scrutiny we shall find
that no increase is simpler than that which occurs in always equal
amounts.”” He goes on to formulate the definition of uniformly
accelerated motion, develops its consequences regardless of experience,
and then finds them, as far as he can observe them with the means at
his disposal, confirmed for the ‘naturally accelerated’ motion of falling
bodies. Among Newton’s rules for the study of nature, the first is to
the effect that no more causes of natural things should be admitted
“than such as are both true and sufficient to explain their appear-
ances. . . . For Nature is pleased with simplicity, and affects not the
pomp of superfluous causes.”” What matters is not that the absolutely
simplest principles be established (as Dingler demands in his Grund-
lagen der Physik) — for then the world, for instance, would have to be
attributed one dimension rather than four — but rather that the whole
breadth of up-to-date experience be taken into account and that the
explanation be sought which is simplest relative to the known phe-
nomena. It often happens that for some partial domain an explana-
tion A is simpler than B; but while A becomes increasingly complicated
as the circle of experience widens, the same does not apply to B, with
the result that eventually B emerges as the superior theory. Fur-
thermore the required simplicity is not necessarily the obvious one,
but we must let nature train us to recognize the true inner simplicity.

{The problem of simplicity is of central importance for the
epistemology of the natural sciences. Since the concept of simplicity
appears to be so inaccessible to objective formulation, it has been
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attempted to reduce it to that of probability, which has already been
incorporated to a large extent into mathematical thought. If, for
example, 20 corresponding pairs of values (z, y) of a functional con-
nection y = f(x), with the accuracy to be expected, lie on a straight
line when plotted in a rectangular coordinate system, then a strict
natural law will be surmised to the effect that y depends linearly on z.
And this because of the simplicity of the straight line, or also because
it would be so extremely improbable for the 20 points of observation to
lie (nearly) on a straight line if the law in question were a different
one. If one now uses the straight line for inter- and extra-polation, one
arrives at predictions which go beyond the content of the observations.
However, this analysis is open to criticism. Certainly functions
y = f(x) could be defined mathematically in many ways that are
satisfied by the 20 observational data; among them such as will deviate
considerably from a straight line. For each of these one might claim
that it would be extremely improbable for the 20 observational points
to comply with it if it did not represent the true law. It is thus
essential, after all, that the function, or rather the class of functions,
be held ready by mathematics a priori because of its mathematical
simplicity. Here the class of functions must not depend on as many
parameters as there are observations to be satisfied (e.g. the class of
linear functions f(z) = az + b depends only on two parameters a, b,
whose values may be fitted to the observational data). An important
confirmation of the theory is obtained if it remains in accord with the
facts which it was intended to explain even after the observational
accuracy has been improved (and the number of observational points
increased). An outstanding example is Euclidean geometry, which
was proved by geodetic and astronomical precision measurements to
be much more exactly valid than could have been conjectured on the
basis of the experiences which had led to its erection. But this is far
from being the only example of such a confirmation of the principle of
simplicity. There is an abundance of similar cases in physics. Con-
versely it is a sure sign of being on the wrong scent if one’s theory
suffers the fate of the epicycles of Ptolemy whose number had to be
increased every time the accuracy of observation improved. The
three laws of Kepler were much simpler and yet agreed noticeably
better with the observations than the most complicated system of
epicycles that had been dreamed up. But Kepler’s astronomical dis-
covery would have been impossible without the Greek geometer’s
preceding discovery of the ellipses as a mathematically simple class of
curves. Newton’s law of attraction, especially in its formulation as a
nearby action law, again is simpler than the Keplerian theory of plan-
etary motion. The latter can be regained from the former if nothing
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but the attractive force of the sun is taken into consideration, while the
‘perturbations’ coming from the remaining planets are disregarded.
And again, a splendid confirmation of Newton’s ‘ Tieferlegung’ of the
theoretical foundation must be seen in the perfection with which the
perturbations computed on the basis of his law have checked with
innumerable observations, the accuracy of which has again been
enormously improved since the time of Tycho Brahe. It should be
added that the law of gravitation proved to be valid even outside the
circle of experiences for which it had originally been designed, namely,
for the motion of double stars about each other.

If experience has suggested a hypothests, it is necessary to develop
its consequences deductively, always with a view to inferring state-
ments which are amenable to experimental test. Huyghens describes
the method in the introduction to his T'raité de la lumiére (written in
1678, published in 1690): it differs greatly from geometry, he says,
‘““because here the principles are confirmed by inferences drawn from
them. . . . Itisnevertheless possible to achieve a degree of probability
which often is hardly inferior to a strict proof. In fact, this is the
case if the consequences arrived at under the assumption of these
principles are in perfect accordance with the phenomena known from
experience; especially if their number is large, and all the more if new
phenomena are designed and predicted that follow from those assump-
tions and if it is found that the result agrees with our expectation.”
He thus finds his wave theory of light confirmed by the discovery of
the law of the double refraction of calcite. This is too complicated
to be found purely empirically; but if the simplest assumption is made
with regard to the propagation of light waves in calcite beyond that
of a spherical wave, laws of refraction are obtained that are in accord
with experience. It must be put down as a success of a theory if it
reduces the complicated dependencies among directly observable
quantities to simple relations among the fundamental quantities of
the theory. Galileo’s discovery of the law of falling bodies is based
on a similar procedure.

“The essential function of a hypothesis,”” according to Mach
(Erkennitnis und Irrtum, p. 237), ““consists in the guidance it affords to
new observations and experiments, by which our conjecture is either
confirmed, refuted, or modified, by which — in short — our experi-
ence is broadened.” ‘‘The seafarer, in whose imagination the objects
thrown up by the ocean upon the beach create a vivid picture of the
distant land, sets out to find that land. Whether his search will
succeed or not, whether in place of the expected Indian or Chinese
coast he discovers a new one, at any rate his experience has been
widened” (op. cit., p. 231).
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For Galileo, Huyghens, and Newton, the deductive part still plays
a much greater role than in modern times. Galileo is no less proud
of the ““abundance of theorems which flow from a single principle”
than of the discovery of this principle itself (end of the third day of the
“Discorsi’’). The empirical attitude in physics has been accentuated
progressively. The first great inroad was made by the discovery of
electricity. }

Closely connected with the concept of simplicity is the category of
perfection. It plays a considerable part not only as a methodical but
also as an explanatory principle in Aristotelian philosophy. Thus
Aristotle attributes the indestructibility and unalterability of the
heavenly bodies to their perfect spherical form. Criticizing him,
Galileo remarks in his ““ Dialogo,” firstly, that from this point of view
a deviation from the exact spherical shape by as much as a hair’s
breadth would be as inadmissible as one of the size of a mountain range.
His sense of continuity revolts against the idea that, in nature, which
permits no absolutely exact measurements, the exact value of a con-
tinuous quantity should confer properties upon the bearer that are
basically different from those corresponding to nearby values no matter
how close. Secondly he points out that even, say, a tetrahedron
contains a sphere and that consequently only the residual corners of
the tetrahedron could be destructible (although spheres may be
inscribed to them too). He thus proves strikingly that for a property
such as indestructibility it is not the geometrical form that matters
but only the boundary surface across which the physical quantities
(in this case the material density) undergo a discontinuous jump and
which thereby may become the seat of special surface forces. (In
fact, such capillary forces play a role in imparting spherical form to
rain drops.) We here witness more clearly than anywhere else in the
“Dialogue” the radical change in the interpretation of nature brought
about by Galileian as opposed to Aristotelian thinking. Character-
istic for Galileo’s attitude is his exuberant praise of changeability in
contrast to that crystalline perfection (Dialogo, Opere, VII, pp. 83-84);
he points to the blossoming flower as something incomparably more
magnificent than Aristotle’s celestial bodies in their aloofness from all
changes. In Kepler’s work considerations of perfection still occupy
a good deal of space. He is concerned with the ‘‘rank of the earth.”
Being convinced of the perfection of the circle, he has to go through
a hard struggle before he gives up, as Brahe’s measurements force him
to do, the circular orbit of Mars. At first he still clings to static con-
ceptions; he sees the harmony of the planetary system expressed in
the regular Platonic solids. Only with effort he wins through to a
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more dynamic interpretation of the world. Even Galileo, at a remark-
able place in the ‘Dialogue,” succumbs to the magic of deriving an
explanation from geometrical perfection, when he bases upon the latter
the circular (not straight!) path of purely inertial motion. But on
the whole he has already completed the turn-about much more
decisively than Kepler. He seeks perfection no longer in the fixed
configurations and in the individual objects but in the dynamic rela-
tionships, the natural laws (which leave a large amount of play to
contingency). The notion of perfection is to him no longer a factual
constituent of the theory, but it has become a heuristic principle, a
belief which stimulates research. ‘‘Kepler, Galileo, and Bruno,” says
Dilthey, ‘“‘share with the ancient Pythagoreans the belief in a uni-
verse ordered by most perfect and rational mathematical laws and in
divine reason as the source of the rational in nature, to which at the
same time human reason is related.” On the long path of experience
during the succeeding centuries this belief has always found new and
surprising partial fulfilments, the most beautiful perhaps in Maxwell’s
theory of the electromagnetic field in empty space. But again and
again nature still proved itself to be superior to the human mind and
compelled it to shatter a picture held final prematurely in favor of
a more profound harmony.

Two strict requirements, according to Section 19, have to be made
of any theory: (z) concordance, which implies consistency, (i7) the
absence of redundant purely dogmatic constituents, which are without
influence upon observable phenomena. Furthermore, the principle
of sufficient reason must never be viclated. In simple cases it may
lead, as a principle of symmetry, to the establishment of definite laws.
Thus it is used by Archimedes when he bases his theory of the lever on
the theorem that equal weights attached to equally long arms of a
lever are in equilibrium. The entire configuration, including the
gravitational direction, is transformed into itself by reflection with
respect to the plane perpendicular to the horizontal lever at the point
of support. The notion of spatial similarity is the basis of the con-
clusion. If a configuration of masses and forces, or a state uniquely
determining the subsequent course of events, is mapped into itself by
a similarity transformation, then the events must also be invariant
with respect to this transformation. For this reason the lever cannot
lean to one side under the condition described above. In conjunction
with the general mechanical axiom that a balanced system remains in
equilibrium if a balanced partial system is split off, Archimedes then
derives from that special case the general law of the lever.

The same train of thoughts leads to the theorem that equal bodies
have equal inertial masses; i.e. if they are propelled against each other
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with oppositely equal velocities, neither overruns the other. If this
should happen nevertheless with two bodies of equal appearance, we
infer a hidden inner difference. Although under unfavorable cir-
cumstances it might admittedly reveal itself only in the difference in
mass, it would at any rate cause us to search for other differences in
the physical behavior of the bodies. Frequently the principle of
sufficient reason has been relied on to prove the law of inertia by
inferring from it that the state of a body left to itself must remain
unchanged. But what is meant by ‘state’? Scholasticism inter-
preted it as position and thus believed that a body must remain at a
standstill if not subjected to any outside influences. Galileo, on the
other hand, construes it as velocity, both in magnitude and direction.
Evidently only experience can decide which opinion is right. It must
also inform us, in the cases mentioned above, of the ‘relevant,’ the
determining circumstances. The argument of Leibniz in his con-
troversy with Clarke and Newton over the relativity of motion (p. 97)
is a typical example of the application of the principle of sufficient
reason. Undoubtedly, however, its import as a source of factual
truths has been grossly overestimated by Leibniz.

-[Mach, who fights the a priori, the endeavour to turn, as he says,
‘““the instinctive in science into a new mysticism and to hold it infalli-
ble,”’ points out in his Mechanik (seventh ed., 1912, p. 27) that ‘“cven
instinctive insights of such great logical force as the symmetry principle
employed by Archimedes may be misleading. Many a reader may
remember the intellectual shock at learning for the first time that a
magnetic needle lying in the magnetic meridian can be deflected from
the meridian by a current running parallel to the needle.” However,
the principle of symmetry is satisfied if we assume that a reflection
with respect to the plane in which current and needle lie maps the
current into itself, but interchanges the north and south poles of the
magnet. Admittedly this view is possible only because positive and
negative magnetism are inseparable and of equal nature. We form a
theoretical conception of the nature of magnetism — namely that it is
caused by molecular cyclic electric currents perpendicular to the
needle — by which those facts are deprived of their astounding charac-
ter, nay become necessities.]-

Another guide of the theorist is the principle of continuity, first
formulated in general terms by Leibniz. It rests upon the impossi-
bility of proper division of a uniform continuum. It is scientifically
unsound to exclude, as Euclid does, the null angle and the straight
angle from the notion of an angle. Rest is not contradictory to
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motion, but a limiting or special case of motion. Leibniz says that by
virtue of that principle ‘‘the law of bodies at rest is, so to speak, only
a special case of the general rule for bodies in motion, the law of
equality a special case of inequality, the law for the rectilinear a sub-
species of the law for the curvilinear,” and he calls manifolds ‘“homo-
genous if one can be transformed into the other by a continuous
change” (Initia rerum Mathematicarum metaphysica, Mathematische
Schriften, VII, pp. 25, 20). By means of the lex continui he disproves
the laws of impact which had been laid down by Descartes but for-
mulated differently for a whole series of different cases. In deriving
the law of inertia Galileo (Dialogo, Opere VII, pp. 171/174) starts
with the fall of a body on an inclined plane, for which he knows the law,
and then lets the inclination against the horizontal decrease to zero;
inertial motion thus is the limit of falling motion. This origin makes
it understandable why Galileo, as it seems, recognized the law of
inertia in its classical form as true only for motions perpendicular to
the direction of gravity (an opinion with which one can agree in a sense
from the point of view of general relativity theory). Mach (Mechanik,
p. 131) gives the following directive: ‘ After having reached an opinion
for a special case, one gradually modifies the circumstances of this
case in one’s imagination as far as possible, and in so doing tries to
stick to the original opinion as closely as one can. There is no pro-
cedure which leads more safely and with greater mental economy to
the simplest interpretation of all natural events.”” On the other hand,
in order to test an overall view tentatively adopted, it is common
practice in mathematics and physics to examine limiting and special
cases for which the results are pretty obvious.

The principle of analogy is closely akin to that of continuity.
Newton formulates it in the second of his rules concerning the study
of nature (Principia, ed. Cajori, p. 398): ‘“Therefore to the same
natural effects we must, as far as possible, assign the same causes.”
We meet the principle of analogy in perhaps its most significant
application in the establishment of the atomic theory. The mechani-
cal laws, which had been derived from the behavior of ordinary visible
bodies and had been most precisely confirmed by the planets, are
carried over to atoms. One anticipates that the facts may later
enforce corrections, but without this preliminary adoption of the
mechanical laws no beginning of atomic research is thinkable. Even
the most recent quantum mechanics of atoms, which deviates so
radically from tradition as to renounce any kind of a spatial picture of
the atomic events, still is based on the old mechanical laws in their
most transparent form, namely the Hamiltonian equations. H. A.
Lorentz arrived at the fundamental electromagnetic laws of the theory
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of electrons by taking the phenomenological Maxwell equations, which
had been derived from observation and with which the electrical engi-
neer works, and crossing out all quantities in which the influence of
matter manifests itself in the form of material constants, such as con-
ductivity, electrical polarization and magnetization. Under the
assumption that the true ‘microscopic’ electromagnetic field obeys
these simplified harmonic laws, in conjunction with certain ideas on
the atomic structure of matter, he was able to obtain once more the
old phenomenological laws for the macroscopic field by identifying
the macroscopic field quantities with certain average values of the
microscopic field quantities.

{The exact laws of nature must not contain any material con-
stants; the latter should be derived from those laws on the basis of the
atomic structure of the material under investigation. Since the
phenomenological laws are apt to fail wherever the finer internal
structure of matter is relevant, the atomic theory must at the same
time disclose the limits of their validity and yield the atomic laws
which, beyond these limits, take the place of the macroscopic laws.
Thus Maxwell had assumed that the electric polarization is propor-
tional to the field strength. This is correct for static and for slowly
changing fields, and even for the fields of wireless telegraphy which
carry out more than a million oscillations per second. But in the
domain of the much more rapid optical oscillations we encounter the
new phenomenon of dispersion; the proportionality factor taken as
constant by Maxwell — that is, the constant of dielectricity, which
equals the square of the coefficient of refraction — turns out to be
dependent on the frequency of oscillation, and this according to laws
which are closely connected with the atomic structure of the refracting
medium and can only thus be understood. (In particular, charge and
mass of an electron enter the dispersion formula in such a manner that
one can derive from optical observations a definite value for their
ratio.) }

What is the ultimate purpose of forming theories? H. Hertz
describes the process as follows in his Prinzipien der Mechanik (p. 1):
‘“We form images or symbols of the external objects; the manner in
which we form them is such that the logically necessary (denknot-
wendigen) consequences of the images are invariably the images of
materially necessary (naturnotwendigen) consequences of the corre-
sponding objects.” In the 19th century under the influence of
sceptical epistemology it had become the fashion, especially among
British physicists, to search only for images, for analogies covering
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narrowly circumscribed domains of facts, and to construct mechanical
models which rendered certain features of the phenomena in question
but which could not possibly be taken seriously as ‘explanations.’
One suffered no longer from the ‘delusion’ of having to explore a
uniquely determined reality. But the procedure proved to be singu-
larly sterile as long as the only deliberate aim was the design of images
and models. To Maxwell the physical analogies were expedients
that avoid the disadvantages of a purely mathematical theory (which
obscures the empirically important consequences) and of a physical
hypothesis proper (which is apt to blind one to the facts).

-[“ By a physical analogy,” he says, ‘I mean that partial similarity
between the laws of one science and those of another which makes each
of them illustrate the other.” He mentions the analogy between
gravitation and the stationary heat distribution in a medium — an
analogy based on the fact that the Laplace equation holds for both
processes — and confronts it with the analogy between light and the
oscillations of an elastic medium. The latter ‘“extends much farther,
but, though its importance and fruitfulness cannot be over-estimated,
we must recollect that it is founded only on a resemblance tn form
between the laws of light and those of vibrations. By stripping it of
its physical dress and reducing it to a theory of ‘transverse alterna-
tions,” we might obtain a system of truth strictly founded on observa-
tion, but probably deficient both in the vividness of its conceptions and
the fertility of its method.” (Maxwell, Scientific Papers, 1, p. 156.)
The example, especially in view of the further development of the
theory of light inaugurated by Maxwell himself, very suitably illus-
trates the advantage of this standpoint, namely of affording protection
against dogmatism.}

Mach speaks of a progressive ‘‘adaptation of thoughts to facts.”
The justification for the formation of theories he sees in the ensuing
economy of comprehending and communicating facts and procedures
(cf. Mechanik, Introduction). Others have adhered to the belief that
reason is here at work, reason which strives according to immanent
principles to construct symbolically its correlate, transcendent reality.
Without this belief science, to them, seems an empty shell. But all
are of one opinion as to the ultimate goal, the prediction of events.
In how far do the economic principles or principles of reason, by which
a theory comes about, guarantee the fulfilment of its predictions?
This is a last fact, which points beyond knowledge — Hume’s prob-
lem: the trust in induction, if it is to be justified, can only be justified
by the principle of induction itself. But trust in the world and in

163



NATURAL SCIENCE

oneself is in no need of justification; it is the natural attitude of the
mind’s life, especially as it manifests itself in thetic acts of reason.

Kant, in his transcendental logic, made the attempt to ascertain
by a systematic procedure the aprioristic principles for the construc-
tion of empirical reality. His work deserves credit for elevating into
philosophical consciousness the conception of reality which dominated
the sciences since Galileo, for liberating it from the metaphysical
ballast with which it was still loaded down by the Leibnizian system,
and for safeguarding it against Hume’s brand of sensualism that had
grown out of the natural sciences. Yet the natural scientist will find
it difficult to be satisfied with his attempt. What was stated by Kant
is not nearly sufficient and is tied too closely to the particular form of
contemporary physics; on the other hand it contains superfluous com-
ponents, which got in only through the rigid logical schematism of
““the great Chinese from Ko6nigsberg’® and his peculiar predilection
for trichotomy. The ideas of substance and causality, to which the
last section of this book is devoted, emerge as the really useful nucleus.
Besides the two ‘“analogies of experience,” which refer to them, Kant
places a third that deals with community (Wechselwirkung). It is pre-
ceded by the “Axioms of Intuition” (‘‘All intuitions are extensive
quantities”) and the ‘Anticipations of Perception” (“In all phe-
nomena, sensation, and the Real which corresponds to it in the object,
has an intensive quantity, that is, a degree’’). He follows up the
first three groups by the ‘‘Postulates of Empirical Thought,” which
refer to the concepts of possibility, existence, and necessity. Kant'’s
problem, for the solution of which a few fragments have been assem-
bled here, remains open for the future, presumably as an infinite task.
Kant, however, considered metaphysics, particularly as it strives for
the solution of this problem, as ‘‘the only one of all sciences which,
through a small but united effort, may count on such completion in a
short time, so that nothing will remain to posterity” (Preface to the
Critique of Pure Reason, ed. M. Miiller, p. XXV).
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CHAPTER III

The Physical Picture of the World

22. MATTER

A. Tue SuBsTANCE THEORY OF MATTER. The 17th and 18th
centuries are dominated by what I should like to call the substantial
conception of matter. The bodily thing contains an immutable sub-
stantial nucleus: it is the carrier of the changing sensory qualities that
are inherent in the thing for our perception, but is itself unaffected by
all these changes; ““ the continued body,” Locke says, ‘‘ that considered
in any instant of its existence is the same with itself” (Enquiry con-
cerning Human Understanding, second book, Chap. 27, §3). Because
of this constancy, the changing sensuous phenomena must be effects on
our sense organs caused by the motions of the substantial elements.
The basic features of this conception go back to Democritus. In
grandiose abstraction from sensory appearance he assumes as the only
differentiation, from which all variety springs, the absolute distinction
between the “‘empty”’ and the “full’”’ ——the u# 6» of empty space as
opposed to the maurhjpes 6v of matter. That is the ultimate explana-
tory principle for the phenomena. At the beginning of the 17th cen-
tury this theory of Democritus was revived by Gassendi. But also
Galileo declares: “‘ The variety exhibited by a body in its appearances
is based on dislocation of its parts without any gains or losses. . . .
M atter is unchangeable and always the same, since it represents an eternal
and necessary form of being.” The decisive feature in this concept of
substantial matter is that in principle the same substantial place can
be recognized at any moment in the course of the history of a bodily
system; it preserves its identity in time. The scientific justification
of the concept, therefore, will depend on the development of exact
methods by which in practice to follow a substantial place within the
flux of movement. The four-dimensional world continuum appears
dissolved into individual world lines, the world lines of the individual
substantial places. This was the salient point whenever in physics
a substantial medium was hypothetically introduced as the ‘carrier’
of certain phenomena, e.g. the ether in the mechanical theory of light.
Thereby the possibility of objective differentiation between rest and
motion of a body relatively to that medium was obtained.

But in a completely homogeneous substance without any quality,
the recognition of the same place is as impossible as that of the same
point in homogeneous space. For this reason Democritus’s idea

165



NATURAL SCIENCE

necessarily leads to atomism and to the recognition of empty space.
It is also their atomic constitution that explains the different density
of bodies, their capacity of rarefaction and condensation — namely
by a mixture of atoms and empty space in changing proportions of
volume. A body occupies a certain portion of space; the total volume
of that part of it that is ‘covered’ by atoms is to be set down as the
mass of the body. The space which is required here is the Euclidean
space with its rigid metrical structure and its ‘far-geometric’ relations.
For all possible changes in the world must be temporal changes of
spatial relations among the distant atoms. The atoms are indivistble
and rigid, that is, they remain perpetually congruent with themselves.
Moreover, they are impenetrable; the portions of space occupied by two
atoms never overlap. Solidity, which includes impenetrability and
rigidity, has been emphatically described, especially by Gassendi and
Locke, as the basic feature of matter; as opposed to Descartes, in whose
corpuscular theory the elementary bodies deform and pulverize one

Figure 5. Atom consisting of two separate parts.
another. Solidity must not be construed as the sensory property of
hardness, for this would amount to excepting the qualities of the tac-
tual sense from the subjectivity of sense qualities. Nor must it be
construed dynamically as a firmness based on mutual forces of the
substantial places. It is, according to its definition, an abstract geo-
metrical property. The elastic firmness of the visible bodies is
founded on this absolute property of the atoms. This point of view
is defended by Huyghens, the mechanic, who thinks geometric-kine-
matically and in terms of principles, in his exchange of letters with
Leibniz, the metaphysician, who thinks intuitive-dynamically. To
be sure Huyghens himself speaks of a resistance against breakage or
compression. But these terms, chosen for their greater expressiveness,
must not be misunderstood; for “‘one must,” as he says, ‘‘assume this
resistance to be infinite, as it would seem absurd to ascribe to it a
certain degree, say equal to that of a diamond or of iron; for no reason
could be found for this in matter of which nothing but extension is
presupposed. The hypothesis of infinite firmness therefore seems to
me very necessary, and I fail to understand why you find it so strange,
as if it introduced a permanent miracle.” Possibly Huyghens would
have understood the objections of Leibniz more easily if he had realized
the following consequence of his ‘substantial’ viewpoint: even if the
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shape of an atom were not a connected portion of space, as indicated
in Figure 5, it would always have to remain congruent to itself because
of its geometric rigidity, the ‘square’ part would not be freely movable
with respect to the ‘circular’ part; for ‘God has willed’ that this whole
be a unit.

Regarding the shape of the atoms the spherical form is generally
preferred as being the simplest. But protuberances in the form of
hooks are also in vogue, by means of which the atoms supposedly cling
to one another when they combine to form a solid body breakable only
by force. The ideal solution would be an atomic shape of such a kind
that all points in it are geometrically indistinguishable. For then we
would have, on the one hand, the possibility of observing an atom as a
whole during its motion, and, on the other, the impossibility of con-
sidering parts of the atom as remaining identical with themselves.
The sphere is evidently chosen as the closest approximation to this
ideal.

A mechanical atomistic explanation of the phenomena, reducing
all processes to the motion of substantial particles, requires that the
laws of motion of the atoms are known. First of all it must be ascer-
tained how an atom moves freely when other atoms do not prevent
it from penetrating into the adjacent portions of space. Secondly it
is necessary to find out what effects the atoms exert upon one another,
how their motions are modified when, in the state of contact, they are
in one another’s way. Epicurus considers the downward fall as
free motion. Since Galileo, the fall in the field of gravitation is, of
course, replaced by uniform translation in accordance with the law of
inertia. Atoms act upon one another by ‘impact.’ The latter,
however, is not understood dynamically, the statement means nothing
but that the movement of two atoms after their collision is determined
by their movement before. Huyghens succeeded in establishing the
relevant principles; they are the laws of conservation of energy and
momentum, which are fundamental to the whole of physics. They
determine the motion uniquely in conjunction with the assumption
that an exchange of momentum occurs only in the direction perpendi-
cular to the common tangent plane of the colliding atoms. ‘Thus
the whole of natural science consists in showing in what state the
bodies were when this or that change took place, and that, on account
of their impenetrability, just that change had to take place which
actually occurred” (Euler, Anlettung zur Naturlehre, Chap. VI, §50).

This is the mechanical picture of the world in its pure form. Euler
(op. cit., Chaps. 1-6) mentions as the fundamental properties of matter:
extension, mobility, inertia, and impenetrability. In the concluding
considerations of his Opticks, Newton says, ‘“All these things being
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consider’d, it seems probable to me, that God in the beginning form’d
Matter in solid, massy, hard, impenetrable, moveable Particles, of
such Sizes and Figures, and with such other Properties, and in such
Proportion to Space, as most conduced to the End for which he formed
them; and that these primitive Particles being Solids, are incom-
parably harder than any porous bodies compounded of them; even
so very hard, as never to wear or break in pieces; no ordinary Power
being able to divide what God himself made one in the first Creation.
. . . And therefore, that Nature may be lasting, the Changes of
corporeal Things are to be placed only in the various Separations and
new Associations and Motions of these permanent Particles.”

Through Huyghens the atomistic substance theory had attained
that degree of precision which made strict conclusions possible. As
can be shown by statistical methods, spherical atoms of equal size
which move according to the laws established by him form a body
that has all the properties which we empirically associate with a gas.
The manifestations of heat are due to the lively movements of the
atoms. Huyghens’ theory, however, has been incapable of going
beyond the explanation of the gaseous state, and even in this respect
it failed in one decisive point. For it was possible to derive from
observation in combination with the mechanical theory rather reliable
values for the magnitude of the radii as well as for the inert masses of
atoms, which enter into the expressions for energy and momentum;
and it transpired that for the various chemical elements the atomic
masses are far from proportional to the atomic volumes. This shat-
tered the basic conception of one matter, the conception of a homo-
geneous dough of substance out of which the Creator, with the help
of a set of baking moulds, at the beginning of time had carved the
little atom cakes, and had then given them absolute rigidity and sent
them off into space with varying initial momenta. The mass ratios
however, proved to be in accordance with the relative atomic weights,
as derived from the actual quantitative analysis of innumerable chemi-
cal compounds. The law of multiple proportions, on which the atom-
istic interpretation of the findings of chemistry is based, was for a
long time by far the most convincing empirical proof for the atomic
constitution of matter.

B. MaTTER AND Fieup. ETHER. Beginning with Newton, dy-
namic conceptions enter the physics of substance. The main impetus
to this development was given by his discovery of gravitation. At the
place quoted above, at the end of his Opticks, he continues as follows:
“It seems to me farther, that these Particles have not only a Vis
inertiae, accompanied with such passive Laws of Motion as naturally

168



THE PHYSICAL PICTURE OF THE WORLD

result from that Force, but also that they are moved by certain active
Principles, such as is that of Gravity, and that which causes Fermen-
tation, and the Cohesion of Bodies. These Principles I consider, not
as occult Qualities, supposed to result from the specifick Forms of
Things, but, as general Laws of Nature, by which the Things them-
selves are form’d.” Until the most recent times, various hybrid
combinations of substance and dynamics were developed, but gradually
the constructive dynamic properties of matter displaced its substantial
ones and rendered them superfluous.

{Fundamentally, mass has already been introduced by Galileo as a
dynamic coefficient appearing in the law of momentum; yet, along
with it, the definition of mass as ‘quantum of matter’ stubbornly
persists. Hardness and impenetrability of the atoms get replaced by
the repulsive force with which they interact and by the law according
to which this force depends on distance. Newton repudiates the hook-
shaped atoms as an explanation which explains nothing and continues,
“I had rather infer from their Cohesion, that their Particles attract one
another by some Force, which in immediate Contact is exceeding
strong, at small distances performs the chemical Operations above-
mention’d, and reaches not far from the Particles with any sensible
Effect” (Opticks, ed. Whittaker, p. 389). The atoms become ‘‘ centers
of force.” Boscovich, Cauchy, and Ampére clearly profess the view
that the centers are points in the strict sense. Kant in his Meta-
physische Anfangsgriinde der Naturwissenschaft constructs matter out
of the equilibrium of attractive and repulsive forces. The purely
mechanical interpretation of nature is replaced by the physics of
central forces.® Berzelius first conceives the idea that the chemical
affinity is of an electrical nature. Today we have succeeded to a
considerable extent in explaining the structure of bodies and their
elastic, thermic, electrical, magnetic, optical, and chemical behavior
on the basis of the forces acting among the atoms. This applies in
particular to the two extreme states of matter, the gaseous and the
crystalline.

Modern physics speaks of the radius of an electron and ascribes
to it a value of the order of magnitude 10~'? cm. This number, how-

% In opposition to Kant it must be said, though, that a decomposition of the
uniform central force into two partial forces would be purely arbitrary unless the
laws determining the two components in terms of distance each contained a
parameter (‘attractive’ and ‘repulsive’ mass) which varied independently from
one hody to another. Thuselectrical and gravitational force are separable because
charge is not determined by mass. But since Kant only speaks of a single mass
density (= intensity of fulness), supposedly arising from the equilibrium of
repulsive and attractive force, his theory of matter hangs in the air.
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ever, must be interpreted as the distance (entering into Coulomb’s
law of force) up to which two electrons approach each other if one is
propelled against the other with a velocity comparable to that of

light. }

With Newton, gravitation still appears as an instantaneous action
into distance. When only nearby action is considered admissible,
ether theories of gravitation arise, which at first however are still
under the pressure of the purely mechanical interpretation of nature.
Of course Newton too wasaware of the difficulty, but declined to ‘‘frame
hypotheses” about the cause of gravitation. (Apparently he thought
of a non-material transmission by virtue of a ‘spiritual substance’ or
of the all-penetrating space filled with the omnipresence of God.) The
difficulty was overcome by physical means after Faraday had devel-
oped the idea of a field for the electric phenomena. Maxwell found
that the field propagates from the centers of excitation not instan-
taneously but with the velocity of light. Nearby action laws, in the
form of differential equations, connect the physical quantities char-
acteristic of matter and field, namely charge and current densities
and electrical and magnetic field strengths. The force, which with
Newton is not an activity determined by and emanating from a single
body & but a bond between two bodies k£ and &’ which join hands across
an abyss, is split up into an activity of ¥ (excitation of the field deter-
mined by k alone) and a suffering of £’ (temporal change of its momen-
tum caused by that field). Between them the expanse of the field is
spread out according to laws of its own of the utmost simplicity and
harmony. The field transmits momentum as well as energy from one
body to another; a radiating body not only loses energy, but as it
radiates light in one direction it recoils in the opposite direction. In
the field we therefore have spatially localized energy and momentum.
The scalar densities and the components of the vectorial current
densities of energy and momentum can be computed by means of
simple laws from the two field strengths. The ponderomotoric effect
of bodies upon one another is due to an exchange of field energy and
momentum against kinetic energy and momentum of matter and
vice versa; the increase or decrease in time of total energy or total
momentum of any part V of the field is compensated by the current
of energy or momentum going through the surface of V. If we deter-
mine the center of energy of a portion of space containing both matter
and radiation, in the same way as we determine the center of gravity
(mass center) of a ‘ponderable’ body, it turns out that the total

momentum I contained in this portion has the same direction as the
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velocity v of the center of energy. If we set I = mw, the propor-
tionality factor m may well again be called the inert mass. It is con-
nected with the energy E by the universal relation m = E/c?, where ¢
is the velocity of light. A portion of a field such as the radiation in
empty space enclosed by a massless shell (Hohlraumstrahlung)
possesses inert mass like an ordinary body. Thus the strength with
which a body, in the face of diverting forces, persists on its natural
course as prescribed by the field of inertia depends on the energy
compressed in the body. The mass of the electron certainly derives
in part from the accompanying electromagnetic field. Or even com-
pletely? Since all physically important properties of an elementary
material particle, as we have seen, belong to the surrounding field
rather than the substantial nucleus at the field center, the question
becomes inevitable whether the existence of such a nucleus is not a
presumption that may be completely dispensed with.

This question is answered in the affirmative by the field theory
of matter. According to the latter a material particle such as an
electron is merely a small domain of the electrical field within which
the field strength assumes enormously high values, indicating that a
comparatively huge field energy is concentrated in a very small space.
Such an energy knot, which by no means is clearly delineated against
the remaining field, propagates through empty space like a water
wave across the surface of a lake; there is no such thing as one and the
same substance of which the electron consists at all times. Just as
the velocity of a water wave is not a substantial but a phase velocity,
so the velocity with which an electron moves is only the velocity of an
ideal ‘center of energy,’ constructed out of the field distribution.
According to this view, there exists but one kind of natural law,
namely, field laws of the same transparent nature as Maxwell had
established for the electromagnetic field. The obscure problem of
laws of interaction between matter and field does not arise. This
conception of the world can hardly be described as dynamical any
more, since the field is neither generated by nor acting upon an agent
separate from the field, but following its own laws is in a quiet con-
tinuous flow. It is of the essence of the continuum. Even the atomic
nuclei and the electrons are not ultimate unchangeable elements that
are pushed back and forth by natural forces acting upon them, but
they are themselves spread out continuously and are subject to fine
fluent changes.

-[On the basis of rather convincing general considerations, G.
Mie in 1912 pointed out a way of modifying the Maxwell equations
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in such a manner that they might possibly solve the problem of mattcr,
by explaining why the field possesses a granular structure and why the
knots of energy remain intact in spite of the back-and-forth flux of
energy and momentum. The Maxwell equations will not do because
they imply that the negative charges compressed in an electron
explode; to guarantee their coherence in spite of Coulomb’s repulsive
forces was the only service still required of the substance by H. A.
Lorentz’s theory of electrons. The preservation of the energy knots
must result from the fact that the modified field laws admit only of one
state of field equilibrium — or of a few between which there is no con-
tinuous transition (static, spherically symmetric solutions of the field
equations). The field laws should thus permit us to compute in
advance charge and mass of the electron and the atomic weights of the
various chemical elements in existence. And the same fact, rather
than the contrast of substance and field, would be the reason why we
may decompose the energy or inert mass of a compound body (approxi-
mately) into the non-resolvable energy of its last elementary constit-
uents and the resolvable energy of their mutual bond.

Besides the electromagnetic field, we have the metric or gravita-
tional field as discussed in Section 16. The task of merging both into
one unit arises. It has recently been attacked in different ways by
Weyl, Kaluza, Eddington, and Einstein. At a certain stage of the
development it did not seem preposterous to hope that all physical
phenomena could be reduced to a simple universal field law (in the
form of a Hamiltonian principle). }

Geometry unites organically with the field theory; space is not
opposed to things (as it is in the substance theory) like an empty
vessel into which they are placed and which endows them with far-
geometrical relationships. No empty space exists here; the assump-
tion that the field omit a portion of the space is absurd. Just as in
intuitive space extension and quality are tied to each other, so, in the
field theory, the state quantities of the field or the field structure on
the one hand, and its spatio-temporal medium, the structureless four-
dimensional continuum on the other, depend on one another. If the
latter is referred to coordinates, the state quantities appear as func-
tions of the coordinates. But the concept of independent variable is
correlative to that of function; as far as the range of existence of a
function extends, so far the domain of variability of its arguments.
(It should be noted here that the validity of the equation E = 0 in
some portion of space does not mean that the electrical field E is
interrupted in that portion, but merely that it is in the ‘state of rest’
there, which fits continuously into all other possible states.)
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{Concerning the substance contained in a box, one may well ask
what will happen when it is pumped out. The field, however, cannot
be pumped out. Leibniz must have had something like this in mind
when he refused to acknowledge the experiments of Guericke and
Torricelli as proof for the existence of a vacuum, though he did so
with the, at least in its wording, questionable argument that ‘“the
glass has minute pores through which the radiation of light and of the
magnet and other very tiny particles [!] can penetrate” (Leibniz’s
fifth letter to Clarke, §34).}

While according to Democritus the distinction of full and empty
forms the basis of substance theory, any field theory is founded on
certain state quantities spread out in the four-dimensional space-time
continuum. The laws of motion of the substance are replaced by
differential equations (of simple build) in which, apart from the values
of the state quantities at an arbitrary place, the derivatives of the
latter with respect to the four world-coordinates appear. These are
the field laws, which, in view of their objective significance, must be
independent of the choice of the coordinate system.

The explanation of ponderomotoric effects through the propagation
of energy and momentum in a continuous field arose in closest contact
with experience, and today this conception permeates the whole of
physics. It seems scarcely probable that this factor will again dis-
appear one day from the description of nature, closely as it is tied
up with the space-time continuum and its metrical structure. On
the other hand, the pure field theory is hypothesis and program;
in spite of its highly attractive features, the great hopes it once
raised, and its development by men like D. Hilbert, M. Born, and
others, it has remained in the limbo of speculative physics. But
its discussion led to investigations from which the fortunate result
emerged (Weyl, Einstein and Infeld) that the decisive facts con-
cerning the interaction of the discrete material particles and the
continuous field can be accounted for without commitment to any
premature hypothesis about the inner structure of the particles. Pro-
ceeding in this way we reestablish the duality of field and matter.
Their connection is a dynamic one; matter excites the field, the field
acts upon matter. If less attention is paid to the connecting medium
of the field, then matter and force appear as the interdependent
constituents of the world. Helmholtz formulates this viewpoint
as follows: ‘“Science considers the objects of the external world accord-
ing to two kinds of abstraction: on the one hand, according to their
mere being, irrespective of their effects on other objects or on our
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sense organs; as such, it calls them matter.” On the other hand,
we attribute to matter the capacity to act, for only through its effects
do we know it. “Pure matter would be irrelevant for the rest of
nature, because it could never cause a change in it or in our sense
organs. Pure force would be something which should be there, and
yet is not because being-there we describe as matter.” F. A. Lange,
in his Geschichte des M aterialismus, takes a more critical view of matter
and describes it as ‘‘the uncomprehended or incomprehensible residue
of our analysis.”

We saw that the Newtonian physics is entirely dominated by this
dualism. The classical philosopher of the dynamical conception of
the world, however, is Leibniz. To him, what is real in motion does
not lie in the change of position as such, but in the moving force.
““La substance est un étre capable d’action, une force primitive”’ — trans-
spatial and immaterial. ‘“For not all truths relating to the world of
bodies can be derived from merely arithmetical and geometrical
axioms, that is, from axioms of larger and smaller, of shape and posi-
tion,” he says in criticism of Descartes (Mathematische Schriften, VI,
p. 2415 “but others must be added concerning cause and effect, activity
and passivity, in order to give an account of the order of things.”
The ultimate element is the monad, an indecomposable unit without
extension, from which the force bursts forth as a transcendental power.
Only with regard to the distribution of the monads in space, which
itself is merely a phaenomenon bene fundatum, is the body described
as an extended agent. Pure activity, however, is all; preestablished
harmony takes the place of such reciprocal effects as we think are
carried by the field from particle to particle. Fichte, too, recognizes,
apart from the sensation of qualities and the intuition of extension,
active thought that, connecting them both, posits the thing as a force
and thereby as the cause of my being affected (Bestimmung des
Menschen, Werke, ed. Medicus, 111, pp. 332, 333). Experiences of
fundamental character seem to speak very distinctly in favor of
another kind of causality than would fit into the framework of field
theory, namely, that the field if left to itself would remain in a homo-
geneous state of rest and that something alien to it, matter, is the
‘spirit of unrest’ that excites it. Our voluntary acting must primarily
always attack matter. The field is an extensive medium which
transfers effects from one body to another by virtue of its structure
expressed in the field laws.

Without making any assumptions about the inner structure of a
particle we may derive its dynamically relevant properties from the
local field around it. For instance, the field-generating or active
charge of a particle may be defined as the flux which the electric field
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sends through a tiny imaginary shell surrounding the particle. The
latter describes a narrow channel of one-dimensionally infinite exten-
sion in the four-dimensional world. Outside these channels we apply
the classical field laws in empty space. For historical reasons pres-
ently to be explained these differential equations that treat of no other
state quantities than the electromagnetic and gravitation potentials
are called the laws of ether. It is irrelevant whether the particle is an
actual singularity of the field or covers a small region where the laws
of ether are suspended (and unknown laws take their place). The
local field is uniquely determined by the particle, at least as far as the
nature of the field is concerned, i.e. such characteristics of it as are
invariant under coordinate transformations. In this respect the
‘monad’ preserves its pure activity and independence of anything
extraneous. The particle suffers reactions from the field merely as
far as its orientation, the embedment of the local field into the external
field, is concerned. Indeed the mechanical laws of motion follow
from the fact that the individual field of the electron must fit into the
field distribution outside the particle that obeys the field laws of ether.
Thus we can understand that charge and mass, which excite the field,
at the same time appear in passive function and determine the inten-
sity of the effect which a given field exerts upon the particle. It is no
longer the energy content but the flux of the gravitational field
which a particle sends through an enveloping shell that accounts for
heavy mass and thus also, according to general relativity theory, for
inert mass.

-[The strength of this ether theory lies in its sober noncommittal atti-
tude; it studies matter by its effects without attempting to penetrate
into its interior. Speculation is tempted to fill the ‘lacuna’ left by
the particle. Pure field theory of matter does it in one way; another
is suggested by general relativity theory, for the latter makes it
possible t6 entertain the hypothesis that the grooves of the elementary
particles are bottomless, without forcing one to conceive of the particles
as actual singularities in the space-time manifold. (I speak here of the
channels in the four-dimensional world as if they were grooves in a
two-dimensional surface.) Indeed general relativity does not prescribe
the topology of the world, and it may therefore happen that the world
has unattainable ‘fringes’ not only toward the infinite but also
inwardly. Inline with Leibniz’s ideas, the material particle, although
imbedded in a spatial environment from which its field effects take
their start, would itself then be a monad existing beyond space and
time. Hence one may not say, ‘Here is a charge,” but only, ‘This
closed surface within the field surrounds a charge.” The inner fringes
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would be the geometrico-physical basis for the splitting of the world
into space and time which takes place within our consciousness, tied
as it is to a material body.

Schelling, partially under the influence of Leibniz, has expressed
ideas which vaguely anticipate this development. ‘Thus there ought
to be discernible in experience something,”’ he says on p. 21 of his
“Erster Entwurf der Naturphilosophie’ (1799; Sdmtliche Werke, 111,
p- 21, Cotta, 1858) ‘“which, without being in space, would be principle
of all spatiality.” This “natural monad” is not itself matter but
action, ‘“‘for which there is no measure but its own product.” Based
on the thesis that ‘“the striving of all original tendencies is toward the
filling of space,” he then arrives at the construction of a shapeless
fluid — which we today would replace by the field. ]-

The naive substance theory has been followed in history by the
much more refined ether theory of matter, of which we count the pure
field theory and the monadic theory as two hypothetic variants.
Here is the place to sketch in a few strokes the history of the ether
concept. It can be traced back to stoic philosophy. During the epoch
following Galileo the ether appears as the substantial carrier of light
and gravitation, so with Huyghens and Euler. The state quantities
characteristic of the ether as well as of any substance are ‘density’ and
‘velocity.” Since it rests as a whole and is only excited into minute
oscillations, it can serve at the same time to support Newton’s meta-
physical concept of absolute space by a physical (though hypothetical)
reality. Then, as the optical phenomena subordinate themselves as a
partial domain to the electromagnetic ones and the conception of
electromagnetic field is developed by Faraday and Maxwell, the ether
is divested of its substantio-physical character, and nothing remains
but the absolute space as the medium of electromagnetic field states.
It is no longer subject to excitation by matter but has become a rigid
geometric entity. As a third step it is shown by the special relativity
theory that the spatio-temporal structure is described incorrectly by
the notion of absolute space. Not the state of rest, but the states of
uniform translation form an objectively distinguished class of motions,
and this puts an end to the substantial ether. Finally, and fourthly,
the general relativity theory re-endows this metric world structure
with the capacity of reacting to the forces of matter. Thus, in a sense,
the circle is closed. Since the electromagnetic field is evidently of the
same nature as the metrical field which among other things causes the
gravitational phenomena, ‘ether’ has now become synonymous with
‘field,” in the sense of a unified electromagnetic and metrical field in
empty space. The state of the ether is known if, with reference to a
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coordinate system, the quantitative distribution of the electromagnetic
field components and the Einsteinian gravitational potentials g, are
given by mathematical formulas. If the ether has thus regained its
physical nature, nevertheless the state quantities characteristic of it
have changed completely from what they were at the beginning of the
development when it entered the scene as a substantial medium.

C. HrsToricaAL CONNECTIONS, IN PARTICULAR WITH THE META-
PHYSICAL CONCEPT OF SUBSTANCE. The relation of matter to the
concept of substance is clearly evidenced by the way in which Kant
in the first edition of the Critique of Pure Reason formulates the first
analogy of experience, the ‘ Principle of Permanence’: ‘ All phenomena
contain the permanent [substance] as the object itself, and the change-
able as its determination only, that is, as a mode in which the object
exists.” In the comments he says, ‘“A philosopher was asked: ‘How
much does smoke weigh?’” He replied: ‘Deduct from the weight of
the wood burnt the weight of the remaining ashes, and you get the
weight of the smoke.” He was therefore convinced that even in the
fire matter [substance] does not perish but that its form only suffers a
change.”” The reference to quantitative measurement is even more
stressed in the second edition: “In all changes of the phenomena the
substance is permanent, and its quantum is neither increased nor
diminished in nature.” In the example quoted, the weight is assumed
proportional to the quantum, but no indication is given of the
principle according to which matter is to be measured. In this form
the thesis of the indestructibility of matter was introduced by Lavoisier
into chemistry. Wherever the individual substantial places can no
longer be traced, transmittability is the criterion of substantiality.
A measure of quantity must be found according to which the trans-
mitted quantum does not change. In this sense energy may also be
looked upon as substance (hypothesis of a heat substance), although
there can be no question of tracing a single ‘energy place’ through the
course of events. Hobbes considers incorporeal substance a word
without meaning.

Yet the idea of substance is not so closely tied to that of physical
matter as might appear from these quotations. It has its origin in
the logic and metaphysics of Aristotle, and is used in a metaphysical
sense by Descartes, Spinoza, and Leibniz. Today we find it difficult
to grasp its meaning. Descartes defines (Principia, Part I, §51):
‘““‘By substance we cannot understand anything but a thing which
exists in such a manner that it requires no other thing for its existence.”
He then modifies the definition so that ‘‘created substances’ also fall
under it, by saying that ‘‘they require nothing for their existence but
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the assistance of God.” Aristotelian philosophy considers matter
(DNg, 76 vmokeipevov) as the determinable, in contrast to the determining
form (eldos). Matter is possibility of becoming formed. In a
production process of several stages its matter appears ‘more
formed’ at each step, and thereby the range of possibilities for further
forming becomes more restricted. And at the same time matter, the
component of merely potential rather than actual being, shrinks more
and more. Substantiality is ascribed to the forms rather than to
matter. The forms push matter from potentiality to actuality;
the transition itself takes place in ‘movement.” Natural science as
conceived by Galileo had first of all to subdue this metaphysics of
substantial forms. Leibniz reintroduced them through his monads,
yet without wishing thereby to abandon the new ‘mechanical’ way of
explanation. ‘“However much I stand on the side of scholasticism in
the general and, so to speak, metaphysical explanation of the principles
of the physical world, I am, on the other hand, the most radical
adherent of the corpuscular philosophy with regard to the explanation
of particular phenomena” (to Arnauld, Philosophische Schriften, 11,
p- 58). ‘“My opinion thus is to the effect that bodies, which are
commonly considered substances, are nothing but real phenomena and
are as unsubstantial as a mock sun or a rainbow. . . . The monad
alone is substance” (to de Volder, Philosophische Schriften, 11, p. 262).
Admittedly ‘“there are no material particles in which monads are not
present’” (to Bernoulli, Mathematische Schriften, III, p. 538). “It
does not matter whether we denote this principle as ‘form,’ as ‘é&vre-
éxewa,’” or as ‘force.”” The essence of the monad he sees in the law.
“That a certain law persists that includes all future states of the
subject which we conceive as identical, this fact constitutes the identity
of substance’’ (to de Volder, Philosophische Schriften, 11, p. 264). That
puts him beyond Aristotle. Most characteristic for a philosophy of
nature is probably the point at which it lets the Heraclitean flux “sich
zum Starren waffnen” :1° Aristotle in the immanent substantial forms,
Plato in the transcendental ideas, modern natural science, like Leibniz,
in the law. At the end of Newton’s Principia (ed. Cajori, p. 547),
immediately after his declaration that it suffices to know the laws of
gravity and that he has no intention of devising a hypothesis as to the
cause of these properties, we find the following strange words: “And
now we might add something concerning a certain most subtle spirit

1o (3)ne of Goethe’s inimitable phrases, taken from the poem ‘‘Eins und Alles,”
verse o:

“Und umzuschaffen das Geschaffne,
damit sich’s nicht zum Starren waffne,

wirkt ewiges, lebendiges Tun.”
| Translator’s note.]
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which pervades and lies hid in all gross bodies; by the force and action
of which spirit the particles of bodies attract one another at near
distances, and cohere, if contiguous; ete.”

Descartes subscribed to the doctrine, to which Plato also inclined,!!
that spatial extension is the proper substance of bodies. It fits well
within the framework of the field theory, provided the contrast
between substance and accident is construed as that between ‘this’
and ‘thus.” The ‘this,” which can only be given by individual exhibi-
tion but not by qualitative characterization, is here not a hidden carrier
to which the qualities are inherent; it is the here-now, the individual
spatio-temporal position. To use Hilbert’s term, the description of
the world according to the field theory consists of the here-thus rela-
tions — the here being represented by the space-time coordinates, the
thus by the state quantities. If the latter are given as functions of the
former, then the course of the world is completely known.

{Descartes’ concept of motion seems to presuppose a substance
(in the sense of Part A of this Section) which can be followed through
its motion. His physics is corpuscular theory, but his corpuscles may
not leave any empty spaces between one another and thus must grind
and deform one another. Only his helplessness in the face of the
continuum causes him to think of the discontinuities along the separat-
ing surfaces as essential for comprehending the motion. In fact, he
has as the carrier of motion a fluidum which fills space continuously.
For this fluidum one could, if one wished and as was actually done in
later theories of matter, assume the laws of incompressible non-viscous
liquids, with the modification that the dynamical variable of pressure
should be eliminated from the hydrodynamical equations. This
causes no difficulties. Once this is done, the substantial medium can
also be discarded. One merely abstains from interpreting the

vectorial state quantity » with which the differential equations deal
as velocity of a substance. Thus if Descartes’s basic idea is carried
through consistently, a field theory results. As soon as the transition
has been made from a moving substance to the spatio-temporally
distributed field which no longer requires a material carrier, such
theories suggested by hydrodynamics cease tohave any intuitive advant-
age over Maxwell’s field theory, which bases the choice of the state
quantities to be employed on experience rather than on speculation.

11 Compare Timaeus, 48 E ff.: Between the ‘‘eternal pattern’’ and its “‘imita-
tion”’ in reality, which he had distinguished earlier, it would be necessary to place
something which ‘‘is the recipient and, in a manner the nurse, of all generation.”
This third, “which like a plastic mass lies in readiness to take the imprint of any-
thing,” is space: inaccessible to the senses, not subject to perdition, but granting a
place to all that comes into being.
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Two of the most important roots of the concept of substance seem
to be the following: (z) the thing of the external world, which is fitted
as a stable factor into our world of causes and effects and which in spite
of varying appearances and aspects remains the same or undergoes a
familiar slow change; (7%) I, who am conscious of my identity through-
out the flow of my life with its everchanging kaleidoscopic experiences.
(Cf. Leibniz, Philos. Schriften, VI, p. 502: “Since I now see that other
beings too may have the right to say ‘I,” or that one may say it for
them, I understand what is generally meant by substance.”) Des-
cartes, for the first time, clearly formulated the philosophical problem
as to what ‘‘the wax itself”” is (end of second meditation), which is
different from anything within the domain of senses and remains the
same in spite of any changes which taste, smell, sight or feeling may
convey to me. And he finds that this cannot be in my imagination,
but that I can only apprehend it by thinking. More critical are
Locke’s remarks about ‘‘our idea of substance in general” (Enquiry
concerning Human Understanding, second book, Chap. 23, §2). Hume
considers it altogether a misconception: ‘“Our propension to confound
identity with relation is so great, that we are apt to imagine something
unknown and mysterious, connecting the parts, beside their relation”
(Treatise of Human Nature, Book I, Part IV, sect. 6), *“ . . . which
view of things . . . obliges the imagination to feign an unknown
something, or original substance and matter as a principle of union or
cohesion among these qualities, and as what may give the compound
object a title to be called one thing, notwithstanding its diversity and
composition” (ibid., sect. 3).]-

D. ConservaTION THEOREMS. In view of the present state of
physics, those who want to retain an aprioristic principle of conserva-
tion are liable to cling to the principle of conservation of energy.
According to the special theory of relativity, energy is one, namely the
temporal, component of an invariant objective entity, a four-vector
whose spatial projection is momentum. The conservation theorems
of energy and momentum therefore belong together inseparably.

{The momentum of a body moving with the velocity ;had been

equaled to mv and, with Galileo, we had called m the inert mass. The
question arises how this inert mass depends on the velocity of the body
if the velocity changes while the internal state — as judged by an
accompanying observer undergoing the same motion — remains the
same. The answer can be obtained from the special relativity prin-
ciple, but differs according to what the causal structure of the world is
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assumed to be. If, in line with the old view, the structure consists in a
stratification ¢ = const., then the mass is independent of velocity.
If however, as unquestionably is the case, it is described by the light
cones, then we have

Mo

\/cz _ vz’

where v is the absolute value of the velocity, ¢ is the velocity of light,
and the ‘mass factor’ m, is independent of the velocity. On the basis
of the relativity principle, the theorem of the conservation of energy
follows from the law of momentum, and the energy of a body turns
out to be E = mc? If, for instance, the energy content E of a body is
increased by heating, its inert mass m increases proportionally. Not
only a massive body but also a gas, consisting of whirling molecules,
and even an arbitrary portion of a field possesses a certain energy E

m =

and a certain momentum I. And again the laws
I =mv, E = mc

hold, provided we understand by » the velocity of the energy center.
Energy appears here as the absolute energy level of a portion of
space at a given moment. It is uniquely determined by the physical
state prevalent in that portion of space.]-

The phenomenological law of energy, as it has historically emerged
independently of the conservation principle for momentum, deals
only with the difference of such energy levels, i.e., with the energy
value attaching to the change from one physical state to another,
Z — Z', of a given fixed system of bodies. The energy value E of
the transition Z — Z’ depends on the initial and terminal states,
Z and Z’', in such a manner that

EZ—->Z)+ EZ —-Z")=EZ—2Z")

always holds. Leibniz proved the energy law on the basis of the
axiom causa aequat effectum, by transforming every mechanical change
of state, the cause, into a ‘standard effect’ with but one degree of
freedom, namely, the lifting of a given weight. The lifting height
is then taken as measure of the energy. Leibniz’s idea really strikes
at the root of the energy principle. And it will carry over to all
natural phenomena as soon as the lifted weight is replaced, say, by a
water calorimeter. (This generalization, however, was not conceived
before the middle of the 19th century.) Indeed a non-mechanical
change of state may not always be transformable into a mechanical
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effect such as the lifting of a weight, but it is always transformable into
the heating or cooling of a given standard body. The enpirical facts
on which the energy law is based may thus be formulated as follows:
Let S be any system of bodies in which the interaction of its parts
as well as the effect of arbitrary other bodies has brought about a
change of state V. By connecting S with a water calorimeter at rest
and with suitable auxiliary bodies we can undo this change of state in
such a manner that the auxiliary bodies emerge from the process in the
same state and that only the calorimeter has undergone a change of
temperature (fact A,). If the heating (or cooling) of the calorimeter
has consumed w calories, i.e. if the temperature of w ccm. of water
under atmospheric pressure has risen from 15°C to 16°C (or if the
temperature of —w cecm. has fallen from 16°C to 15°C in case w is
negative), then w is the energy measure of the change V. The same
value w is obtained no matter through what processes that transfor-
mation is brought about or what auxiliary bodies are employed
(fact A,).

{By virtue of the relativity principle this leads to the following
consequences: (1) With every body there is associated a number mq
dependent only on its internal state, such that the energy value of an
arbitrary change of state of that body equals the difference of the
values of
moc?

Ve

for the initial and terminal states. (Here, the energy differences
associated with changes of state again lead to absolute energy levels
of states.) (77) Beside the energy law we have the law of momentum,
the momentum being given by the following expression:

E =

-

mov

r= \/cz—_?'}

In a systematic treatment the energy law, of course, has nothing
to do any longer with the assumption that any change of state can be
transformed into a change of temperature of the standard body.
In the framework of general relativity theory, the conservation
theorems for energy and momentum are closely connected with the
invariance of the field laws under arbitrary coordinate transformations.
Their validity is largely independent of the particular form of the field
laws of interaction. Even so, no aprioristic command would prevent
physics from abandoning the strict validity of the conservation laws
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if that should become necessary under the pressure of new empirical
discoveries. (This actually happened recently in a theory of Bohr
and Slater, which however was soon abandoned again.)

{The derivation of the energy principle is somewhat surprising
inasmuch as from the sole assumption that there is something conser-
vative the measure of this something, namely the energy, is obtained.
The explanation is that the basic empirical fact A, implies the assertion
that there is altogether only one quantity in nature for which the con-
servation principle can hold, as long as we are concerned with changes
of a given system of bodies. But the law of momentum, which follows
from the energy law itself, gives that assertion the lie. Yet we are
able to understand in retrospect why A,, in spite of not being strictly
valid, is found to be confirmed within the limits of accuracy attainable
in experience — because of the earth, whose mass is vastly in excess
of that of the reacting bodies. For in reversing a given change of
state V that involves an increase of momentum in a preassigned direc-
tion, one can transmit that increase to the earth, which serves as the
resting body of reference for terrestrial experiments. If a bullet is
shot horizontally into a mountain we do not see what becomes of the
lost momentum; experience in this case appears to invalidate the law
of momentum. What we observe, is that the loss of ‘kinetic’ energy
due to the deceleration of the bullet is transformed into thermic
energy. Rigorously speaking, even the latter does not represent the
full equivalent, for there is in addition the hidden kinetic energy
associated with the transition of the earth from rest to the small speed
imparted to it by the impact. However this kinetic energy is negligi-
ble to the same degree as is the mass of the bullet in comparison to that
of the earth.

Another quantity for which a conservation law holds is the electric
charge. According to the theory of electrons, charge is bound to
matter, and consequently the assumption that the change V takes place
in a fixed system of bodies excludes electrical discharging and recharg-
ing if rigorously interpreted. And this restriction is actually neces-
sary for A, to be valid. }

Field physics extends the conservation laws of energy and momen-
tum to radiation and thus liberates them from any tie to a definite
system of bodies. Instead it must take into consideration the energy
entering and leaving a given bounded portion of space by assuming an
energy current (just as one needs an electrical current in addition to
electrical charge). If a spatial domain D is divided into partial
domains, D, and D,, the total electrical charge contained in D equals
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the sum of the charges contained in D, and D, (law of addition). The
same holds for energy and momentum. There is a difference, though,
from the atomistic viewpoint, inasmuch as the field spread out between
the elementary particles is free from charge but not from energy-
momentum. The ‘mass factor’ (the ‘length’ of the four-dimensional
energy-momentum vector) is neither dependent on the choice of
coordinates, like energy, nor capable of both signs + and —, like
electrical charge. Rather it is invariant and always positive. Never-
theless it is unsuitable as a measure of quantity because it fails to
satisfy the law of addition. (Just as the length of a side in a triangle
is not equal to but less than the sum of the lengths of the other sides,
the mass factor of a domain D is greater than the sum of the mass
factors of D, and D,.)

E. AromisM. The atomic theory originally arose from pure
speculation in answer to certain epistemological requirements. Chem-
istry, which gave it a firm foundation and a strong empirical support
by the law of multiple proportions, was interpreted atomistically by
Dalton. The atoms of a chemical element must be all equal, for
otherwise the constancy of the physical properties of the element would
be incomprehensible. Within such a swarm of equal atoms, the
identity of an atom and its discernability from other atoms cannot be
warranted by its particular internal properties and the particular laws
holding for them, as Leibniz had maintained with regard to the monads,
but only by the continuity of motion together with the spatial separa-~
tion of the atoms. Does it not in this respect resemble the ego, which
also is able to maintain its identity as an individual and its distinctness
from other egos no matter whether the total of its experience is com-
pletely like that of the others?

From the standpoint of a consistent substantial theory of matter
there is no reason to see why, among the infinite continuous manifold
of substantial spheres with all possible radii, just those few discrete
possibilities are realized which correspond to the chemical elements;
the mass however should be determined by the radius. We have seen
before that experience is completely at variance with this requirement.
The ether theory, on the other hand, imposes no restriction upon
charge e and mass m of a body; here there is no collision with experi-
ence. Yet again it remains unexplained why of all these possibilities
but a few are realized for the elementary particles. Only the pure field
theory holds out some hope that it might be able to explain this basic
fact. For it could happen that its (non-linear) field laws were such as
to possess no more than a discrete number of regular static spherically
symmetric solutions.
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It is now sure that no fruitful attack on the problem could have
been made before the discovery of the electron. Here the physicists,
going beyond chemistry, had laid hands on an elementary unit of
matter which is the same in all chemically different substances and
occurs freely in the form of cathode rays. The ‘periodic system of
elements’ had previously pointed, though with a somewhat vague
gesture, toward a uniform structure of the various chemical atoms.
But now physics entered into its golden era of atomic research. Dur-
ing the last half century it has provided a thorough and brilliant corro-
boration for the basic tenets of atomism and penetrated into ever
deeper layers of the strange atomic world. To begin with, all its
methods led with increasing accuracy to the same values of the charge
and mass of an electron. Only through this concordance has atomis-
tics become a well-founded physical theory. Gradually indirect
methods have been replaced by more and more direct ones. Thus
the Brownian motion of small suspended particles demonstrates
directly to our senses the presence of a molecular thermic motion.
Through ingeniously arranged experiments one has succeeded in
isolating the effects of individual atomic events. Of the greatest
consequence was the discovery of what we now consider the most
fundamental atomic constant, Planck’s quantum of action h. It first
disclosed its existence in the thermodynamics of radiation, hence by a
statistic effect depending on the disorderly cooperation of a huge
number of atomic events. Planck saw himself forced to assume,
contrary to classical physics, that a linear oscillator emits light of fre-
quency v not during its continuous oscillation but by a discontinuous
‘jump’ in which it loses the energy hv. Niels Bohr applied this prin-
ciple to the electrons in an individual atom. By letting the frequencies
thus obtained ‘ correspond’ to the frequencies derived from the classical
theory of radiation he got an approximate rule for the computation
of the atomic energy levels. Thus the key was manufactured that
unlocked the secret of the amazing regularities governing the series of
the spectral lines which are emitted by radiating atoms and molecules.
The success was most striking in the simplest case, that of the hydro-
gen atom. ‘‘Our spectral series, dominated as they are by integral
quantum numbers,”’ says Sommerfeld (Die Bedeutung der Réntgen-
strahlen fiir die heutige Phystk, Munich, 1925, p. 11) “correspond, in a
sense, to the ancient triad of the lyre, from which the Pythagoreans
2500 years ago inferred the harmony of the natural phenomena; and
our quanta remind us of the role which the Pythagorean doctrine
seems to have ascribed to the integers, not merely as attributes, but
as the real essence of physical phenomena.” Thus we see a new
quantum physics emerge of which the old classical laws are a limiting

185



NATURAL SCIENCE

case, in the same sense as Einstein’s relativistic mechanic passes into
Newton’s mechanic when ¢, the velocity of light, tends to «.

The old dream of the unity of all matter had certainly come a great
step nearer to fulfillment by the discovery of the electron. But the
positively charged nucleus of the atom about which the negatively
charged electrons revolve like the planets around the sun still seemed
to be a particle with a constitution of its own for each individual
chemical element. It is a priori clear that beside the negative electron
at least one positive brick is needed for the construction of all atoms.
The execution of this idea of building up matter from two ultimate
elementary units, the electron and the proton, presupposes of course
that they are able to enter into a variety of combines that are held
together by strong forces and react outwardly like solid atomic spheres.
Hence sheer substance without force would never do.

«[The proton is identified with the nucleus of hydrogen. The
various chemical elements differ from one another by the charges of
their nuclei, which are integral multiples ne of ¢, where —e denotes the
charge of the electron. If the atom is in an electrically neutral state
(‘non-ionized’), the factor n, called the order of the atom, coincides
with the number of electrons revolving around the nucleus. There
is no gap in the sequence of the orders of the various elements: n = 1,
hydrogen; n = 2, helium; n = 3, lithium; .. .. Elements may
change into one another by nuclear emission or absorption of elemen-
tary particles. In the radioactive elements, which thus betray their
instability, this process goes on spontaneously, but by bombardment
with elementary particles of sufficient energy all sorts of artificial
nuclear transmutations have been effected. Aston found that also the
masses of the atomic nuclei are, at least to a considerable approxima-
tion, integral multiples of the mass of the proton. If this did not
become apparent in the atomic weights obtained by chemistry, the
reason is to be seen in the fact that different atomic structures may
belong to the same order number (‘isotopes’), and that what chemists
used to consider as a pure element frequently turns out to be a mixture
of isotopes of different atomic weights; for these cannot be segregated
by ordinary chemical means. These findings seem to corroborate
the assumption of only two elementary particles, and indeed in 1926
there was no clear evidence of any other. But since then new elemen-
tary particles have made their appearance, and we now have a whole
gamut: electrons, positrons, protons, neutrons, neutrinos and mesons
of several kinds. Their charges are zero or +e, but quantum theory
has not yet succeeded in reducing their masses to the mass of the elec-
tron or in explaining the several particles as different quantum states of
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one universal particle. In particular, the atomic nuclei seem to
consist of densely packed protons and neutrons (two particles which
have equal or nearly equal masses).}

The composition of the material world out of one or a few units, exist-
ing in a huge number of completely alike spectmens, must surely be looked
upon as one of the most fundamental features in the nature of the uni-
verse; and one that is most profoundly in need of interpretation.

{While this remains a task for the future there is a decisive
progress to record in quantum mechanics which occurred while the
Ms of this book was in preparation.!'? W. Heisenberg succeeded in
replacing the correspondence principle, a somewhat vague and flexible
prescription that could never claim the rank of a theory and in its
working had become more and more ambiguous and unsatisfactory,
by a complete, simple, and consistent formulation of the quantum
mechanics of arbitrary atomic systems or, what is the same, by a
definite rule for the computation of its energy levels. In making the
necessary modifications of classical mechanics Heisenberg was guided
by a universal principle that had been abstracted from the vast
empirical material of spectroscopy, the so-called combination prin-
ciple of spectral lines. Even so the result compels us to abandon any
spatio-temporal picture of the atomic processes. Many facts, as
Bohr explains in a beautiful and generally informative article on
Atomic Theory and Mechanics (Naturwissenschaften, 1926, p. 1;
English version in Atomic Theory and the Description of Nature,
Cambridge, 1938) have driven him and other physicists to the con-
viction “that, in the general problem of quantum theory, one is faced
not with a modification of the mechanical and electrodynamical
theories describable in terms of the usual physical concepts, but with
an essential failure of the pictures in space and time on which the
description of natural phenomena has hitherto been based.” In
particular the new quantum mechanics avoids the discrepancy men-
tioned on p. 119 between the frequencies of revolution of the electrons
in an atom and the observed frequencies of the emitted spectral lines.
While Heisenberg arrives at this new mechanics by a modification of
the formal rules of computation, Schrodinger, with an entirely different
viewpoint, independently reached mathematically equivalent results,
his theory being based on an idea which replaces the movement of
the mechanical system by a wave process. This wave process,
which may be considered purely fictitious, is not itself observable, but
the phenomena observable in the mechanical system are derived from

1280 written in 1926!
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it by means of a ‘projection’ based on statistical principles. While
the motion of the electron is thus assumed to be supported by an
electronic wave, the optical waves which obey Maxwell’s electro-
magnetic field equations regulate the statistical behavior of the ‘light
quanta’ (photons). The idea of a light quantum of definite energy
and momentum had already been conceived in the compromise between
classical and quantum physics prevalent prior to 1925 (Einstein, 1905).
It served to account for the corpuscular nature of light as evidenced by
the photoelectric effect, as well as for its wave nature as manifested in
diffraction and interference. |

Thus it seems clear that quantum physics cannot posit matter and
ether as the basic polarity underlying all phenomena, as the ether
theory had done. Light is not only ether wave but also corpuscle, an
electron is not only a corpuscle but also a wave. It depends on the
concrete situation of their observation, on the instruments we train on
them, whether photons or electrons reveal themselves to us as ether
waves of definite frequencies or as corpuscles that hit here or there.
Bohr has coined the word complementarity for this basic feature of the
new quantum mechanics that in a sense replaces the old polarity of
matter and force. After the previous approaches by the substance
and then by the ether conception, the problem of matter now appears
to have entered an entirely new stage of its historical development.

More complete information about quantum physics is contained in
Appendix C.
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23. CAUSALITY (LAW, CHANCE, FREEDOM)

A. Causauity AND Law. Although the relation of cause and
effect dominates our theoretical knowledge as well as our practical
dealings with reality, there still is considerable difficulty in bringing out
quite clearly those aspects of the causal law which actually bear on
scientific research. In the first edition of the Critique of Pure Reason
Kant says, ‘‘Everything that happens |begins to be], presupposes
something upon which it follows according to a rule.” This second
analogy of experience he supplements by a third, however: ““All sub-
stances, insofar as they are coexistent, stand in.complete community,
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that is affect each other reciprocally.”” Hume was the first to analyze

in detail the category of causality, which until then had been used
uncritically in physics and metaphysics. He found in the first place
that objects or processes which are considered causes or effects of
others are spatio-temporally contiguous with these. This is the
principle of nearby action. Any remote effect must be due to a con-
tinuous transmission of effects. The question ‘Why?' requires the
insertion of a continuous causal chain without gaps. Temporally the
transmission ‘cause — effect’ runs parallel to the relation ‘past —
future.” Furthermore, it is alleged that a ‘necessary connection’ must
exist between both. But if we define, ‘“‘Of two successive events A
and B, A is the cause of B if it is impossible that A takes place without
B taking place subsequently,” we are saying something that has no
empirically verifiable meaning. For how should we recognize the
required necessity, since after all we have only one world, and in it
B just follows A. Hume therefore replaces the necessary by constant
connection, by one that recurs under all circumstances. But even so,
nothing is gained at first, since a concretely given event happens only
once. Thus it is necessary to add continuity requirements, to the
effect that sufficiently like causes lead to nearly like effects, and that
bodies and events which are too remote have no noticeable influence,
and so on. The phenomena must be subordinated under concepts,
collected into classes according to typical characteristics. The causal
relation does not hold between individual events but between classes
of events. Above all —and this is a point which still escaped
Hume — it is necessary to isolate generally valid connections by
decomposing the unique course of the world (as described in Section
20) into recurrent elements which are capable only of a gradation
representable by a few numerical characteristics.

When they are subjected to measurement it should appear that
simple exact functional relations obtain among them that can be
ascertained once and for all. The natural law thus takes the place
of causation. If several quantities g, b, c are connected by a functional
relation, the values of @ and b may determine the value of ¢; but the
same law may also be construed in the sense that the quantity a is
determined by band c. Thus the functional relation, unlike the causal,
is indifferent to the distinction between determining and determined
quantities. The abandonment of the metaphysical quest for the cause
in favor of the scientific quest for the law is preached by all great
scientists. The discovery of the laws of fall by Galileo is the first
great example. He himself says (Discorsi, third day, Opere, VII, p.
202), ““It does not seem expedient to me now to investigate what may
be the cause of acceleration,” the chief concern must be to explore the
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law according to which acceleration takes place. Or Newton: ‘“But
hitherto I have not been able to discover the cause of those properties
of gravity from phenomena, and I frame no hypotheses . . . To us
it is enough that gravity does really exist, and act according to the
laws which we have explained, and abundantly serves to account for
all the motions of the celestial bodies, and of our sea’’ (end of Principia,
3rd ed.). According to the teachings of d’Alembert and Lagrange,
dynamics does not require any laws which reach beyond its own domain
to the causes of the physical phenomena and the essence of those
causes; it is self-sufficient as a description of the regularities of the
phenomena. In recent times Mach has fought with particular vigor
against the “fetishism” of the concept of causation.

This may be the place where a few remarks on the relation between
form (Gestalt) and law may be inserted. Kepler still saw the rational-
ity of the world in the form of the planetary system, which he asso-
ciated with the Platonic solids, and thus with certain ideal configura-
tions that are geometrically distinguished a priori. The idea of forms
and their types plays an important part in biology (systematic mor-
phology), though here in close connection with the teleological notion
of organic function. But the idea has not disappeared entirely from
inorganic natural science, crystallography providing the most brilliant
example of an exact morphological system. The laws of dynamics,
since they are laws of nearby action, are of a continuous infinitesimal
character; they, rather than the forms, are considered as original in
physics today. Typical configurations come about, however, when
these laws admit of certain discrete solutions of special character, such
as static or periodic solutions. As for more detailed comments on
form and constitution and their relation to law and evolution, espe-
cially regarding the problems of biology, the reader may be referred
to Appendix F.

{The idea of functional law, to which science seems to reduce
causality, is not altogether unproblematic. Twice in its history
physics believed that it had overcome in principle the decomposition of
the world into individual systems (individual events and their ele-
ments, which after all are only approximately isolated from one
another) and had grasped the world as ‘““a whole in which all is
interwoven.””® The physics of central forces and later the pure field
physics seemed for a moment to have reached that goal. Causal
law here took the following form: the derivatives with respect to time
of the state quantities at a world point are mathematical functions of

13 ¢“Wie alles sich zum Ganzen webt,” Faust’s monolog at the beginning of
Goethe’s Faust.
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the state quantities themselves and their spatial derivatives at that
point. Consequently, the state of the world at any moment would
determine the state at the immediately following moment by means
of differential laws. Thus only the world’s state at a single moment
would remain ‘arbitrary’ or ‘accidental,’ and from it the world’s whole
past and future could be computed by integration of the ‘Laplacean
world formula.” But here again the causal law is in danger of revert-
ing to a triviality. For let us assume that we have only one state
quantity; then that quantity together with its temporal and its three
spatial derivatives will yield five definite functions of the four space-
time coordinates. This makes it mathematically self-evident that one
functional relation must hold among them which does not explicitly
contain the space-time coordinates. The assertion of regularity
becomes meaningless if complications of arbitrary degree are admitted.
This was emphasized already by Leibniz in his ‘Metaphysische
Abhandlung” (Philosophische Schriften, IV, p. 431). What is decisive
and at the same time astounding is the fact that the laws show such a
simple mathematical structure, while the quantitative distribution of
the state quantities in the world continuum is incredibly complicated.
This has the consequence, for our knowledge, that limited experience
enables us to ascertain those laws while the unique quantitative course
of events remains largely unknown. This distinction, for the naive
realist only the vague one between simple and complicated, becomes
one of principle, when the intuitionist or constructivist view is adopted
in mathematics and physics. }

Furthermore, the causal principle is meant to postulate not merely
the existence of functional dependences but also a certain density of
their fabric. This is brought out in the customary formulation:
“Under the same conditions the same event will repeat itself.” Where
should the line be drawn between conditions and events happening due
to these conditions? There is no difficulty here, provided cause and
effect belong to different spheres of existence; as is for instance the
case when we search out the real conditions of an immanent perception
and demand that each difference within the perception must be based
on a difference in the corresponding real conditions. But in nature
cause and effect lie within the same plane. As a dividing line separat-
ing the two one may set down a three-dimensional space-like cross
section { = const. through the world, which will dissect it arbitrarily
into a ‘past’ half and a ‘future’ half. This leads to the formulation
that the content of the past determines by law the content of the
future. However this is not the causal law itself but only a special
form of it which fits well into field physics. It need not for this
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reason be unconditionally accepted. A special case of practical
importance is this: Assume we have a number of permanent objects
or stationary events (e.g. prism and light beam), the behavior of which
is known if they are isolated; arrange them now in space-time in such
manner that they penetrate each other; then a novel but predictable
event will result (the light is refracted by the prism into its spectral
colors). The ether theory is likely to interpret the causal relation
by the contraposition of matter and field (‘matter excites the
field’). For the experimenter, the conditions consist of that part
of the events which are under his control. (This circumstance lies
at the base of a methodical remark of Stuart Mill’s: if we wish to learn
the effects of a cause we may experiment; but if we wish to learn the
cause of an effect we have to rely purely on observation.) In our
will we experience a determining power emanating from us, and were
we not thus actively and passively drawn into the stream of nature
(be it even merely in the role of an experimenter who creates the condi-
tions of the experiment), we would hardly regard nature under the
metaphysical aspect of cause and effect. (Hume disagrees. The
compulsion our reflecting mind feels to pass from one idea to another
represents to him the prototype of force.) As only an inner under-
standing of the word ‘I’ reveals to me the notion of substance, so,
according to Leibniz, it is ‘‘the consideration of myself which also fur-
nishes to me other metaphysical concepts such as cause, effect, . . . ”
(Philosophische Schriften, VI, p. 502).

The causal law asserting that ‘“the same events take place if the
same conditions obtain” is not an empirical statement, as was empha-
sized even by Helmholtz, who is otherwise so empiristically minded, for
“to prove it by induction seems a very dubious proposition. The
degree of its validity could at best be compared to that of the meteor-
ological rules’ (Physiologische Optik, 111, p. 30). Rather ‘“the causal
law bears the character of a purely logical law even in that the con-
sequences derived from it do not really concern experience itself but
the understanding thereof, and that therefore it could never be refuted
by any possible experience. . . . It is nothing but the demand to
understand everything” (op. cit., p. 31), a norm whose validity we
enforce in the construction of reality. (The example should here be
recalled of the two reds which appear equal to sensory perception and
yet are refracted into different spectra by the same prism.) Helm-
holtz’s conception of causality as a methodical principle is in agree-
ment with the Kantian doctrine of categories.

[As a check on the acquired understanding of the causal principle
the question has often been asked: Why is it that the relation of day
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and night, this prototype of a regular succession, is not a causal one?
The argument of the ‘irreversibility’ of the causal relation is a poor
way out, since it can so easily be refuted by the example of the hen and
the egg. Mill states the following criteria of causal relationship:
unalterability (‘again and again’) and unconditionality (‘irrespective
of the remaining conditions’). He points out that the latter require-
ment fails to be satisfied in the succession of day and night. Against
this, it may be said that no one has actually tried out what happens
when the essential subsidiary condition is changed, namely, when the
sun is removed. Hume replies with the ‘“recognized principle,”” which
is implied in the principle of continuity, that an object which has
existed unaltered during an interval of time without producing another
object cannot possibly be the sole cause of the latter. But it happens
with certain chemical reactions that after mixing the reagents con-
siderable time passes during which nothing is observed, until suddenly
a change in color takes place. Admittedly in such cases theory will
tell us of certain continuously progressing hidden changes, which pro-
duce a noticeable optical effect only after passing a certain threshold.
But the same might be the case with respect to day and night: when
lightness has accumulated for twelve hours, it turns into darkness, and
conversely. But then we notice that lightness is always connected
with the phenomenon of the sun, that there is something wrong with
the constant twelve hours, that the duration of the day changes, that
even during the day it becomes darker when the sun is hidden behind
clouds or eclipsed, and that the dark shadows move according to the
position of the sun. Thus our attention is drawn to the sun, and we
find that, if it is taken into account, the accumulating nightly darkness
becomes entirely superfluous as part of the cause of day. Decisive is
finally the analogy: I am able to produce lightness by lighting a
candle. By setting up a parallel between the sun and the candle
under my control, I arrive at the conception that if I blew out the sun
like this candle it would become dark.

In his inductive logic (A System of Logic, Ratiocinative and Induc-
tive, Book 3, Chap. 8), Mill tried to reduce the empirical ascertainment
of causal relations to definite rules. They cannot be considered as
more than a first rough attempt to describe the methodology of
inductive research. Their main shortcoming lies in the failure to
explain how the various ‘instances’ to which the rules refer are to be
isolated from a situation given as a whole. }

Causality occurs in physics not only as a methodical principle but
also as a factual component of the theory, namely as the causal struc-
ture discussed in Section 16. According to pre-relativistic theory,
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propagation of cffects takes place instantaneously. The push given
to a rigid rod can be felt everywhere along the rod at the same instant;
the dislocation of masses effected by spreading out my arms influences
at the same moment the motion of the planets. In relativity theory,
however, the velocity of light has become the upper limit of all veloci-
ties of signals and propagation, hence the effects at a distant place
really occur later than the releasing cause. Kant’s third analogy of
experience, the principle of community between coexistent objects, has
to be abandoned. Subjectively that part of the light cone which opens
toward the future plays an entirely different role from that which is
directed toward the past. We travel along the world line of our body
with ‘screened-off consciousness.” Indeed only of the content of the
rear cone can we have direct knowledge based on perception. Neither
the classical laws of mechanical motion nor the field laws of electricity
and gravitation can account for this difference. For instance, a
spherical wave converging toward a center O is just as compatible
with the field laws as a spherical wave emanating from O. And yet
one must demand that that basic fact of consciousness, the one-way
direction of the flow of time, have a physical foundation. Phenome-
nological thermodynamics finds it in the law of entropy, according to
which the natural processes are irreversible and take place in the sense
of increasing entropy. Since the atomic theory reduces phenome-
nological thermodynamics to the statistics of atomic motion and
thereby introduces an element of chance, we postpone a discussion of
the problem and turn first to an analysis of chance.

B. Cuance. The judgments which implicitly or explicitly deter-
mine our actions rarely exhibit the sharp division between the alter-
natives of true and false as demanded by classical logic. Between
black and white there are all shades of grey. In particular, questions
concerning the future do not point to a verification by any reality;
and yet they are discussed and judged right now, under such aspects
as possible, likely, inevitable, rather than true or false. For instance,
a statement about what will happen within a year from now will indeed
be verifiable after one year, but then in the modified temporal form
‘it happened in the past year.’ We make plans by figuring out in
advance future possibilities and basing our decisions on weighing them.
The driver of a car has to do this almost instinctively at every moment.
We strive for certain ends, run risks, dangers hang over our heads.
Besides hard facts we depend on expectations which often bear the
emotional accents of hope and fear. One may hesitate to speak here
of knowledge and judgments, but these things have the structure of
judgments and mean something vital to us.
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It is an ironical historical comment that the logic of probability
owes its first stimulus to gamblers seeking advice from their mathe-
matical contemporaries. Thus Pascal and Fermat were led to a
mathematical analysis of chances in a game. When it is a question
of the gain or loss of money, the quantitative factor cannot be over-
looked; the answer had to be sought not in a descriptive analysis of the
concept of probability but in a calculus of probability. The problem
was to satisfy in an exact manner the requirement of justice, by justly
weighing risk against gain, under the simplest circumstances, namely
for a game determined by set rules. The earliest treatise on the
subject has been written by Huyghens. Also the earlier parts of
Jacob Bernoulli’s Ars conjectand: (published 1713) move within a
circle of concepts of subjective nature, such as ‘hope,” ‘expectation,’
‘conjecture.” True, the classical definition of quantitative probability
coined by Laplace — the quotient of the number of favorable cases
over the number of all possible cases — emphasizes the objective
aspect. Yet this definition presupposes explicitly that the different
cases are equally possible. Thus it contains as an aprioristic basis a
quantitative comparison of possibilities.

{This is especially evident when it is a question not of a finite
number but of a continuous manifold of possibilities, e.g. the possible
positions of a particle freely mobile within a box. The probability
v(D) that the particle will be found in a portion D of the box is a func-
tion of D, possessing the additive property: v(D) = v(D:) + v(D,), if
the domain D is in any way divided up into the two partial domains
D, and D,. This requirement is identical with the one set down as a
matter of course for the volume measure of arbitrary domains D in a
continuum (compare the axioms on areas, p. 28), and it is therefore
understandable that continuous probabilities are usually treated by
mathematicians today under the title of ‘measure theory.’ }

It is because of the arbitrariness of such a measure that Laplace,
from his consistently deterministic conception of nature, is in the end
unable to ascribe to probability anything but a subjective meaning;
it deals with events whose premisses are incompletely known, and
thus is ‘“‘relative to this our knowledge and ignorance.” Laplace
therefore calls two events equally possible if we are equally undecided
as to their occurrence. However, a purely mathematical part can be
split off where probabilities of events are computed not absolutely but
on the basis of the given probabilities of other events with which they
are causally or logically connected. If A, B are two events (or the
statements that they occur), it is possible to form the logical combina-
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tions ‘A or B’ and ‘A and B.” Their probabilities are respectively
equal to the sum and the product of the individual probabilities, pro-
vided A and B exclude each other in the first case, and are independent
of each other in the second. Statistical independence may be defined
in the sense of the subjective Laplacean viewpoint by the requirement
that the probability of B remains unchanged if our knowledge, on the
basis of which the probabilities of A and B were judged, is augmented
by the additional knowledge that A has actually taken place.

In the fourth part of his Ars conjectands, Jacob Bernoulli throws
the bridge from the subjective to the objective conception of proba-
bility by means of his “law of large numbers.” According to this
objective interpretation the probability calculus serves to establish
regularities expressed in the mean values of many similar events rather
than in the individual event. Beside the strictly valid causal laws
we thus have regularities of a statistical nature. Daniel Bernoulli
employed the calculus in order to lay the foundation of kinetic gas
theory. The objective significance of the probability calculus comes
to light not only in physics, but also in a number of biological disci-
plines (genetics, biometrics), in the modern insurance business, as well
as in other applications (economic and social problems, quality control
of mass production, etc.). From the subjective point of view described
above it is difficult to understand. The question of its justification
has given rise to a rich epistemological literature. A scheme which
may serve to illustrate all probability problems is the drawing from an
urn containing m white and n black balls. By assuming the drawing
of any one of the m + n balls as equally possible, the probability of

obtaining a white ball is found to be m—tr:—_n In the sequence of real

events, this probability is supposed to manifest itself, roughly speak-
ing, as the relative frequency of drawings of white balls among all
drawings, when a large number of drawings are made. (In order to
restore the same conditions, it is understood that the drawn ball is
always replaced in the urn before the next drawing.) Bernoulli’s
theorem is as follows: let p be the probability of an event E (say the
drawing of a white ball from our urn), € a given arbitrarily small posi-
tive number (say 1{oo); if in a series of N trials, in which E may or
may not take place (drawings), N’ turn out to be favorable, then the
relative frequency N'/N most probably deviates from p by less than e,
provided the aumber of trials V is sufficiently large. In fact, Bernoulli
computes the probability p(e, N) that N'/N does not lie between
p — e and p + € as a function of e and N and proves by a suitable
estimate that p(e, N) for fixed e converges to 0 as N increases indefi-
nitely (it converges to a definite limit between 0 and 1 provided
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¢ \V/N tends to a limit different from 0). In his calculation the indi-
vidual trials are treated as statistically independent events. This
theorem belongs to pure mathematics. It acquires a relation to
reality only by the fact that the occurrence of an event is considered
practically certain if its probability deviates from absolute certainty
by, say, less than one millionth: we are able to predict with near cer-
tainty that in a series of N = 200,000 trials the relative frequency will
deviate from the a priori probability by less than 1{¢o. With still
greater certainty we can predict that in a large number of such trial
series of length N those whose deviation is more than 1o form a small
part, say, less than 1{ggo of all trial series. But there always is a
residue of uncertainty, the inexactness of the statement being an
essential characteristic.

[There are important cases in which the equiprobability of differ-
ent results may be derived either from the process leading to the result
or, by means of the principle of sufficient reason, from the symmetry
of the situation. Thus in the bipartition of a large number of entities
(e.g. the maturation division of cells in an organism, cf. Appendix B),
complementary parts will appear with the same frequency, and con-
sequently their occurrence is to be expected with the same probability.
An example of symmetry is the throwing of dice. Once it is admitted
that a probability appertains to each of the six faces of a die, then it
can only be the same for each, provided the die is really homogeneous.
This is an inference similar to that by which Archimedes established
the law of equilibrium for a lever with equal arms. The cases in which
we have reason to consider such symmetries as exactly or approxi-
mately valid are none too rare. If the observed frequencies are in
accordance with this assumption, we are satisfied; if not, we are driven
to look for the cause of the asymmetry. Thus, if we have a die for
which the ace occurs noticeably more often than the six, we shall
perhaps bore a hole into the die and find that it is loaded.]

In this example it should still be possible, if the mass distribution
within the die is known, to ascertain the probabilities of the six faces
by an exact physical analysis. In most cases occurring in everyday
life, however, the probability cannot be found a prior: at all, as the
classical definition demands, but only a posterior:i on the basis of
observed relative frequencies. The probability of male births is still
a good example — even with our present state of biological knowledge
of the mechanism of sex determination. But if the births in a certain
region are collected together in their temporal succession and divided
up arbitrarily into series, the latter show all the properties which
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probability theory predicts for series of drawings from an urn contain-
ing boys and girls in a certain ratio m:n. If in the case of temporally
very extended series there are systematic deviations or displacements,
then a slow continuous change in the circumstances determining the
probability, in partieular in the genetic composition of the population,
is to be inferred.

But if it is true that probability cannot be determined except by
counting of frequencies, then it seems reasonable to base the objective
foundation of probability theory directly on the trial series and define
the probability p as relative frequency; or, si~ce this is a little too
primitive and would not lead to any predictions, as the limit of the
relative frequency when the number of trials increases indefinitely.
Unfortunately, this introduces the impossible fiction of an infinite
number of trials having actually been conducted. Moreover, one
thereby transcends the content of the probability statement, inasmuch
as the agreement between relative frequency and probability p is
predicted for such a trial series with absolute certainty rather than
with ‘a probability approaching certainty indefinitely.” It is asserted
that every series of trials conducted under the same conditions will
lead to the same frequency value p. In order that the mathematical
rules of the probability calculus hold, the trial series would have to
comply with certain requirements demanding something like ‘order
in the large, disorder in the small;’ their exact formulation, however,
affords very serious difficulties. But I believe this ‘objective founda-
tion’ of statistics, that springs from the epistemological position of
strict empiricism, simply conceals the a priori probability behind the
dogmatic formula of a fictitious frequency limit which is tied to the
nonsensical idea of an infinite sequence of trials. As long as one
believes in strict causality, statistics must find its proper foundation
in a reduction to strict law. If, however, there should be a ‘primary
probability’ for the individual atomic events that cannot be redueed
to causal laws — and such seems to be the case according to the most
recent development of physics — then we seem to be forced to intro-
duce into the natural laws as an original factor either that probability
itself or some quantity connected with it; and the classical definition
would be limited to those special cases of symmetry in which the
principle of sufficient reason provides adequate guidance.

{In 1 gram of hydrogen there are approximately N = 3-1023
hydrogen molecules swarming about. At a certain pressure the gas
will fill out a cubical container C of a certain volume 1. We ask for
the probability that an individual molecule will be present in a. domain
D of the container. The corresponding frequency is here ascertained
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not by repeating the experiment an innumerable number of times with
the same molecule but by ‘playing dice’ simultaneously with a large
number NV of molecules. In extending Bernoulli’s theorem of large
numbers to this situation we make two implicit assumptions: firstly
that the forces acting between the molecules may be disregarded, and
secondly that the locations of different molecules are statistically
independent of one another in the same sense as the repeated drawings
from an urn. In this new form, statistics is applied to mechanical
systems consisting of many particles of the same kind. Since there is
no preference for any particular location, the probability that at a
certain instant an individual molecule is in some given subdomain D
of the cube is assumed to be equal to the volume of D. Within C
we now mentally demarcate a smaller cube ¢, say of volume 1{g¢o.
We ask for the probability that at a certain moment the density of the
gas in ¢ (i.e. the mass of the molecules present in ¢ divided by the
volume Y{ggo of ¢) deviates from the over-all value 1 by more than
0.01%. By means of Bernoulli’s theorem we find that this probability
is given by a fraction with numerator 1 and a denominator consisting
of no less than a million digits. We therefore expect that in a state of
‘thermodynamic equilibrium’ the gas is distributed, macroscopically
speaking, with equal density over the container. Noticeable devia-
tions (for instance, the spontaneously occurring ‘miracle’ that the
entire gas collects in a corner of the container) are possible but extra-
ordinarily improbable. If there is initially an uneven distribution,
the motion of the molecules will quickly effect the transition to a state
of equidistribution, provided there are no exterior forces acting on the
system. For the same reason, if coffee and milk are poured into a cup,
stirring will soon produce a liquid of uniform color.]-

It will now be understandable that most of the physical concepts,
especially those concerning matter with its atomic structure (e.g.
the density of a gas), are not exact but statistical, that is, they repre-
sent mean values affected with a certain degree of indeterminacy.
Similarly most of the usual physical ‘laws,” especially those concerning
matter, must not be construed as strictly valid laws of nature but as
statistical regularities. Statics (which treats of the laws valid for
thermodynamic equilibrium) and dynamics (which treats of the laws
regulating the transition from a disturbed state to a state of equilib-
rium) are supplemented by a theory of fluctuations, which investi-
gates the fluctuations about the statistical mean values in equilibrium
and the physical effects connected therewith. The spontaneous
density fluctuations of the air, for instance, are responsible for the
diffraction of the sunlight and thus for producing that diffuse daylight
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which makes the sky appear blue rather than black. However minute
they are individually, they still have an observable global effect. In
fact, from the color and intensity of the sky’s blue it is possible to
compute the Avogadro number of gas molecules per volume unit at
normal pressure and temperature, and the result checks with those
obtained by other methods. The study of such fluctuations that are
accompanied by observable cumulative effects has proved to be very
fruitful for the determination of the atomic constants and furnishes
one of the strongest supports for the molecular theory.

The justification of statistical physics evidently derives from the
fact that the hidden complicated molecular processes bear no direct
relation to our perceptions. The latter depend on certain mean
values, and statistics teaches us how to determine these. Our con-
sciousness does not reflect the molecular chaos of the phenomena but
exerts an integrating function with respect to both space and time,
from which results the apparent homogeneity and continuity of the
phenomena. The statistical mean values may obey relations of
dependence indicative of after-effects of the entire history of a system
(hysteresis, persisting dispositions, ‘memory’), although the exact
natural laws are differential equations which connect only infinitely
near space-time points with one another. Such phenomena, though
not entirely foreign to inorganic nature, occur frequently in the organic
world. They cannot, however, as is sometimes done, be cited as proof
that organic processes are incapable of ‘mechanical’ explanation.

In spite of all these applications the physicists at first adhered to
the view that the probability calculus is merely a short cut for the
derivation of certain consequences of observational significance from
the exact causal laws. Consequently the attempt had to be made to
derive from them the probability measure on which the statistical
analysis is based. This is tantamount to a causal analysis of chance.
Chance appears to prevail whenever ‘little causes lead to big effects.’!*
A minute deviation in the direction of two projectiles — a deviation
perhaps which is entirely beyond our control — may, once the pro-
jectiles have traversed a large distance, lead to fatefully different
results. Uncontrollable are the circumstances of the act of procrea-
tion upon which the fertilization of the egg by a spermatozoon of this
or that genetic constitution depends, and thus sex determination, in
particular, is left to ‘chance.’

-[A simple example may serve as an illustration: the shooting at a
circular target which is divided into several sectors and is rotating
fast and uniformly. The cause is the instant ¢ of pulling the trigger,

14 ¢Kleine Ursachen, grosse Wirkungen,” a well known German proverb.

200



THE PHYSICAL PICTURE OF THE WORLD

the effect the number y of the sector which is hit. 1y is a discontinuous
function of ¢, y = f(tf). The circumstances essential for the chance
character of the result are the following: (i) Let At be the range within
which ¢ can be determined if the greatest possible subjective care is
taken; then f(¢) assumes all its values during the interval A¢, that is, the
intervals on the t-axis in which f(f) remains constant are small in com-
parison to At. (i) If, in addition, an arbitrary probability distribu-
tion on the t-axis is assumed, by setting the probability of pulling the
trigger during the infinitely small interval from ¢ to ¢ + dtf equal to
o(t)dt, then the probability of the various y can be mathematically
computed. These probabilities are almost independent of the assumed
distribution function ¢(t), as long as ¢(¢) has a fairly regular behavior,
i.e. changes little during any interval of length A¢. This analysis,
which can be applied to the throwing of dice, reduces the measure of
probability (in the domain of y) to the possibility of comparing proba-
bilities as to their order of magnitude (in the domain of ¢). ]-

So far we had still to rely on such vague terms as ‘almost inde-
pendent’ or ‘fairly regular.’ One is tempted to proceed to a strict
formulation by letting the rotational velocity of the target converge to
infinity. This idea may be explained by means of the example of the
gas which consists of molecules enclosed in a cubical container of
volume 1. We assume that the individual punctiform molecule moves
in the interior of the container with uniform velocity along a straight
line, and that it bounces off the walls according to the usual law of
reflection. The initial velocity of the molecule may be given by its
three components v, v,, v3 with respect to the three axes of the cube.
We expect that, no matter what the initial velocity, an infinitely
extended observation time ¢ will yield that ‘disorder’ on which sta-
tistics is based, and hence we carry out the limiting process { — o,
For any partial domain D of the container, we understand by the
dwelling time ¢, of the molecule the total duration of all time intervals
during the observation time ¢ during which the molecule is within the
domain D. By the relative dwelling time »(D) we understand the
limit of the proper fraction ¢,/t for infinite observation time ¢. It is
then in fact possible to prove that the relative dwelling time of the
molecule equals the volume of D, provided one excepts initial velocities
whose components v; satisfy a linear relation aw; + a2 + asv; = 0
with rational coefficients a;, To be sure, such initial velocities
are everywhere dense in the three-dimensional velocity space,
but their set is of a ‘vanishing measure’ as compared to the rest.
(It is related to the whole space as the set of rational numbers to the
totality of all real numbers.) The appearance of such exceptions
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corresponds to the fact that Bernoulli’s theorem of large numbers
equates relative frequency and probability only with a probability
which approaches 1 indefinitely. An analogous statement can be
proved for an aggregate of N punctiform molecules, each of which
follows a path in accordance with the law stated above; but again
under the same restriction, namely that no homogeneous linear rela-
tion with rational coefficients holds between the 3N components of the
N initial velocities. In this sense there is statistical independence
among the N molecules. And it turns out that, if the ‘rational’ initial
states are excluded, the fraction ¢5/t of the observation time ¢ during
which the gas deviates noticeably from the state of uniform density
converges toward an extremely small number as { = «. By thus
interpreting probability statements as statements about dwelling
times, the objective significance of the probability calculus within the
framework of a world dominated by exact laws would seem to be
explained.

-[It lies in the nature of things that statements about what happens
in the limit for an indefinitely extended observation time ¢ may depend
on whether a certain number is rational or irrational — however much
this is at variance with the approximate character of all physical
measurements and the nature of the continuum. The value of this
trend of investigation is questioned by the remark that disturbances
can never be entirely eliminated but that the validity of thermo-
dynamics is evidently not affected thereby — or only in the positive
sense that the advent of thermodynamic equilibrium is accelerated
by the disturbances. Incidentally, in more complicated cases than
the one chosen as an example, the analysis hinges on a certain crucial
hypothesis known as the ergodic hypothesis, the proof of which long
resisted the efforts of the mathematicians. Ironically, when the proof
was at last accomplished to the extent that could reasonably be
expected, the hypothesis had been deprived of most of its physical
significance by quantum mechanies. }

At any rate, in the actual conduct of physical research, statistics
today plays at least as important a part as the strict law. Attempts
to reduce one to the other have gradually fallen back behind the
independent building up of statistical thermodynamics. Of the two
laws which are of universal significance for all physical phenomena,
the law of conservation of energy and the law of continuously increas-
ing entropy, one is the prototype of a strict law, the other of a statis-
tical law. The latter, in fact, states that heat flows from the warmer
to the colder body, that coffee and milk get mixed but not unmixed by
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stirring, that, in general, an improbable state in the course of time
changes into that ‘most probable’ state from which the overwhelming
majority of possible states differs but little; or, otherwise expressed,
that order gradually changes to disorder. Boltzmann was actually
able to define entropy by the expression k - log D, where D is a measure
of disorder and k£ (= 3.2983:10—%* cal./°C) a universal constant of
nature. When we rely on the methods which have developed from
cogent motives we cannot help recognizing the statistical concepts,
besides those appertaining to strict laws, as truly original. Perhaps
space and time, as the above example of gas molecules locked up in a
container suggests, merely have the function of a probability field for
physics. According to the new quantum mechanics the situation
seems to be such that exact laws of the kind familiar from field physics
determine certain probabilities related to the atom. But they deter-
mine the observed events in space and time only in the manner in which
a priort probabilities determine statistical mean values — with an
unavoidable uncertainty factor. Evidently it is physics oniy which
can provide us with the ultimate enlightenment about the real meaning
of the probability calculus. In former times it was argued that its
necessity is based on the impossibility of completely isolating a physi-
cal system. Statistics thus was supposed to take into account sum-
marily the influence of the whole infinite universe on the nearly
isolated partial system. But more important, perhaps, than the
openness toward the infinitely distant fringes of the world is the
inner infinitude toward the atoms. The philosophers are impatient
people. As a scientist one gains the impression that something
reasonable about causality, law, and statistics can again be said only
after the riddle of the quanta has been solved,

{Appendices B and C will describe how and to what extent the
situation has cleared since 1926 through the development of quantum
theory. The ‘primary’ atomic probability appears as the square of
the absolute value of a certain (complex-valued) field quantity y. The
‘secondary’ statistics of quantum-thermodynamics, on the other hand,
rests on a simple enumeration of quantum states, and thus the diffi-
culty of an intrinsic probability measure disappears from the theory. }

C. TiME’S ARrROW. In a sweeping way and in conformity with the
experience in all branches of physics, the law of entropy accounts for
‘time’s arrow,’ for the different roles of past and future, the irreversi-
bility of natural processes. Yet there is a serious difficulty. For the
derivation of the law of entropy from the statistics of molecular motion
is based exclusively on elementary laws, such as the laws of impact
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for molecules, which are reversible, that is, which are invariant under a
change from ¢t to —t. This reversibility is displayed very impressively
by the heavenly motions, where disturbing influences are entirely or
almost entirely eliminated. Their harmony seems to triumph over the
law of universal decay that prevails on earth. A close examination of
the statistical derivation of the entropy law will show that indeed an
improbable state, one that is far from thermodynamic equilibrium,
will be followed with overwhelming probability by a state closer to
equilibrium after a small time interval A¢, but also that At seconds
earlier it will have been preceded, with the same overwhelming proba-
bility, by a state closer to equilibrium. In fact this prediction is con-
firmed by all fluctuation phenomena: they disclose no irreversibility.

[Thus Smoluchowski (Vortrdge 1iber die kinetische Theorie der
Materie und der Elektrizitit, 1914) arrives at the conclusion: “If we
continued our observation for an immeasurably long time, all processes
would appear to be reversible.”” Or Boltzmann (Populdre Vortrdge,
p.- 362): ““The laws of probability calculus imply that, if only we imag-
ine the world to be large enough, there will always occur here and there
regions of the dimension of the visible sky with a highly improbable
state distribution.” The circumstance that we happen to witness
such an event might be explained by the fact that the possibility of
life is bound to an exceptional state of this kind.

Yet this can hardly be considered the last word in the matter.
If two previously isolated systems come into contact and begin to
influence each other we consider it extremely improbable that they
are at that moment in thermic equilibrium with each other. Reversal
of the time direction turns the process of joining two systems into a
process of separation, and in this case we make the opposite judgment:
if a system, which has been isolated against exterior disturbances over
a long period of time, is separated into two parts, we consider it
extremely probable that the two parts at the moment of separation
are in thermic equilibrium with each other. Thus the idea inherent
in causality that that which is earlier is the determining reason for
what follows, and not vice versa, impresses on our probability judg-
ment a distinguished direction of time. ]

It was said above that at the instants { + Af and ¢ — At the devia-
tion y of a system from the state of equilibrium will, with overwhelm-
ing probability, turn out to be smaller than at the time ¢, provided y
is noticeably different from 0 at ¢; in other words, y falls away roof-
like on both sides. But from such roofs, each of which has two slopes,
we cannot compose the picture of a unique succession of states. Such
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a picture can emerge only if at every time point we decide in favor of
the forward slope of the roof, or else if at every time point we decide
in favor of the backward slope of the roof. We do the former when
we pursue, for instance, the process of heat conduction or of diffusion.
In other words, as the state S’ prevailing at a future moment we
predict that state which results from the present (improbable) state S
with overwhelming probability (and which is more probable than S).
As a previous state 8’ we assume one from which the present state S
follows with overwhelming probability, — even though this past state
S’ turns out to be still less probable than the present one. According
to the probability judgment directed toward the future, we expect the
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Figure 6. AB forward directed and CA backward directed probability judg-
ments. In either case the opposite slopes (dotted lines) are ignored.

earth to have cooled off further after a few million years. The same
probability judgment directed toward the past would state that also a
few million years ago the earth was that much cooler. Instead we
assume that it was in that warmer state from which the present one
results by virtue of the forward directed probability judgment. The
‘miracle’ is blamed on the past, and the larger the parts of the universe
which are being viewed, the further into the past can it be pushed.
Our judgment thus proceeds as if the system with which we are dealing
had been created before our time. The word ‘creation’ suggests a
metaphysical or even theological interpretation, but this should not
prevent us from recognizing the state of affairs which is most aptly
expressed by this word.

-[An arbitrarily given temperature distribution in a body at an
instant { = 0 changes in the course of time according to the differential
equation of heat conduction. In this way we are able to compute the
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distribution for any future moment ¢ = 0, but in most cases the solu-
tion cannot be traced back a single step into the past ¢ < 0. Here the
act of creation necessarily takes place immediately prior to the present
moment ¢ = 0. It may consist in the body having been heated here
and cooled there by contact with other bodies from which it becomes
separated at the moment ¢ = 0.

It must of course be admitted that a limited system, isolated over
an infinitely long period, has its chance fluctuations which are reversi-
ble. But a system which is isolated now behaves as though it might
always stay isolated, but not as though it had always been isolated.
Therefore the study of reversible fluctuations, so to speak, has only
local importance and tells us nothing about the world in the large. }

We thus arrive at the conviction that the distinctiveness of the
direction from past to future finds its expression not in the elementary
laws but in the probability judgment. It is true that within the frame-
work of classical field physics it was possible to set down a formula
(the Liénard-Wiechert formula) according to which the motion of an
electron determines the field excited by it, by retaining of the two
components of the solution only the one corresponding to the retarded
potential. This would be a necessary consequence of the field laws only
if we could imagine that prior to a certain moment the world was
empty (with all charges neutralized and the field = 0) and that the
field begins to radiate only after the separation and creation of charges;
it will then never become extinct again even if the charges should
later be neutralized. But the classical theory of electrons must today
be replaced by quantum theory. According to the basic conception
of Niels Bohr, the jump of an electron in the atom sets off a diverging
rather than a converging electromagnetic spherical wave, the frequency
of which is determined by the energy loss of the atom. And there is
no doubt that the non-commutability of emission and absorption must
here be understood on the basis of the same principles as in the case
of the entropy law.

{After the Einstein equations of gravitation (supplemented by
the cosmological term) had yielded as their solution an expanding
universe, it was natural to relate the distinguished time direction with
this expansion. A massless world, according to Section 16, is repre-
sented by de Sitter’s hyperboloid. A single star describes a geodetic
world line on it, and the light cones which open toward the future and
issue from the points of that line fill out the domain of influence D of
the star. This domain covers only one half of the hyperboloid, it
spreads out fan-like toward the infinite future. D is at the same time
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the domain of influence of every one of a three-parametric sheaf of
geodetic lines. It is plausible to assume that only this half D corre-
sponds to the real world and that those geodetic lines represent the
world lines of the stars (provided their mutual gravitational attraction
is disregarded). In other words, all stars have a common domain of
influence. It is this picture of a community of origin for all stars that
leads to an explanation of the red-shift of the spectral lines of the spiral
nebulas and yields a value of the order of magnitude of 1027 ¢cm. for
the world radius. The expansion here appears as a natural conse-
quence of the distinction made in favor of the light cone opening

Past

Figure 7. De Sitter's hyperboloid with domain of influence D and world lines
of stars.

toward the future. In truth the world is not void of mass; hence
de Sitter’s solution will have to be replaced by a set of possible
solutions, among which it itself as well as Einstein’s static solution are
special cases. The majority of these solutions are such as to ascribe
to the universe a punctiform beginning in time. It has been speculated
that its creation was due to a vehement radioactive explosion, of which
the fossil of cosmic rays still bears evidence (Lemattre). }

Summarizing we may, with Eddington, describe the situation
briefly as follows:  We have swept away the anti-chance from the field
of our current physical problems, but we have not got rid of it. When
some of us are so misguided as to try to get back milliards of years into
the past we find the sweepings piled up like a high wall, forming a
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boundary — a beginning of time — which we cannot climb over”
(New Pathways in Science, p. 60).

The contrast of right and left, however much it occupies mythical
thinking, does not pose as basic a problem to scientific thought as that
of past and future. There can be no doubt that all natural laws are
invariant with respect to an interchange of right and left. Yet the
fact must be noted that the clockwise and anti-clockwise isomers of an
optically active compound often occur in nature in very different
abundance (e.g. the occurrence of dextro- but not of levo-tartaric acid
in fermenting grapes), and that in organic nature the sense of a screw
(right-winding or left-winding) sometimes belongs among the inherit-
able characteristics of a species (e.g. of shells).!5

None of our present physical theories is able to give an account of
the essential difference between positive and negative electricity. Is
this merely due to the ‘accident’ that in nature the negative electrons
happen to outnumber the positive ones, and the positive protons
outnumber their negative equivalents (whose existence has not yet
even been proved experimentally)?

D. FreepoM, PurprosivENEss. Fate and destiny, chance, fortune
and misfortune, free will, these words denote categories by which man
has always been wont to interpret his own existence. With Homer,
Gods and men alike are subject to moira. The Germanic people per-
sonified the power of destiny in the Norns (‘No one lives to see the
evening, once the Norn spoke,”’” Edda, Old Hamdir Song). Islam with
its concept of Kismet is a fatalistic religion; and in the sphere of
Christian theology Calvin placed the fate of man unconditionally in
the hand of God (selection by grace, predestination). The first con-
sistent modern theory of determinism in which natural law appears as
the binding force is due to Hobbes. Descartes, on the other hand,
clung to the freedom of will, and he had to do so if the self-certainty of
thinking guarantees truth as demanded by the principles of his philoso-
phy. He could not comprehend how this is compatible with pre-
destination, which follows necessarily from the omnipotence of God.

By exhibiting the freedom of will in the theoretical acts of affirma-

18 A by-product of the fermentation of grapes that has the same chemical
composition as tartaric acid but is optically inactive, namely racemic acid, was
decomposed into dextro- and levo-tartaric acid in a famous experiment carried out
by Pasteur in 1848. The human body contains the dextro-rotatory form of
glucose and the levo-rotatory form of fructose. That homo sapiens contains a
screw turning the same way in all individuals is proved in a rather horrid fashion
by the fact that man contracts a metabolic disease called phenylketonuria leading

to amentia when a certain quantity of levo-phenylalanine is added to his food
whilst the dextro form has no such disastrous effect.
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tion and denial, Descartes succeeds in bringing out with great clarity
the decisive point in the problem of freedom: when with clear reason
I judge that 2 + 2 = 4, this actual judgment does not make itself
within me through blind natural causality (a view which would elimi-
nate thought as something which I mean). Rather, a purely spiritual
something, namely the circumstance that 2 + 2 really equals 4,
exercises a determining power over my judgment. The issue here is
not whether the factors responsible for my action partially lie in me as
an existing natural being rather than outside of me. Such freedom is
derided by Kant (Critique of Practical Reason) as being no better ““than
that of a mechanical turnspit which, once it has been wound, likewise
continues to perform its motion.”” Nor is it a question of groundless,
blind or arbitrary decisions. We are confronted, rather, with the fact
that the realm of Being is not closed with respect to its determining
factors, but that in the ego, where Meaning and Being are merged in
indissoluble union, it is open toward Meaning. However, if this con-
viction is not erroneous, that open place, a limit of the objective,
should manifest itself within nature and its science. Since this was
not the case in natural science as it has developed since Galileo from
compelling motives and with the claim of embracing all of nature,
science became to the modern mind the power which shook the naive
belief in the independence of the ego. All evidence indicates that
living creatures, apparently endowed with the faculty of will, are not
exempt from the exact natural laws. I, too, can impart a momentum
to my body only by pushing off from other bodies which together
absorb the opposite momentum.

{ Descartes tried to save the situation by ascribing to the soul,
which cannot alter the total momentum, some kind of directing or
‘switching’ function. Two quotations from Leibniz may be given
here. In an essay on freedom (Letires et opuscules tnédits de Leibniz,
ed. Foucher de Careil, Paris 1854, p. 178 et seq.) he states ‘“that there
may, or even must, be truths which no analysis can reduce to the
identical truths or to the principle of contradiction, which, on the
contrary, require an infinite series of reasons for their support; a series
which is transparent to God only. And this is the essence of all that
one considers free and accidental.” Further, in his Monadology
(Philosophische Schriften, VI, pp. 607—623; Section 79): ‘““The souls
act according to the laws of final causes through appetences, means,
and ends. The bodies act according to the laws of efficient causes
or motions. And these two realms, of final and efficient causes, are
in mutual harmony.” Among the clearest formulations of deter-
minism is that by Laplace: “Une intelligence qui pour un instant
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donné, connaitrait toutes les forces dont la nature est animée, et la
situation respective des étres qui la composent, si d’ailleurs elle
était assez vaste pour soumettre ces données a ’analyse, embrasserait
dans la méme formule, les mouvements des plus grands corps de
I’univers et ceux du plus léger atome: rien ne serait incertain pour elle,
et 'avenir comme le passé, serait présent a ses yeux. I’esprit humain
offre dans la perfection qu’il a su donner & I’astronomie, une faible
esquisse de cette intelligence’ (Essar philosophique sur les probabilités,
second ed., 1814, pp. 3-4). Kant, according to the scientific situation
of his time, agrees with this view as far as the world of space-time
phenomena is concerned, and he tries, by distinguishing between the
phenomenal and the intelligible world, to give a transcendental solu-
tion of the conflict between natural causality and freedom of will. His
solution, however, can hardly be carried through consistently!® and
even remained obscure to himself to such a degree that he was unable
to understand the changes in the character of a person. Any reason-
able interpretation of Kant’s attempt in the framework of Laplacean
physics seems to require the existence of the individual from eternity
to eternity, either in the form of a Leibnizian monad or, with the
Indians and Schopenhauer, by virtue of metempsychosis. For then
the individual is met by every cross-section { = const. and conse-
quently is not completely determined by a state of the world which
does not ‘cross’ its existence.

The above antinomy, in its most cutting form, concerns the relation
of Knowing and Being. Let us assume, with Laplace and field physics,
that the state of the world at a given moment, i.e. in a three-dimen-
sional cross-section t = const., determines the course of future events
according to known, strictly valid, mathematical laws. It was then
thought correct to infer that I can calculate the future from what I
know (or can know) at a world point O, from that part of the world
which at O is open to perception. This antinomy existed formerly, but
has been dissolved by relativity theory. For the known is separated
from the unknown, not by the cross-section ¢ = const. through O, but
by the backward light cone. And it is a mathematical fact that,
according to the field laws, the distribution of the state quantities in
that cone does mot uniquely determine the rest of the world. Only
immediately after an action can I know all the causal premisses of my
action. Furthermore, it must be remembered that a complete
knowledge of the present is possible only on the basis of its conse-
quences which reach to the end of time.

16 Compare F. Medicus, Die Fretheit des Willens und thre Grenzen, 1926.
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However, if we take the problem of determination as one concern-
ing reality alone and not the relation of knowledge and reality, and
if we insist on the possibility of free action in this real world, then we
must demand that the content of the forward cone issuing from O
shall not be completely determined by the remaining part of the world.
This would contradict the pure field physics. But its ideal, like the
Laplacean, lies in ruins today. From all that has been said it will be
clear how little contemporary physics, based as it is half on laws and
half on statistics, can pose as a champion of determinism. In quantum
physics the elementary processes are not determined by strictly causal
laws. If thus the world appears to us today to be much less fettered
by ‘inviolable laws’ than at Laplace’s time, it must also be emphasized
that the only really consistent form of determinism which maintains
the unconditional necessity of everything that happens, has never
found a support in physics. Even in the Laplacean world there is an
‘open place,” which can be located arbitrarily in one or the other cross-
section ¢ = const.

In our natural understanding of living beings concepts of a teleologi-
cal origin play a part beside causal law and statistics. The hand is
there to grasp, the eye to see. My body is my real existence in the
world. No theory of life that disregards these simple facts can suc-
ceed. An abundance of the most minute mutual adaptations of all
parts is necessary in order to enable the sense organs to fulfill their
task of being portals for the sensory perception of the external world.
It is all too cheap to declare emphatically, as has been done by some
positivistically inclined scientists, ‘‘ that it is only we who read purpose
into the life of an organism” or ‘“‘that purposes in life are man-made,
not found.” (Nor is much light thrown on the relation between
causality and finality by a remark such as that ‘I would soon enough
feel compelled to abandon the teleological view regarding my car in
favor of causal analysis if, while driving to visit a friend, I have motor
trouble on the way.’) The multitude of adaptations to organic and
inorganic environment and of functional adjustments must first be rec-
ognized as such before the attempt can be made (as was done by Dar-
winism) to explain them causally. The functions of the organs, the
preservation of the individual, and the maintenance of life, in the par-
ticular forms once evolved, by propagation beyond the death of the
individual, none of these are man-made purposes. One aspect of the
purposiveness of organisms may be seen in the fact that the accom-
plishment of certain constant or nearly constant end effects of a
morphological or functional kind is guaranteed in them, even in the
face of far-reaching disturbances of the external conditions or bodily
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damages (regeneration). Purpose and freedom appear as two aspects
of the same thing, when free purposive action is opposed to lawful
necessary events. Of myself I know that I am open toward a purely
spiritual world of images. Here lies the origin of my free insight and
of my concern for truth, as well as of my free action and my respon-
sibility. But I am at the same time possessed of a human body
and therefore a living creature profoundly akin to all other living
beings. It is thus natural to search for a seed of freedom and idea in
all creatures.

Order, organization, is the characteristic of life. Hence the
impression that life, in its evolution on earth, resists the plunge into
the abyss of ‘thermal death,” which the entropy law imposes upon
inorganic matter. Bergson has coined the grandiose word ‘élan
vital’ for this resisting power. Even a crystal, as it grows, creates
order in the substance which it seizes. When water crystallizes into
snow or ice it gives off heat to its environment, that is, the entropy of
the environment, its ‘disorder,” increases. Thus, in toto, the entropy
law remains intact. Similarly an organism which grows up from the
fertilized egg by progressive differentiation has the capacity to create
order—at the expense of the environment, to be sure, whose entropy,
or disorder, increases correspondingly. Photosynthesis in the green
leaves of plants is accompanied by absorption and ‘disorganization’
of the incident light. Amino-acids and purine bases carried by the
blood stream are synthesized into complex proteins and nucleo-
proteins in the cells, and self-duplication of genes and chromosomes
takes place in cell-division—while heat is released to the environ-
ment and substances of lower organization (water, carbon dioxide,
urea, etc¢.) are discharged.

The opinion, generally held until Berzelius’ time, that organic
compounds may come into being only by a ‘vital force’ peculiar to
living matter, had to be given up when Wohler in 1828 produced urea
from purely mineral material (ammonium cyanate). It is a fact that
most organic compounds are much more complex than anything
encountered in inorganic chemistry. A typical protein molecule
consists of something like 6,000 atoms. This complexity probably
accounts for some of the most characteristic features of living matter.
Yet it is a complication by degree only; for E. Fischer (1901) and his
successors (M. Bergmann and others) have succeeded in synthesizing
a great number of polypeptides, chains of amino-acids of considerable
length, which from a systematic standpoint are nothing but the
simplest proteins. Hence if there is a difference in principle between
life and death it is certainly not to be sought in the chemical constitu-
tion of the material substrate.
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{This much for the facts. The physicist, with Leibniz, will not
refrain from pointing out that the strict reversible natural laws, such
as the law of planetary motion, are indifferent with respect to causality
and finality. The law of light refraction in a medium of spatially
variable coefficient of refraction (= velocity of propagation) may
either be formulated differentially in the usual fashion, in which case
the path of a light ray issuing from a given point 4 in a given direction,
or arriving at a given point B from a given direction, is uniquely deter-
mined by it through stepwise integration. On the other hand, it may
be formulated, with Fermat, as stating that the light, in order to get
from A to B, follows that path which will require the least time. This
looks as though nature accomplishes its ends in the most economical
way possible. Such principles of variation, in particular Hamilton’s
action principle, indeed play an important part in mechanics and
physics. But mathematically they are equivalent to differential laws,
which establish connections only among what is infinitely closely
adjacent. To see in them the expression of a purposive economy of
nature is unwarranted for the further reason that Hamilton’s quantity
of action does not necessarily take on the smallest value possible under
the given conditions; it merely takes on an extreme value, ie. it
remains unchanged under an arbitrary infinitely small alteration of the
independent state quantities.

With the introduction of the concepts of probability and entropy
the symmetry of causality and finality which holds for the reversible
natural laws vanishes altogether. Within the theoretical construction
these concepts evidently furnish an adequate expression for the
metaphysical idea of causation, according to which the earlier is the
determining reason of the later.

In the scheme of Newtonian physics, which was still valid for
Laplace, only the initial state is free, e.g. the order of the planets in the
solar system. This, to Newton, affords enough play for the activity
of purposiveness, for ‘“‘the wisdom and skill of a powerful ever-living
agent.”” He is convinced that ‘“‘blind fate could never make all the
planets move one and the same way in orbs concentric’” (later Kant
and Laplace tried to give a scientific explanation of this feature).
““Such a wonderful uniformity in the planetary system must be allowed
the effect of choice. And so must the uniformity in the bodies of
animals.” (Conclusion of Newton’s Opticks.) }

In Kant’s view, purposiveness is a mere regulative principle for
judging natural beings. Once we know that the eye serves to see we
feel urged to find out what internal organization enables the eye by
virtue of the functional laws that hold for it as well as for other physical
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objects, to perform this task. Kepler, on the other hand, stated: “It
is not the construction of the eye which determines the peculiar ability
of the mind to grasp quantitative relations, but conversely, this basic
qualification of thought requires the corresponding construction of the
eye.” A statement like this has its place within a metaphysical
interpretation of the world, such as has been attempted by Fichte,
under the teleological viewpoint that the world should become con-
scious of itself. For the idealist this telos of the world is posited by its
essence itself.

{Schelling and, more recently, Driesch as well as the biological
school of Holists, substituted the concept of the whole for purposive-
ness. The wholeness conception in biology has been represented with
a variety of nuances by Bertalanffy, J. S. Haldane, A. Meyer, Alverdes,
v. Uexkiill, Woltereck and others. Within psychology, gestalt psy-
chology exhibits a similar tendency. Driesch’s ‘proofs’ that the
organic processes are incapable of ‘mechanical explanation’ will hardly
be recognized as stringent by any physicist, since the argument is
based on an altogether too limited notion of mechanical explanation
of nature. Even the atomic physical processes have very little
similarity with the gross macroscopic action of a machine. Every
atom is already a whole of quite definite structure; its organization
is the foundation for possible organizations and structures of the
utmost complexity. Incidentally, more recent research on chromo-
somes has exhibited such physical structures preserving their genetic
constitution through all cell divisions as Driesch had declared to be
unthinkable. There is no reason to see why the theoretical symbolic
construction should come to a halt before the facts of life and of
psyche. It may well be that the sciences concerned have not as yet
reached the required level. But that this limitation is neither funda-
mental nor permanent is already shown by psychoanalysis, in my
opinion. The fact that in nature “all is woven into one whole,” that
space, matter, gravitation, the forces arising from the electromagnetic
field, the animate and inanimate are all indissolubly connected,
strongly supports the belief in the unity of nature and hence in the
unity of scientific method. There are no reasons to distrust it.

Biology is certainly not applied physics or chemistry but an inde-
pendent science, not only with its own subject domain but also with
laws of its own; the latter may be characterized, in contrast to the
general laws of matter treated in physics, as laws of specific complica-
tion (M. Hartmann). A striking testimony is the chromosome theory
of inheritance, which accounts for a vast array of facts. But the
great progress in biology since the turn of the century has been
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achieved by the same methods of generalizing induction, of comparison
and experiment, which also govern physics. The fact that in the
present state of biology comparative methods still prevail over experi-
mental ones to a larger extent than in physics is not a matter of prin-
ciple. During the last few decades this situation has already changed
considerably. However essential the emphasis on planning and
wholeness may be for the characterization and understanding of
biological forms and functions, it must still be pointed out, with Kant,
that this poses rather than solves a problem. The solution must be
sought in the same methodical manner which we apply to wholeness
concepts in physics. ‘“The innermost of nature is penetrated by
observation and analysis of phenomena, and one cannot know how
far these will lead in time” (Kant). True, there are limits to cogniza-
ble necessity, and we already encounter them in the inorganic domain,
in fact as it seems, in every atom. If inorganic matter behaves in such
manner as follows from statistics provided the causally independent
atomic processes are treated as being also statistically independent,
then in the organic domain the power of life in a living whole might
be theoretically representable as a non-spatial factor by statistical
correlations between those elementary processes. It must be said,
however, that so far the statistical-thermodynamical laws of nature
have proved to be valid even within living organisms. At present we
possess only comparatively primitive criteria of life which are unsuit-
able for precise formulation and exact research. All these questions as
to the essence of life and the possibility of spontaneous generation are
premature and must rest until the day when the laws of life will be
known to us to a much wider extent.

The body-soul problem belongs here too. I do not believe that
insurmountable difficulties will be encountered in any unprejudiced
attempt to subject the entire reality, which undoubtedly is of a
psycho-physical nature, to theoretical construction — provided the
soul is interpreted merely as the aggregate of the real psychic acts in an
individual. It is an altogether too mechanical conception of causality
whieh views the mutual effects of body and soul as being so paradoxical
that one would rather resort, like Descartes, to the occasionalistic
intervention of God or, like Leibniz, to a harmony instituted at the
beginning of time.]-

The real riddle, if I am not mistaken, lies in the double position
of the ego: it is not merely an existing individual which carries out real
psychic acts but also ‘vision,” a self-penetrating light (sense-giving
consciousness, knowledge, image, or however you may call it); as an

individual capable of positing reality, its vision open to reason; ‘“a
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force into which an eye has been put,’”’ as Fichte says, or ‘“an organiza-
tion turned toward two worlds at once,” in the words of Schelling
(““Erster Entwurf eines Systems der Naturphilosophie,”” Werke, Cotta
1858, III, p. 148). But this secret, by its very nature, lies beyond the
cognitive means of natural science.

{In conclusion I want to emphasize once more that it has not been
my intention to write a history of philosophical thought within the
natural sciences. This would require much more comprehensive
historical studies, such as have been made for instance by Lasswitz for
his Geschichte der Atomistik or by Cassirer for his work Das Erkenninis-
problem in der Philosophie und Wissenschaft der neueren Zeit. Pri-
marily interested in mathematical research, I am wanting, in both
time and love, for such work.

The more I look into the philosophical literature the more I am
impressed with the general agreement regarding the most essential
insights of natural philosophy as it is found among all those who
approach the problems seriously and with a free and independent mind
rather than in the light of traditional schemes — or if not agreement
then at least a common direction in their development. Whether
one talks about space in the language of phenomenology like Husserl
or ‘physiologically’ like Helmholtz is less important, in view of their
substantial concordance, than it appears to the ‘standpoint philoso-
phers’ who swear by set formulas.

Exact natural science, if not the most important, is the most
distinctive feature of our culture in comparison to other cultures.
Philosophy has the task to understand this feature in its peculiarity
and singularity. The ideas collected here, which have their firm
foundation in the first, mathematical part, should be looked upon as
endeavors toward this end — although I cannot but admit that the
task is at present far from being completely accomplished.}
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“Du kommst nicht ins Ideen-Land!”’

So bin ich doch am Ufer bekannt.

Wer die Inseln nicht zu erobern glaubt,

Dem ist Ankerwerfen doch wohl erlaubt.
GOETHE.



APPENDIX A

The Structure of Mathematics

1. The aim of Hilbert’s ‘ Beweistheorie” was, as he declared, ‘“die
Grundlagenfragen einfiirallemal aus der Welt zu schaffen.” In 1926
there was reason for the optimistic expectation that by a few years’
sustained effort he and his collaborators would succeed in establishing
consistency for the formal equivalent of our classical mathematics.
The first steps had been inspiring and promising indeed. But such
bright hopes were dashed by a discovery in 1931 due to Kurt Gédel,
which questioned the whole program. Since then the prevailing
attitude has been one of resignation. The ultimate foundations and
the ultimate meaning of mathematics remain an open problem; we do
not know in what direction it will find its solution, nor even whether a
final objective answer can be expected at all. ‘‘Mathematizing’ may
well be a creative activity of man, like music, the products of which
not only in form but also in substance are conditioned by the decisions
of history and therefore defy complete objective rationalization. The
undecisive outcome of Hilbert’s bold enterprise cannot fail to affect
the philosophical interpretation. Yet I find little to change in what
I said about it in this book in 1926, although I should probably now
set my words a little more cautiously.

Godel showed that in Hilbert’s formalism, in fact in any formal
system M that is not too narrow, two strange things happen: (1) One
can point out arithmetic propositions ® of comparatively elementary
nature that are evidently true yet cannot be deduced within the
formalism. (2) The formula @ that expresses the consistency of M
is itself not deducible within M. More precisely, a deduction of ®
or © within the formalism M would lead straight to a contradiction in
M, ie. to a deduction in M of the formula ~ (1 = 1). From the
first fact one learns that the fields of propositions accessible to insight
on the one hand and to deduction on the other overlap, neither of the
two being contained in the other. Symbolic mathematics, while in
some directions going far beyond what is capable of verification based
on evidence, in other directions accomplishes less. Although the idea
of a transcendental world existing and complete in itself is the guiding
principle in building up our formalism, that formalism at any fixed
stage has the character of incompleteness, inasmuch as there will
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always be problems, even problems of a simple arithmetical nature,
that can be formulated within the formalism and decided by insight,
but not decided by deduction within the formalism. We are not
surprised that a concrete chunk of nature, taken in its isolated phe-
nomenal existence, challenges our analysis by its inexhaustibility and
incompleteness; it is for the sake of completeness, as we have seen,
that physics projects what is given onto the background of the possible.
But it is surprising that a construct created by mind itself, the sequence
of integers, the simplest and most diaphanous thing for the construc-
tive mind, assumes a similar aspect of obscurity and deficiency when
yviewed from the axiomatic angle.

Godel’s second theorem is even more disquieting, for it confronts
us with this alternative: either the reasoning by which consistency of
the formalism is established must contain some argument that has no
formal counterpart within the system, i.e. we have not succeeded in
completely formalizing the procedure of mathematical induction; or
the idea of a strictly ‘finitistic’ proof of consistency must be given up
altogether. As a matter of experience, mathematical induction in
whatever form it has so far been used by mathematicians in their
actual research falls under the scheme adopted as an axiomatic rule in
Hilbert’s formalism. Thus the hopes for a finitistic proof of consist-
ency have become dim indeed. G. Gentzen’s ingenious proof of
consistency for arithmetic (1936) is not finitistic in Hilbert’s sense;
the price of a substantially lower standard of evidence is exacted from
him, and he is forced to accept as evident a type of inductive reasoning
that penetrates into Cantor’s ‘‘second class of ordinal numbers.”
Thus the boundary line of what is intuitively trustworthy has once
more become vague. After this Pyrrhic victory nobody had the
courage to carry arms into the field of analysis; yet it is here that the
ultimate test for Hilbert’s conception would lie.

Godel’s construction is closely connected with the logical paradozes
that had provoked so many -discussions among the ancient philoso-
phers! and after a long period of oblivion have again during the last
fifty years become a ferment in the development of our thoughts about

1 The Socratic philosophers of the school of Megara, Euclides, Eubulides, etc.,
revelled in paradoxes of this sort, which clearly belong in a class different from
that of the Eleatic paradoxes of motion as formulated by Zeno. Aristotle dedicates
to them a whole book, De Sophisticis Elenchis; the Stoic Chrysippus dealt exten-
sively with them (see the list of titles of Chrysippus’s logical treatises in Diogenes
Laertius, V11, 189-198); under the Roman Empire they formed part of the regular
school curriculum in dialectics. The medieval scholastic development culminates
in Paulus Venetus (died 1428) (Logica Magna, Venetiis 1499, fol., in particular
De Insolubilibus, 192r. B et seq.). Typical for the attitude of most modern
philosophers is C. Prantl’s contemptuous remark in his classical Geschichte der
Logik im Abendlande: ‘‘Lappalien, wie die Mehrzahl der Fangschliisse sind, wird
die wahre Logik iiberhaupt gar nicht beriicksichtigen” (I, p. 95).
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the foundations of mathematics. For this reason and because of the
deep insight it affords into the structure of mathematics and thereby
of all theoretical science, I shall attempt to describe Godel’s discovery
with as much precision as is possible without becoming too technical.

2. The symbolism outlined in Section 10 will be adopted with the
following modifications (formalism H). In the manner indicated

loc. cit. we differentiate between factual and numerical formulas.
The rule

(1) (b =¢) = (4(b) — A(c))

is adopted for factual formulas A only; for numerical formulas A it is
to be replaced by
(b =c)— (A(b) = A(c)).

Closed numerical and factual formulas will be called formal numbers
and formal propositions respectively. Since we wish to restrict
ourselves to arithmetic, we drop the symbol ¢ and the transfinite set-
theoretic rule (I) on p. 58. As our variables will then stand for
‘arbitrary natural numbers’ only (and not for sets of such numbers
and the like), the operator N and the two rules concerning it,

N1; Nb— N(ob),

are to be discarded. We let the sequence of natural numbers start
with 0 instead of 1 and replace the symbol ¢ by ’.  From the outset we
add the axioms that contain the inductive definition of addition and
multiplication of numbers. Hence the specific arithmetic rules (in
which b and ¢ can be any formal numbers) now read

(b ="'c) > (b =c).
~ ('b = 0).
b+0=b. b+'c="(b+c).
b-0=0. b 'c=(Mb-c)+0b.

The principle of mathematical induction is introduced in the form
I.(A(z) = A('z)) — (A(0) — A(b))

in which A(z) may be any z-predicate (= factual formula containing
no free variable except possibly z) and b any formal number.
The axioms

(©)) Ab) — Z; A(x), 2, A(x) — A(eA(z))

are of course adopted for any variable z occurring in our symbolism.

In the main text the axiomatic rules of the elementary calculus of
propositions have not been enumerated explicitly. We mention the
following three because we shall need them later:
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1. —>¢)— ((a—b) > (a —0)).

2. (a—> ~a)— ~a.

3. (@a—b) > (~b—~a)
(a, b, ¢, any formal propositions). If in the game of deduction two
formulas of the type a » b and b — ¢ have arisen, we may use
Rule 1 and the syllogism to pass on from them to the formula a —c.
In the same manner we can pass from a formula ¢ — ~ a to ~ a, and
from the implication @ — b to the ‘inverted’ implication ~ b — ~ a.

In our metamathematical reasoning we make use of the (actual)
numbers

3) 0, ‘0, "0, "0, ...

(sometimes referred to by the customary abbreviations 0, 1, 2, 3,
. . . ) and of a non-axiomatic theory of numbers which is based on the
possibility of passing from any given number » to the next ’». Hence
we introduce functions f(v) and properties §(») by recursive definitions
that enable us actually to compute the values of f(») for » = 0, 1, 2, 3,

. one after the other, or to decide in the same manner for each
v=20,1,2 3,..., whether or not F(») holds. For instance we
introduce a function f by the recursive definition

f(0) =0, f('») ="f(),
from which we compute
f(0) =0, f(1) =2, §2 =4, iB)=6....

Or we introduce the complementary properties §, § of even and odd
by a procedure common to all armies the world over, that of ‘counting
off by two’s’: ‘0 is even; an even v is succeeded by an odd ’» and an odd
v by an even '».” Recursive properties turn up in such complementary
pairs § and §.

The intuitively defined function f(») must be distinguished from
the numerical formula z + z, which for the moment may be indicated
by the abbreviation f(z). If u is the value of f(») for a given number
v, then the formula f(v) = u is deducible in the formalism; e.g. because
f(2) = 4, the formula "0 + "0 = ""”’0 is deducible. In order to prove
this in general one has to deduce the formula IL(("z + 'z) = "(z + x)),
abbreviated IL(f('z) = "f(x)), which yields the formula f(‘a) = "f(a)
not merely for an actual but for any formal number a. In the same
manner the z-predicate F(z) = Z,(x = (y + y)) is a formal equivalent
of the property § of being even. Indeed, if {(») holds for a given
number » (if » is even) then the formula F(») is deducible; but if
$(») holds (if » is odd) then the formula ~ F(») is deducible. Our
formalism must be wide enough to allow representation of recursively
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defined functions and relations by numerical and factual formulas to
the extent that our construction will require. Incidentally any
recursive property F(r) can be written in the form of an equation
f(») = 0 where | is a recursively defined function.

We are now in a position to describe more precisely what Godel’s
first theorem consists in. He constructs inductively a definite prop-
erty § which has an z-predicate F as its formal equivalent, such that
no actual number » has the property §, while the formula ~ Z.F(x)
(which symbolizes the statement ‘No number has the property §’) is
not deducible in the formalism. Since F(») holds, ~ F(») is deducible.
Use the abbreviation a for e.F(x). Considering that Z.F(zx) — F(a)
or ~ F(a) » ~ Z,F(x), we face this situation: ~ F(») is deducible
whenever v is an actual number, namely one of the formulas (3); how-
ever ~ F(a) is not deducible for a certain formal number a explicitly
constructed.

3. ‘Paradoxy’ enters into Godel’s construction in the form of the
“diagonal process’” by which Cantor proved that the continuum is
not denumerable. Writing a real number in the interval (01) as a
dual fraction, Cantor replaces that number by an infinite sequence
R of 0’s and 1’s,

R=mrrs...1 ... ; (r, =0or 1),
The assumption that all such ‘dual fractions’ can themselves be
arranged in a sequence RV, R® . . . |
R® = yPer® .. (=123 ...)

leads to a contradiction. Indeed, write them in this order, one below
the other, and then go along the diagonal transmuting every O into a 1,
every 1 into a 0; you obtain a sequence @ = ¢, g2 . . . that differs
from R in the first place, q; # r{®, from R® in the second place,
g2 # 1P, ete., and therefore coincides with none of the R’s in the
sequence. This contradiction proves the impossibility of enumerating
all dual fractions R.

On interpreting 0, 1 as the two truth values true and false, a
sequence like R =ry r. . . . becomes equivalent to the predicate
R(x) that holds for a number z = » if r, = 0, and does not hold if
r, = 1. Our entire matrix r{’ of 0’s and 1’s becomes equivalent to a
binary relation S(y, z) that obtains for the numbers z = », y = u if
r# = 0 and does not obtain if #* = 1. The predicate R (z) coin-
cides with S(u, z). Cantor’s construction amounts to forming the
predicate ~ S(z, ). Should it coincide with one of the predicates
RW (), say with R™(z) = S(v, z), then S(vy, ) would hold for a num-
ber x whenever ~ S(z, z) holds, and vice versc. For z = v this leads
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to the contradiction that ~ S(v, v) implies S(v, ¥) and vice versa.
This of course is no paradox, but simply an indirect proof for the non-
denumerability of the continuum of dual fractions (or of the predicates
of natural numbers).

It becomes, however, a paradox, as was first pointed out by Richard
in 1905, when one holds the view that any real number is definable by
a (written or printed) English text. A text is a succession of elemen-
tary signs, and there are no more than about 50 different such signs,
namely the letters of the alphabet (we can do without capitals!), the
digits from 0 to 9, and the signs of punctuation, including the lacuna
of one em and the brackets. Call the number of signs of which a text
is composed its length. As there is only a limited number of sequences
of signs of given length we can enumerate all texts, writing down first
the sequences of length 1, then the sequences of length 2, etc. Itisa
mechanization of this method on which the ‘Lullian art’ was based
(Ramon Lull, died 1315) and which Swift's ‘“projector in speculative
learning” at the Grand Academy of Lagado (Gulliver’s Travels, visit
to Laputa) practices. Thus whatever is definable, in particular every
dual fraction, will find its place in a file arranged according to the
numbers 1, 2,3, . . . .

In this form the paradox cannot be discussed mathematically
because it refers to the meaning of sentences in the English language,
which is of course a somewhat vague affair. But there are better
means for definition than language. At the very beginning of this
book, in Section 1, we spoke of the logical structure of propositions
and propositional functions and saw that properties of numbers are
defined by iterated combined application of a few principles of con-
struction, described there on pp. 5-6. Afterwards we learned that we
have to forego use of the quantifiers 2. and II, if we insist that our
propositions have an intuitively verifiable meaning; instead a prin-
ciple of definition by induction is to be added. In a symbolic for-
malism, however, where the question of meaning and truth is not
raised, we may even include something like Hilbert’s ¢,, But whether
we describe z-predicates by a systematized process of recursive
definitions (system A) or by a formalism M, we can always enumerate
the constructible z-predicates (so that this or that among them may
be referred to as property No. 17 or property No. 919). We then
form the binary relation with two variables S(z, z), ‘x has the property
No. z.” Richard’s paradox is inevitable provided (i) the propositions
of our system are decidable and (ii) the relation S itself is constructi-
ble. For A the assumption (i) is fulfilled, and we therefore conclude
that S is not constructible. It was essentially in this form that I
discussed and solved Richard’s paradox in my book, Das Kontinuum,
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1918. Godel however discovered that in a formalism M of sufficient
latitude S is constructible, and he therefore concludes that not all
of the formulas of M are decidable.

4. From these heuristic arguments let us now turn to an exact
description of Gédel’s procedure. Before we can enumerate all possi-
ble formulas we must label by numbers all the symbols which our
formalism H makes use of. In the following table the number « for
each symbol is written under it. Room is left for an unlimited supply

0, ~,—, &, v, =, ', 4+, - [constants and operators]
1, 6,11, 16 21, 26 31 36, 41 [numbers of the form 5n + 1]

z,Y, 2, u, - - - [variables] Zzy Zyy 2y Zyy - ¢ -

2,7,12,17, - - - [numbers 5n + 2] 3, 8,13,18, - - - [5n + 3]
., o, 1, I, - - - €z, €y, € €y, - ° °
4,9,14,19, - - - [5n + 4] 5,10, 15, 20, - - - [6n + 5]

of variables. (This essential feature of the formalism would have
forced us anyhow to abandon letters as symbols of variables and to use
letters with numbers as indices, like z;, instead.) The numbers 46,
51, . . ., are kept in reserve for constants and operators that may
be introduced later when an extension of the formalism is considered.
The first two variables z, y, with the numbers 2 and 7, will play a
special role.

A formula is a ‘tree’ of symbols where each symbol is immediately
followed by at most two ‘descendents.’ In accordance with the
Platonic diagram, p. 563, we can therefore mark the several places of
the tree as ‘numerals’ i, i.e. as finite sequences of 0’s and 1’s that start
with a 1. The head bears the mark 1, and the marking is continued
throughout the tree according to the rule

i i
| /. (for one and two descendents respectively).
i0 i0 il
In the Platonic fashion we interpret a ‘numeral’
i=r «--rn (ri=1;7ry - ,mm=00rl)
as the dyadic representation of the number
1:=7'12h_1+7'22"_2+ s +Th.

Thus the description of the formula consists in giving for each place
mark ¢ of its tree the label «; of the symbol occupying that place.
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Take for instance the simple formula
4) ~ (0 +z) =y) (or abbreviated 1 + z # y).

The skeleton of the tree is printed beside it, its places marked the first
time by the numerals i and a second time by the corresponding num-
bers ¢ in the usual decimal writing. On looking up the labels « of

~ 1 1
l |
- 10 2

7\ 7N\ N

+ y 100 101 4 5
7\ 7N\ N
’I z 10|00 1001 |8 9

0 10000 16

the symbols 0, ~, =, ’, 4+, z, ¥ in our table we find for this formula (4)
the following list of «’s by which it is completely characterized:

k1 =06, kg =26, x4 =36, ks =7, kg =31, ko =2, K16 = 1.
Let now 1, w2, . . . be the prime numbers in their natural order,
m =2 m=3, m=05 m=7--"

(According to Euclid the series is infinite.) To the formula tree in
which the place 7 is occupied by the symbol labeled «; we ascribe the
number (characteristic)

(5) v = H,‘?l"'"-,

the product extending over the several place marks 7 of the tree. For
instance the characteristic of the formula (4) is

wiraoms i oy or 26.326.736.1]17.]1931.232. 53

(which is quite some number!). Because the factorization of a num-
ber into primes is unique, distinct formulas have distinct characteris-
tics, and for any given number » we can uniquely determine (i) whether
it corresponds to a formula and (ii) if so what that formula is.

The pattern P of a deduction, when read in the direction from
conclusion to premisses is a tree of (closed factual) formulas: each
member c¢ of the tree has either no direct descendent, and then it is an
axiom; or it has two, a minor and a major, and if the minor is b, then
the major is b — ¢. The formula at the head is the one deduced by
the pattern. Having characterized every conceivable formula by a
number » we can again apply the principle on which the formation (5)
of the characteristic of a tree of symbols is based, and thus determine
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the characteristic number u of a deduction P by the product I
where »; is the number of the formula occupying the place marked ¢
in our tree P and the product extends over all the place marks 7 of P.

Simple as this method of arithmetizing a formalism is, it leads to
an insight of considerable philosophical interest — namely that the
natural numbers with their arithmetic constitute a field so wide that
any theory (once it is completely formalized) can be mapped into it.
This amazing power of number, which Pythagoras and Plato recog-
nized more or less clearly, and which Swift made fun of, was utilized
by Godel for the purpose of the metamathematical study of a given
mathematical formalism.

If » is a number, written out explicitly as one of the formulas (3),
and p is the number of an z-predicate F(z), then we denote by 8(u, »)
the number of the formula F(»); if, however, u is not the number of an
z-predicate, we set 8(u, ») = 0. The formula F(») of course arises
from F(z) by substituting the number » for £ wherever z occurs free
in F. This function 8 of two arbitrary numbers u, » can be defined
by induction. It is a fact that in the formalism H we can construct a
numerical formula s(z, ) with the two free variables z, z that is the
formal counterpart of 8 in the sense previously described: if x and »
are any two actual numbers and 8(u, ») equals « then the formula
s(u, ¥) = k is deducible. t and {(z, y) have the corresponding sig-
nificance for y-predicates: N being the number of any given y-predicate
F(y), t(\, v) = « is the number of F(»), and the equation {(\, ») = « is
deducible under these circumstances.

If u, v are any two numbers we can decide whether » is the char-
acteristic of a formal proposition a and u the characteristic of a pattern
P of deduction the head formula of which is a. Let D(u, ») (read: the
pattern No. u is the deduction of formula No. ») denote this relation
between two arbitrary numbers p and », and D(u, ») the complemen-
tary relation. ® and D can be defined by recursion. The formalism
H allows representation of © by a formula D(y, z) with two free
variables z, y: whenever u and » are numbers for which D(u, ») holds,
the formula D(u, ») is deducible; whenever ®(u, ») holds, ~ D(u, »)
is deducible.

Construction of the two formulas s(z, £) and D(y, z) is a minutely
detailed and somewhat laborious but not a particularly difficult task.

The Cantor-Richard paradox depends on an operator S performing
substitution. If we had a formula S(z, ) with two free variables z
and z such that for any formal number a and any z-predicate F(x) the
formulas

(6) F(a) — 8(p, @) S(p, a) = F(a)
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were deducible, ¢ denoting the number of the formula F(z), then the
system would certainly be contradictory. The s here constructed
cannot serve this purpose, for the simple reason that s(u, ») is a num-
erical rather than a factual formula. But it is obvious how to proceed:
S(k, v) ought to stand for the statement that the formula with the
number s(u, v} is true. Interpreting here truth as deducibility, one
arrives at this definition of S in our formalism:

8(z, z) = Z, D(y, s(z, 2)).

It is a task for further inquiry to ascertain the extent to which for-
mulas like (6) are deducible for this S.

After this intermezzo we resume our systematic exposition. Form
the z-predicate ~ S(z, z), i.e.

~ 2, D(y, s(zz))

and compute its characteristic ¥ (a number of fantastic magnitude!).
Substitute in this formula of characteristic ¥ the number ¥ for z, thus
obtaining the formula

(7) ~ Z, D(y, s(vy))

with the number 8(y,y) = 8. Of (7) it may therefore be said that
it states its own untruth.

Here the classical paradox of the pseudomenos comes to mind.2 Its
driest form is the sentence: ‘This statement (the statement which I
now make) is false.’ Like language, our formalism enables us to

2 Eubulides is the inventor of this paradox, according to Diogenes Laertius’s
testimony (D.L., II, 108). Aristotle describes it and gives his own solution in
Soph. Elench., 25, 180a, 35 ff. Of ancient formulations which have come down to
us I mention Cicero, Academica, II, 29: “Si te mentiri dicis idque verum dicis,
mentiris an verum dicis?”’; and Alexander Aphrodisiensis (about a.p. 200) ad
Soph. Elench., Aldina f. 54 r. [M. Wallies, Comm. in Arist. Graeca, Vol. II, pars III,
Berlin, 1898, p. 171, 1. 18], &\\& v & Neywy “‘éyo Yebdopon” &ua xai Yebderar ko
&Mdeber. Athenaeus, Detpnosophists, IX, 401le, gives a distichon commemorating
the poet Philitas of Cos (Theocritus’s master) who allegedly was killed by his vain
attempts to solve the paradox. The pseudomenos is the chief topic of at least
seven of Chrysippus’s logical treatises. As governor of the island Barataria,
Sancho Panza is faced with a problem of the pseudomenos type. and his Solomonic
wisdom finds a drastic solution (Cervantes, Don Quizote, 11, 51). For a detailed
history of the pseudomenos cf. Alexander Riistow, Der Laiigner, Leipzig, 1910.
The similar but less pointed form of the ‘“Epimenides” belongs to the Christian
era. Sending Titus to preach the gospel to the Cretans, Paul warns him (Ep. to
Titus, 1, 12): “One of themselves, even a prophet of their own, said:

kpiites &el Yeboral, kakd dnpid, yaorépes apyai.
The Cretans are always liars, evil beasts, slow bellies,”

and sensing no paradox, Paul adds: ““ This witnessistrue.” Early patristic tradition
(Clemens Alexandrinus, Stromata, I, 59, ed. Stihlin, Leipzig, 1906, II, p. 37) ident-
ifies the ‘“prophet’’ with Epimenides (cf. H. Diels, Fragmente der Vorsokratiker, fifth
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state the truth of a sentence (here a formula) by a sentence (formula);
indeed, for any closed formula a we can form Z,D(y, a). Beyond this
the paradox of the pseudomenos depends on the demonstrative words
‘this,” ‘I,” ‘now,” by which the meaning of the sentence explodes
(‘““cassatio” in the terminology of Paulus Venetus). Here this
paradoxical character is brought about by Cantor’s diagonal process.
But no explosion takes place: v and 8 are definite numbers the com-
putation of which is described with perfect clarity and unambiguity.

{F(y) = D(y, s(yv)) is the formal counterpart of §(u) = D(x, B).
Indeed if u is any number for which D(r, 8) holds then D(u, 8) is
deducible. Moreover 8 = s(yy) is deducible. Hence the following
instance of the axiomatic rule (1),

(8 = s(yv)) = {D(g, B) — D(u, s(y¥))},

yields in two syllogistic steps the formula D(u, s(yy)). For similar
reasons ~ D(u, s(yv)) is deducible if D(u, ) holds. As previously
announced, we show two things: (i) the formula ~ Z,F(y) is not
deducible; (i) and yet if 4 is any given number then §(u) holds. The
proof depends on an assumption and a fact: (A) the formalism is con-
sistent; (B) it is wide enough to provide us with formal counterparts
s and D of the function 8(g, ») and the relation D(u, »).

The proof for (i) is indirect. Suppose we had deduced the formula
(7) whose characteristic number is 3. We should then have a definite
number p such that D(u, ) holds. Therefore D(u, 8) and D(u, s(vv))
are deducible. But

D(p, s(yv)) — 2, D(y, s(yv))

according to the general axiomatic rule A(b) — Z,A(y). Hence we
have deduced the formula Z,D(y, s(yy)) as well as (7), and that con-
stitutes an actual contradiction.

(ii) If p is any number, D(y, B) will not hold. For if it did we
would have an actual deduction of the formula (7) whose characteristic

ed., I, Berlin, 1934, Epimenides fr. 1, pp. 31-32), and it is not unlikely that some-
one like Clement or Jerome who had been educated in ‘pagan’ dialectics linked
the pseudomenos to Paul’s disparagement of the Cretans. However, no earlier
reference than Angelus Politianus (1454-1494), Ep. ad Manutium (Opera omnia,
Basel, 1553, p. 91), seems to be known. Phocylides (around 530 B.c.) is mentioned
by Strabo, Geography, 10.487, as the author of the following statement that
resembles the lying Cretan but blunts the sharp edge of paradoxy: ‘“ The Lerians
are bad people; not merely this one or that one, but all, except Proclees; and
Proclees is a Lerian.” A variation substituting the inhabitants of Chios for the
Lerians is ascribed, we do not know with what authenticity, to Demodocus in
Anth. Pal., 11.235.
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number is 8 — contrary to what we have proved under (i). Hence
D(n, B) holds.

Thus Gédel’s first theorem is proved. The second results from it
by the observation that the reasoning by which we proved the first
theorem can be transmuted into a formal deduction. Exact formula-
tion of the theorem must make use of an abbreviation ‘neg’ that
arithmetizes the negation ~. If » is the number of a factual formula
a then ~ a has a certain number neg(»); if » is not the number of a
factual formula we set neg(v) = 0. The arithmetical function neg
thus defined has its formal counterpart neg. Consistency may now
be expressed by the following formula Q(b) involving an arbitrary
formal number b:

2, D(y, b) = ~ Z, D(y, neg b).

We then maintain: If the formalism is actually consistent, i.e. if the
formula ~ (0 = 0) cannot be deduced, then we are able to point out a
definite instance of the formula of consistency Q(b) that is not deductble.

From our argument it should also be clear what that particular
instance is. Let ¢ be the number of the y-predicate D(y, s(yv)) and
a an abbreviation for ¢,D(y, s(yy)). Then we choose for b the formula
t(¢, a). This is not the place to go through the various steps of the
argument. It boils down to a description of a definite process by which
a (hypothetic) deduction of the specific instance Q(b) of the formula of
consistency may be transformed into a deduction of ~ (0 = 0), i.e. of
actual inconsistency. }

5. Since Godel has left us little hope that a formalism wide enough
to encompass classical mathematics will be supported by a proof of
consistency, the axiomatic systems developed before Hilbert without
such ambitious dreams gain renewed interest. Here the logical terms
‘not’ ~, ‘if then’ — , ‘there is’ Z,, etc., were still understood in their
meaning, and deduction took place by that sort of transcendental logic
on which one is used to rely in geometry and analysis, including the
free use of ‘there exists’ and ‘all’ with reference to the objects of the
axiomatic system. If the formalism of symbolic logic was employed,
this was done merely for the sake of conciseness. Intending moreover
to follow Dedekind and Frege in founding arithmetic on set theory,
one introduced no arithmetical axioms. The whole interest was con-
centrated on the basic set-theoretic relation zey, ‘x is a member of
the set y.” The assumption that to any well-defined property F(x)
there corresponds a set ¢ such that z € ¢ if and only if « has the prop-
erty F,

8) F(x) > (xep), (xep)— F(z) for all z,
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leads to a formal contradiction (cf. p. 58). Indeed on writing S(y, z)
instead of z ¢ y, the formulas (8) become identical with (6), except for
the fact that now the set ¢ is not supposed to be, or to be representable
by, an actual number. We are familiar with the construction by
which the contradiction arises: Take ~ (z € x) for F(xr) and substitute
¢ for x. This is Russell’s paradox of the ‘““set of all things that are not
members of themselves.”

Hence some limitation must be imposed on the conversion of prop-
erties into sets, a limitation strict enough to block Russell’s paradox
but affording as much latitude for mathematics as possible. The
attitude is frankly pragmatic; one cures the visible symptoms but
neither diagnoses nor attacks the underlying disease. The foremost
example of this kind of axiomatic approach is Zermelo’s system (1908),
later improved by Fraenkel, von Neumann, Bernays and others; the
theory of numbers, classical analysis, and even Cantor’s general set-
theory can be based on it. Zermelo’s axioms deal with but one
category of objects called elements or sets, and one basic relation
zey. The fundamental idea is this: instead of using properties for
the definition of sets one uses them only to cut out a subset from a
given set. Hence his axiom of selection: “Given a well defined prop-
erty B and an element a, there is an element b such that z e b if and
only if z is a member of @ and at the same time has the property B.”

The notion of a well-defined property which enters into it is some-
what vague. But we know that we can make it precise by construct-
ing properties by iterated combined application of some elementary
constructive processes. Instead of saying that x has the property A4,
let us say that z is a member of the class 4, e A. We thus distin-
guish between elements or sets on the one hand, classes on the other,
and formulate the axioms in terms of two undefined categories of
objects, elements and classes. Since we postulate that two elements
a, b are identical in case z ¢ a implies z ¢ b and vice versa, and since
each element a is associated with the class A of all elements = satisfy-
ing the condition z ¢ a, we are justified in identifying a with that class
A. Then every element is a class, and the axioms deal with one unde-
fined fundamental relation z¢ Y, ‘the element = is member of the
class Y,” which has absorbed Zermelo’s relation x € y between elements.
The principles for the construction of properties are replaced by corre-
sponding axioms for classes; e.g. given two classes A and B, there
exists a class C such that ze C whenever (ze A) v (e B) and vice
versa.

Since the axiom of selection can only generate smaller sets out of a
given set, we need some vehicle that carries us in the opposite direction.
Therefore two axioms are added guaranteeing the existence of the set
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of all subsets of a given set and the join of a given set of sets. It is
essential that they be limited to sets = elements, and do not apply to
classes.

With the introduction of classes, the axioms assume the same self-
sustaining character as, for instance, the axioms of geometry; no
longer do such general notions as ‘any well-defined property’ penetrate
into the axiomatic system from the outside. A complete table of
axioms for this system, Z as we shall call it, is to be found on the first
pages of Godel’s monograph, Consistency of the Continuum Hypothests.
Such classes as are too ‘big’ are here excluded from admission to the
club of the decent sets, and in this way the disaster of antinomies is
averted. Even before the turn of the century Cantor himself had
moved in the same direction by distinguishing consistent classes’ =
sets, and inconsistent classes.

The system Z seems to be the most adequate basis for what is
actually done in present day mathematics. In particular the ‘existen-
tial’ Dedekind-Frege theory of numbers can be derived from it
(Zermelo), and Godel was able to show (op. cit.) that Zermelo’s far-
reaching axiom of choice in a very sharp form is consistent with the
other axioms of Z (provided they are consistent!).

A different idea, incorporated in the transfinite set-theoretic rule
(I) proposed on p. 58, underlies Bertrand Russell’s theory of types.
Sets of numbers are objects of a higher type than the numbers them-
selves: In (I) the variable z is limited to the realm of (natural) num-
bers while the set y coresponding to the given property A (z) is not, or
is at least not assumed to be, a number. Russell therefore admits an
infinite series of types: the first type consists of the primary objects,
e.g. the numbers, the second of the properties of numbers, the third
of the properties of properties of numbers, etc. These types have to
be kept separate, and the relation z; € ;41 connects an arbitrary ele-
ment z; of type 7 with one, z;+1, of the next higher type 7 + 1. Thereby
the formation of ~ (zex), which led to Russell’s paradox, is pre-

vented. It is advisable to treat binary, ternary, . . . relations along
with the properties. A relation R(zi, x2, . . . , z») with n variables
of given types 71, 72, . . . , 7a is of a ‘higher’ type

T = {1’1,1'2, EEE ,‘r,.}

uniquely determined by the typesr;. We draw the diagram of a
family tree for 7 in whichr,, . . . , 7, appear as the immediate descend-
ents of 7. They in turn have their own descendents, and thus any
type is depicted by a tree that in all its branches ends with the ground
type (or one of the ground types if there are several). An axiomatic
system U based on this hierarchy of types is described in outline in
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H. Weyl, “Mathematics and Logic”’ (American Math. Monthly, 53,
1946, pp. 6-7).

Since ‘there is’ and ‘all’ are applied without hesitation to objects
of all types, we must assume that the objects of any given type form
an existential category, in the sense that the question whether there
exists an element in that category of such and such a property A
always has a meaning and that there either exists such an element or
every element of the category has the complementary property ~ A.
Elementary geometry is a field in which the primary objects (the
points, straight lines, and planes) are considered as given and as con-
stituting existential categories, while the properties and relations
between the primary objects are constructed from a few undefined
basic relations. Our description of axiomatics in Section 4 has tacitly
assumed this standard situation. However in intuitive number
theory both the relations and the primary objects are constructed,
not given; while in a phenomenology of nature one will have to deal
not only with categories of objects, as ‘bodies’ or ‘events,® but also
with whole categories of properties which are prior to all construction,
e.g. with the continuum of color qualities. The system U, if taken
realistically as a description of a world that is, goes much farther in the
latter direction; in this world there are types upon types of objects,
related by e, but existing in themselves, individually and in their
totality. We are as remote as possible from Dedekind’s thesis that
numbers are free creations of the constructive intellect; nor is mathe-
matics based here on logic alone (the reduction of mathematics to logic
had been the lodestar in the Russell-Whitehead enterprise of Principia
Mathematica), but on a sort of logician’s paradise, a universe endowed
with an “ultimate furniture” of rather complex structure and governed
by quite a number of sweeping axioms of closure. The motives are
clear, but would any realistically-minded man dare say he believes in
this transcendental world? Zermelo’s system Z, which is of simpler
structure and even greater power, taxes the strength of our faith to
no lesser degree. (Since the very structure of U may not be described
without resort to the intuitive concept of iteration, it seems foolish
to base a theory of natural numbers in Dedekind-Frege style on this
system U — while in Z this is a perfectly legitimate enterprise.)

It is no serious problem to formalize the systems Z and U com-
pletely by adding axioms of elementary and transcendental logic.

Strange was the way in which Russell arrived at his conception.
He saw clearly that if properties are constructed then the prescription
‘Form the property that attaches to a number if there is a property
such that . . . ’ as a rule of comstruction involves a vicious circle.
He was thus driven to recognize different levels of properties of num-
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bers, a property of level I 4+ 1 being defined in terms of the totality
of properties of level . But afraid of the radical consequences of this
critical insight he at once reduced everything to the ground level by
his axiom of reducibility, and the idea of a ramified hierarchy of types
and levels was nipped in the bud. While he saw that the differentia-
tion of the several types alone is sufficient to stop the known anti-
nomies, he hardly realized to the full how completely he had abandoned
the road of analysis and construction in favor of the existential-
axiomatic standpoint.

For any attempt to get at the real source of the antinomies Russell’s
analysis of the levels is more important than the subsequent ‘betrayal’
by the axiom of reduction. And yet it is more or less an historic
accident that the lever was first applied at this point. The deepest
root of the trouble lies elsewhere: a field of possibilities open into
infinity has been mistaken for a closed realm of things existing in
themselves. As Brouwer pointed out, this is a fallacy, the Fall and
Original Sin of set-theory, even if no paradoxes result from it.

It was for this reason that I put comparatively little emphasis on
the paradoxes in the account given in the main part of this book. It
is not surprising that Gédel, who derived from them the leading idea
for his shattering discovery, judges differently. In a recent appraisal
of Russell’s contribution to mathematical logic he says that the para-
doxes reveal ‘‘the amazing fact that our logical intuitions are self-
contradictory.” I confess that in this respect I remain steadfastly on
the side of Brouwer, who blames the paradoxes not on some transcend-
ental logical intuition which deceives us but on an error inadvertently
committed in the passage from finite to infinite sets.

Whereas Russell’s axiomatic universe U avoids the paradoxes by
the hierarchy of types among sets, and Zermelo escapes them by their
limitation in size, G6del hints at a theory in which ‘““every concept is
significant everywhere except for certain ‘singular points’ . . . so
that the paradoxes would appear as something analogous to dividing
by zero. Our logical intuitions would then remain correct up to
certain minor corrections, i.e. they could then be considered to give an
essentially correct only somewhat blurred picture of the real state of
affairs.” On the ground of all his experience Gédel makes a strong
plea for the realistic standpoint where classes are conceived as real
objects, namely as ‘‘pluralities of things,” or as structures consisting
of such pluralities, and he adds, ‘It seems to me that the assumption
of such objects (classes or concepts) is quite as legitimate as the
assumption of physical bodies and there is quite as much reason to
believe in their existence. They are in the same sense necessary to
obtain a satisfactory system of mathematics as physical bodies are
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necessary for a satisfactory theory of our sense perceptions, and in
both cases it is impossible to interpret the propositions one wants to
assert about these entities as propositions about the ‘data.” Logic
and mathematics (just as physics) are built upon axioms with a real
content which cannot be ‘explained away.”” He adds the warning,
“Many symptoms show only too clearly however that the primitive
concepts need further clarification.”

It is impossible to discuss realism in logic without drawing in the
empirical sciences. Then consistency appears as that part of con-
cordance which can be settled independently of the empirical physical
facts (cf. Section 17, p. 122). We can never be sure whether concord-
ance, however complete for the moment, will still survive when our
observations expand and become more accurate. Godel seems to sug-
gest that we are no better off as far as consistency is concerned. No
Hilbert will be able to assure us of consistency forever; we must be
content if a simple axiomatic system of mathematics has met the test
of our elaborate mathematical experiments so far. It will be early
enough to change the foundations when, at a later stage, discrepancies
appear. That is a position against which I cannot find much to say.
But what are the guiding principles of our axiomatic construction?
Gaodel, with his basic trust in transcendental logic, likes to think that
our logical optics is only slightly out of focus and hopes that after some
minor correction of it we shall see sharp, and then everybody will agree
that we see right. But he who does not share this trust will be dis-
turbed by the high degree of arbitrariness involved in a system like Z,
or even in Hilbert's system. How much more convincing and closer
to facts are the heuristic arguments and the subsequent systematic
constructions in Einstein’s general relativity theory, or the Heisenberg-

-Schrodinger quantum mechanics. A truly realistic mathematics
should be conceived, in line with physics, as a branch of the theoretical
construction of the one real world, and should adopt the same sober
and cautious attitude toward hypothetic extensions of its foundations
as is exhibited by physics.
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Ars Combinatoria

MaARscHALLIN (looking inlo her hand-mirror):
Wie kann das wirklich sein,
dass ich die kleine Resi war
und dass ich auch einmal die alte Frau sein werd’
Wie macht denn das der liebe Gott?
Wo ich doch immer die gleiche bin.
Und wenn er’s schon so machen muss,
warum lisst er mich denn zuschaun dabei
mit gar so klarem Sinn! Warum versteckt er’s nicht vor mir?
Das alles ist geheim, so viel geheim . . .

H. von HoFMANNSTHAL, Der Rosenkavalier, Act I.

1. Perhaps the philosophically most relevant feature of modern
science is the emergence of abstract symbolic structures as the hard
core of objectivity behind — as Eddington puts it — the colorful tale
of the subjective storyteller mind. In Appendix A we have discussed
the structure of mathematics as such. The present appendix deals
with some of the simplest structures imaginable, the combinatorics
of aggregates and complexes. It is gratifying that this primitive
piece of symbolic mathematics is so closely related to the philosophi-
cally important problems of individuation and probability, and that it
accounts for some of the most fundamental phenomena in inorganic
and organic nature. The same structural viewpoint will govern our
account of the foundations of quantum mechanics in Appendix C.
In a widely different field J. von Neumann’s and O. Morgenstern's
recent attempt to found economics on a theory of games is charac-
teristic of the same trend. The network of nerves joining the brain
with the sense organs is a subject that by its very nature invites
combinatorial investigation. Modern computing machines translate
our insight into the combinatorial structure of mathematics into
practice by mechanical and electronic devices.

It isin view of this general situation that we are now going to insert
a few auxiliary combinatorial considerations of an elementary nature
concerning aggregates of individuals. The reader should be warned
beforehand that in their application to genetics the lines are drawn
somewhat more sharply than the circumstances warrant. In the
progress of science such elementary structures as roughly correspond
to obvious facts are often later recognized as founded on structures
of a deeper level, and in this reduction the limits of their validity are
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revealed. This hierarchy of structures will be illustrated in Appendix
D by the theory of chemical valence.

An aggregate of white, red, and green balls may contain several
white balls. Generally speaking, in a given aggregate there may occur
several individuals, or elements, of the same kind (e.g. several white
balls) or, as we shall also say, the same entity (e.g. the entity white
ball) may occur in several copies. One has to distinguish between
quale and quid, between equal (= of the same kind) and identical.
To the question of individuation thus arising, Leibniz gave an a prior:
answer by his principium identitatis indiscernibilium. Physics has
recently arrived at a precise and compelling, empirical solution as far
as the ultimate elementary particles, especially the photons and
electrons, are concerned. Closely related is the question of the
conservation of identity in time; the identical ‘I’ of my inner experi-
ence is the philosophically most significant instance.! Our decision
as to what is to be considered as equal or different influences the
counting of ‘different’ cases on which the determination of probabilities
is based, and thus the problem of individuation touches the roots of
the calculus of probability. It is through the combinatorial theory of
aggregates that these things find their exact mathematical interpreta-
tion, and there is hardly another branch of knowledge where the
relationship of idea and mathematics presents itself in a more trans-
parent form.

The simplest combinatorial process is the partition of a set S of n
elements into two complementary subsets S, + S;. For the sake of
identification and recording, we attach arbitrarily chosen distinct
marks p to the elements. Only such relations and statements have
objective significance as are not affected by any change in the choice
of the labels p; this is the principle of relativity. Its abstract formu-
lation reveals its triviality. An ‘individual’ subset S; is charac-
terized by stating for each element, marked p, whether it is a member
of S1, peS,, or of the complementary subset S;. As the construction
of S, thus depends on the decision of n alternatives (p e S) or p € S, for
each of the n elements p) there are 2* individually distinct possible
subsets (including the vacuous null set as well as the total set S).
However, this number is reduced to n 4+ 1 if the n elements are con-
sidered as indiscernible. For then a subset S, is completely charac-
terized by the number n, of its elements, a number that is capable of
the n + 1 values 0, 1, - - -, n; and the partition S = S; + S, is
characterized by the decomposition n = 7, + 7, of 7 into a sum of

! The riddle of the identical ego, that is an onlooker at what is done to him and
by him, is movingly expressed by the above lines from the Rosenkavalier.
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two terms (ni, n, being the numbers of elements in Sy, S respectively.)?

One will ask how many individually distinet partitions S = S, + S,

lead to the same ‘visible’ partition as characterized by the decom-
n!

position n = n; + n,. The answer is Consequently the

'nl! ’I’Lz!
total number 2” of all individual partitions must equal the sum

n!
z n.! ny!

extending over the n 4 1 different decompositions n = n; + n,:

1) 2»- 'ﬂ' + 'ﬂ‘ + n! +...+L!_.
( T0ln! T 1l(n— 1! 20 (n — 2)! n!0!

This simplest case affords but little interest. Moving closer to
reality, let us now assume that there is a certain respect in which
elements may be equal (~) or different.? Balls may be white, red,
or green; electrons may be in this or that position; animals in a zoo
may be mammals or fish or birds or reptiles; atoms in a molecule may
be H, He, Li, . . . atoms. The universal expression for such ‘equal-
ity in kind’ is by means of a binary relation a ~ b satisfying the
axioms of equivalence: a ~a; if a ~b then b ~a; if a~b, b~c
then @ ~ ¢. Various words are in use to indicate equivalence, a ~ b,
of two arbitrary elements a, b under a given equivalence relation ~:
a and b are said to be the same kind or nature, they are said to belong
to the same class, or to be in the same state. An aggregate S is a set of
elements each of which is in a definite state; hence the term aggregate
is used in the sense of ‘set of elements with equivalence relation.” Let
us assume that an element is capable of k distinct states C;, . . . C;.
A definite individual state of the aggregate S is then given if it is
known, for each of the n marks p, to which of the k classes the element
marked p belongs. Thus there are k» possible individual states of S.
If, however, no artificial differences between elements are introduced
by their labels p and merely the intrinsic differences of state are made
use of, then the aggregate is completely characterized by assigning to
each class C; (1 =1, - - -, k) the number 7n; of elements of S that
belong to C;. These numbers, the sum of which equals n, describe
what may conveniently be called the visible or effective state of the
system S. Each individual state of the system is connected with an

2 n; and n, are understood to be natural numbers rangmg over 0, 1, 2,
3 A symbol for negation is no longer needed. It is therefore hoped that no
confusion will result when from now on we use the sign ~ for equivalence.
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effective state, and any two individual states are connected with the
same effective state if and only if one may be carried into the other
by a permutation of the labels; here the principle of relativity finds
expression in the postulate of invariance with respect to the group of
all permutations. The number of different effective states equals

that of the ‘ordered’ decompositions n =n; +n,+ * - - + n,of n
into k summands 7;, a number for which one readily finds the value
@ (n+l)---(n+k—-1) m+k-1!

1--- (k=1 T onl(k — 1)

Nor is it difficult to ascertain how many distinct individual states are
connected with the same visible state and thus to explain the dis-
crepancy between the two numbers k" and (2), just as the equation (1)
explains the discrepancy between the value 2" on the left and the
number n + 1 of terms in the sum on the right.

The number of individually distinct possible partitions of S into
two complementary subsets S,, S;, or the number of individually
distinct sub-aggregates S, has been found to be 27; but since the ele-
ments are now discernible according to their ‘kind,’ an effective sub-
aggregate S, is fixed by assigning to each class C; the number n‘}? of
elements with which that class is represented in S;. Since n'} is
capable of the n; + 1 values 0, 1, - - - , n; there are

3) (m+1) - (m+1)

different possible effective partitions S = 8S; + S;. The number (3)
is therefore of necessity smaller than or equal to

2" n=n4+ -+ m).

The maximum 27 is attained if all n; have the value 0 or 1, i.e. if
no two elements of S are ever found in the same class. Indeed,
that being the case, the elements of S may be completely characterized
by the classes to which they belong (by their state or their ‘nature’)
and there is no need then for an artificial differentiation by labels.
In this case we speak of a monomial aggregate.

The process inverse to the partition of an aggregate S into two
complementary sub-aggregates Si, S: is the union of two given (dis-
joint) aggregates S;, S; into a whole S = 8, 4+ S,. The combina-
torial theory of aggregates and of the mutually inverse operations of
partition and union finds a particularly important application in
genetics. The development of two organisms may run a different
course, owing to ‘external circumstances,’ even if they are of the same
genetic constitution (have the same germ plasm or are of the same
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genotype, in Weismann’s and Johannsen’s terminologies). This
duality of constitution and environment, ‘nature and nurture,’” is
basic for our interpretation of the facts of inheritance. It may be
called an a priort conception like the somewhat similar duality of
inertia and force in mechanics. Roughly, the environmental factors
are characterized as being external to the organism, (relatively) vari-
able and controllable, in contrast to the internal, given and (relatively)
stable constitution. Constitution is often inferred and thus of hypo-
thetical rather than manifest nature, as for instance the atoms that
constitute a chemical compound. What belongs to the social environ-
ment of an individual may be a constitutive characteristic of the society
in which he lives. As in the case of other fundamental conceptions,
the precise meaning for each field gradually unfolds with a theory of
the relevant phenomena: on the basis of a somewhat vague but
natural interpretation one discovers certain laws that surprise by their
exact form and are welded together into a theory; by holding on to
these simple laws and interpreting the ever increasing array of detailed
facts in the light of the theory one succeeds in making the original
conception more and more precise. In this sense there is an over-
whelming amount of empirical evidence in biology for the distinction
of nature and nurture, although it never becomes a perfectly sharp one.

By breeding experiments one has succeeded in dissolving the genetic
constitution into an aggregate of individual genes or ‘points,” much as
chemistry dissolves a molecule into an aggregate of atoms. And as an
individual atom may be in one of the various states (may be one of
the various ‘entities atom’) indicated by the chemical symbols H,
He, Li, . . . , so are the genetic points capable of different discrete
states called alleles. In the act of fertilization (syngamy) two aggre-
gates Sy, Ss, the ‘gametes’ (sperm and egg), are united into a ‘zygote’
or germ cell S = 8; 4+ S;. A gamete is produced by an organism,
Si by @i, Sz by Qs (Q is not necessarily distinct from Q,, both may be
the same self-fertilizing plant). All body cells of the organism Q that
develops from the germ cell S are, notwithstanding their functional
differentiation, as far as their genetic constitution is concerned,
replicas of its zygote S. Part of the body cells at a certain stage of
the life-cycle undergo the inverse process of partition into two com-
plementary subaggregates (maturation division or meiosis);* the
organism Q is therefore capable of producing as many constitutionally
distinct gametes as there exist effective different sub-aggregates of S.
This interplay of syngamy and meiosis, union and partition, explains

¢ The actual process (a two-step process accompanied by the longiiudinal
splitting of each chromosome into two chromatids) is slightly more complicated
than this its combinatorial result.
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the essential features of heredity: constancy prevails in so far as the sum
of two aggregates is uniquely determined by both parts, variability prevails
inasmuch as partition of an aggregate into two complementary parts may
be performed in various ways.

An organism produces the gametes S’ contained as sub-aggre-
gates in its zygote S with certain relative frequencies (probabilities)
v = 4(8’). The probabilities will be influenced by external circum-
stances, in particular by temperature, and are thus, in contrast to the
discrete aggregates, capable of continuous variation. But it is evident
a priort that the complementary gamete S’ must occur with the same
frequency as S’, ¥(8’) = ¥(8”). (Even if, as is the case for a @
organism, one of the two complementary parts S’, 8" is eliminated
after maturation division by degenerating into the polar body, one
will hold on to the assumption v(8’) = v(8") for the a priori probabili-
ties.) It is plausible that the probability of syngamy between a
gamete S’ produced by 2 and a gamete S% produced by Q« is the same
for the various kinds of gametes S’ and S that are produced by the
two organisms @, @x. The probability that the pair of parents @, Q«
beget a child with the zygote S’ + S% is therefore presumed to be
v(8") - vx(S%).

Returning to the abstract theory, let us pass to a discussion of
temporal changes of state of a given aggregate S. As long as elements
are capable of discrete states only, we are forced to dissolve time
also into a succession of discrete moments, t = - - -, —2, —1, 0,
1,2, - + - . Transition of the system from its state at the time ¢ into
its state at time ¢ 4+ 1 will then be a jump-like mutation. With the n
elements individualized by their labels p, the changing state of affairs
will be described by giving the state C(p; t) of the element p at the
time ¢ as a function of p and ¢{. This ‘individual’ description, by
means of the function C(p; t), is to be supplemented by the principle
of relativity according to which the association between the individuals
and their identification marks p is a matter of arbitrary choice; but it
is an association for all time, and once established it is not to be
tampered with. If, on the other hand, at each moment attention is
given to the visible state only, then the numbers n,(t), . . . , n(?)
in their dependence on ¢ contain the complete picture — however
incomplete this information is from the ‘individualistic’ standpoint.
For now we are told only how many elements, namely n;(t), are found
in the state C; at any time ¢, but no clues are available whereby to
follow up the identity of the n individuals through time; we do not
know, nor is it proper to ask, whether an element that is now in the
state, say Cs, was a moment before in the state C; or Cs. The world
is created, as it were, anew at every moment, no bond of identity
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joins the beings present at this moment with those encountered in the
next. This is a philosophical attitude towards the changing world
taken by the early Islamic philosophers, the MutakallimGn. This
non-individualizing description is applicable even if the total number
m(t) + - - - + n(t) = n(t) of elements does not remain constant in
time,

Wherever in reality identification of the same being at different

times is carried out, it is of necessity based on the observable state.
For a continuous flow of time and a continuous manifold of states, the
underlying principle is by and large to be formulated as follows: sup-
pose there exists at a time ¢ but one individual in a certain state C
appreciably different from the states of all other individuals; if after-
wards, especially if shortly afterwards, at a time ¢/, one and only one
individual is encountered in a state C’ deviating but little from C, or
‘typically similar’ to C, then the presumption is justified that one is
dealing with the same individual at both moments ¢ and ¢’. Instead
of ¢ and ¢ one may have a whole sequence of moments ¢, ¢’, ¢"’
Think of following a wave moving over the surface of the water!
Even in recognizing people, we are dependent on such means (the
famous scenes of recognition in world literature, from the Odyssey on,
come to mind) as long as the inner certitude of the identity of one’s
own ego and communications based thereon (‘‘I am the same man who
once met you then and there’’) are left out of play.

2. We saw that in speaking of different kinds or states or classes,
reference is made to an underlying notion of equivalence. It is a fre-
quent occurrence that classes of elements break up into sub-classes;
we prefer to speak of genus and class, rather than of class and sub-
class.5 KEvery class C belongs to a definite genus G = [C], and an
individual by being a member of the class C belongs also to the genus
|C]. Thus the animals of a zoo are divided into mammals, fish, birds,
etc., and the mammals again into monkeys, lions, tigers, etc. States
may coincide in a certain character; this character then corresponds
to a genus, and the state to a class, of elements. The division into
genera and classes is based on a coarser and on a finer notion of
equivalence: @ ~ b and @ = b, where a ~ b implies a = b. In differ-
ent fields of knowledge this graded division appears under different
terminological disguises. The aggregates of genetics are an example
in point. The genes correspond to the genera, the alleles to the
classes; a gene may have two or several alleles. The fact that an
element p of the aggregate belongs to the class C and thereby to the

5 This is the terminology “1sed in number theory; a genus of quadratic forms is
wider than a class. Biological taxonomy with its graded hierarchy of kingdom,
class, order, family, genus, species, variety, favors the opposite usage.
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genus [C] is here expressed by the words ‘the point p is occupied by the
allele C of the gene [C].’

I mention here a few of the names given in genetics to the basic
notions of the combinatorial theory of aggregates, and describe the
special circumstances ‘normally’ prevailing in procreation. An
individual aggregate S is known if for every one of its points p the
class C, is known to which p belongs; p then belongs also to the corre-
sponding genus [C;]. Two individual aggregates, S and S*, are of the
same constitution, S = S*, if the labels p employed for the points of
the first aggregate can be mapped in a one-to-one way upon the labels
p* employed for the points of S*, p 2 p*, such that homologous points
p and p* in the two aggregates always belong to the same class (iso-
morphic mapping). According to the principle of relativity, aggre-
gates of the same constitution are to be considered as indiscernible.
Under given external circumstances the zygote S completely deter-
mines the phenotype, the visible development of an organism; the
phenotype is necessarily the same for zygotes of the same constitution.
An effective aggregate S is described by assigning to each class C the
number 7n¢ of the points of S in C’; the number 7ns of points in a genus
G then equals the sum Zn. extending over those classes C for which
[C] = @. Individual aggregates are connected with the same effective
aggregate if and only if they are isomorphic, i.e. of the same constitu-
tion. Two individual aggregates S and S* are said to be of the same
species o if, with regard to a suitable one-to-one mapping p = p*,
homologous points p and p* in S and S* always belong to the same
genus.® Coincidence of the numbers ng and ny for all possible genera
G is the necessary and sufficient condition for this to be the case; the
numbers ne therefore contain a complete description of the species o
of an aggregate. An aggregate S was called monomial if different
points of S never belong to the same class; it is called haploid if differ-
ent points of S never belong to the same genus, i.e. if for each genus G
the number 7o equals 0 or 1. The corresponding species then deserves
the name haploid. If S contains two points of different classes but
of the same genus, then S is said to be heterozygous (hybrid); if it con-
tains two points of different classes but of the same given genus G, it is
heterozygous with respect to @. Union of two aggregates S;, S, into

¢ This natural but purely combinatorial concept is related to but not identical
with the meaning of the word species current in hiology. There is no doubt that
the latter, in spite of the difficulty of giving a precise definition, corresponds to a
fundamental fact. As an example indicative of the wide gap between the two
notions I quote Dobzhansky’s ‘dynamic’ definition (Philosophy of Science, 2,
1935, pp. 344-355): “Species is that stage of evolutionary process at which the
once actually or potentially interbreeding array of forms becomes segregated in
two or more separate arrays which are physiologically incapable of interbreeding.”

244



ARS COMBINATORIA

a whole 8 = 8; + 82 and the inverse process of partition of S into
S, Sz may be called balanced in case the parts are of the same species.
This is what normally happens in syngamy and meiosis. Under
balanced syngamy and meiosis, species remain constant throughout the
sequence of generations. Indeed, let S, 8* be two gametes of the same
species ¢ that have united to form the zygote S 4 S*; if the latter
splits by balanced meiosis into S;, Ss, then 8, S: are necessarily of
the same species o as S, 8*. This remains true even if mutations are
admitted by which a point may change its class but not its genus (point
mutations). In particular, if the game of ‘balanced’ reproduction
starts with two gametes of the same haploid species ¢, then only haploid
gametes of that species (and diploid zygotes) will turn up in the suc-
cessive generations; this is the most common case that Gregor Mendel
was dealing with. Assuming the zygote of a self-fertilizing organism
Q to be non-hybrid, all direct and indirect descendants of Q will have
the same genotype as €. Differences of phenotype in such a ‘pure
line,” if they occur, must be due to different external circumstances,
and thus the invariable genetic constitution is most clearly separated
from the variable environmental factors (W. Johannsen’s experiments
with beans, 1903).

3. In physics one aims at making division into classes so fine that
no further refinement is possible; in other words, one aims at a complete
description of state. Two individuals in the same ‘complete state’
are indiscernible by any intrinsic characters — although they may not
be the same thing. Classical mechanics takes the state of a point of
given mass (and charge) to be completely described by position and
velocity, because by taking this view it reaches agreement with the
principle of causality, which asserts that the (complete) state of a mass
point at one moment determines its state at all times. The simplest
example of a mass point is the linear oscillator; it oscillates on a
definite line (thus requiring a space of one dimension only) and has a
definite frequency » (= number of oscillations per 2r seconds).” The
possible states of an oscillator as specified by position and velocity
form a two-dimensional continuous manifold. According to quantum
mechanics, however, it is capable of a discrete variety of different
states only, specified by a number » assuming the values0, 1,2, . . . .
In the state n the oscillator has the energy = - Av where h = 1.042
X 10?7 erg X sec is Planck’s action quantum (the number now
usually designated by a crossed ). Radiation in a room, the walls of
which are perfect mirrors ( Hohlraum’), is equivalent to a superposi=

7 It is unfortunate that in English the word ‘frequency’ is used in tw» entirely
different senses — for the number of occurrences in a statistical ensemble (German
‘Haufigkeit’) and for the number of oscillations.

245



APPENDIX B

tion of harmonic oscillations, each marked by an index « and having
a definite frequency »,. Hence the Hohlraum radiation may be con-
sidered as an aggregate of linear oscillators endowed with certain
proper frequencies »,. (The static part of the electromagnetic field
is here disregarded.) According to the quantum mechanics of the
individual oscillator, the complete state of our field of radiation there-
fore assigns an integer n, to each oscillator «; in this state the oscillator
a has the energy n., /v, and the sum Z,n, - hv, extending over all
oscillators is the total energy. In the language of photons one
expresses this by saying that n, photons in the state a and of energy
hv, are present. In the language of oscillators the index « specifies the
individual oscillator and the integer n, its state; whilst, in the language
of photons, a designates the state of a photon and n, the number of
photons in that state. After translation into the photon language,
radiation appears as a gas of photons.

Since the possible complete states of an individual form a discrete
manifold in quantum mechanics, application of statistics consists here
in a mere counting of states. Once the question of complete descrip-
tion of states is solved, all probabilities are evaluated by simple
enumerations, and the problem of comparing probabilities in a con-
tinuous ‘phase space’ by measurement does not arise. Since photons
come into being and disappear, are emitted and absorbed, they are
individuals without identity. No specification beyond what was
previously termed the effective state of an aggregate is therefore
possible. Hence the state of a photon gas is known when for each
possible state a of a photon the number 7. of photons in that state is
given (Bose-Einstein statistics of radiation).

While one need not penetrate deep into the nature of light before
it reveals, by such phenomena as diffraction, interference, etc., its
undulatory character, its corpuscular features are more concealed.
For the electrons the opposite is true; they openly show their cor-
puscular nature by hitting here or there, whereas their undulatory
features were discovered by the experimentalists only simultaneously
with the development of quantum theory. Yet it is clear that matter,
like radiation, is to be represented by a wave field, the laws of which
will form a counterpart to Maxwell’s equations of the electromagnetic
field (de Broglie, Schrodinger, Dirac). Once this has been accom-
plished for the individual electron, the same considerations take place
as applied above to the Hohlraum radiation; a gas of electrons is
described by giving for each state « the number of electrons n, that
exist in this state and possess the corresponding energy hv,. With a
gas of innumerable free electrons we contrast the shell of the few
electrons that are tied to a positively charged atomic nucleus, and
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together with that nucleus constitute an afom. The ideas of discrete
energy levels and of the photon have scored their most brilliant success
in their application to the latter situation; for they lead straight to
Bohr’s frequency rule, according to which the energy hv gained by an
electron jumping from a higher to a lower energy level in the atom is
emitted as a photon of frequency ». This rule gives the clue for the
explanation of the vast array of very accurate observations accumu-
lated by the spectroscopists concerning the emission of spectral lines
by radiating atoms and molecules. But full agreement is reached
only after adding the assumption that no two electrons are ever found
in the same complete state (Pauli’s exclusion principle). This is the
decisive fact for an understanding of the so-called periodic system of
chemical elements. The quantum theory of chemical bonds rests on
the same principle (¢f. Appendix D). Once deduced from the spectro-
scopical facts, the principle could be applied to such free electrons as
take care of electric conduction in metals or knock about in the interior
of stars; and here too the results were found to be in accordance with
experience. The upshot of it all is that the electrons satisfy Leibniz’s
principium identitatis indiscernibilium, or that the electronic gas is a
‘““monomial aggregate” (Fermi-Dirac statistics). In a profound and
precise sense physics corroborates the Mutakallimln; neither to the
photon nor to the (positive and negative) electron can one ascribe
individuality. As to the Leibniz-Pauli exclusion principle, it is found
to hold for electrons but not for photons.

4. The aggregates considered so far have been without structure.
But the aggregate of atoms in a molecule possesses a structure char-
acterized in a schematic way by Kekulé’s valence strokes. It is to be
presumed that the aggregate of gene points that constitutes a gamete
or zygote likewise is not without a structure. Experience has taught
that this structure is based on a simple binary relation of ‘neighbor-
hood’ between points. We say that two neighboring points are
‘joined.”. With a name borrowed from topology, an aggregate
endowed with this kind of structure may be called a compler.® Two
constitution
species
correspondence p = p* can be established between the points p and p*
of K and K* respectively such that (i) two homologous points always
belong to one and the same ’class

genus
K* if and only if p and ¢ are neighbors in K. Call the correspond-
ence c-isomorphic in the first, g-isomorphic in the second case. A

complexes K, K* are of the same l ] if a one-to-one

} and (ii) p*, ¢* are neighbors in

8 The complexes of topology consist of elements without quality, whereas our
clements possess different qualities in so. far as they belong to different classes.
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complex K consists of the two separate parts K, + K, provided no
point of K is neighbor to a point of K»; K is connected if no decomposi-
tion into two separate parts is possible (except the trivial one in which
one part is vacuous and the other the whole K). In a unique manner
any complex may be decomposed into separate connected components.
According to the combined experiences of genetics and cytology these
components are to be identified with the chromosomes in the nucleus
of a cell, and we shall therefore call them by this name. A connected
complex that decomposes into two separate parts after removal of any
one of its joins is said to be a tree. (Incidentally the trees used in
Appendix A to depict formulas and demonstrations are of this kind.)
Under given external circumstances the complex of points that con-
stitutes the zygote of an organism 2 determines the phenotype of Q;
or more precisely, the phenotype is the same for two c-isomorphic
zygotes. This implies that generally speaking the phenotype not only
depends on the aggregate K but also on the structure of the complex K;
the structural influence is known under the name of position-effect.
In carrying out union and partition of complexes no joins must be
severed nor new joins be established. If this were the whole story
chromosomes would behave as indivisible wholes and there would be
no way of distinguishing between different genes in the same chro-
mosome. Under these circumstances Mendel’s rule of independent
assortment would hold, asserting that the probabilities v for the
various constitutionally different gametes produced by a definite
organism are all alike. Whereas Mendel is right in that two points in
two different chromosomes are independent, it has been found that
points in the same chromosome are not absolutely but only more or
less tightly linked together. This phenomenon of linkage has been
studied with paramount success by T. H. Morgan and his school for
the fruit fly Drosophila melanogaster, and has resulted in detailed gene
maps from which quantitative information can be drawn about the
probabilities y. Morgan has explained linkage by the process of
crossing-over. Suppose a zygote K + K* has been formed by balanced
syngamy from two gametes K, K* of the same species o that are related
to each other by the g-isomorphism p & p*. Let a, b be a pair of
neighboring points in K and a*, b* the homologous pair in K*. Then
a*, b* will be neighbors in K*; the points a, b will lie in one chromo-
some Ko, of K and a* b* in the homologous chromosome Ky of
K*. Crossing-over consists in breaking the joins ab and a*b* and
joining instead @ with b* and b with a*. If K, is a tree, then this
process carries the disconnected pair (Ko, K7) into a pair (K, K;) of
chromosomes that are g-isomorphic to K,. Points that before crossing-
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over were in the same chromosome K, may now be separated, one
belonging to K, the other to K). Pairs of homologous chromosomes
in the nucleus of a cell are seen to put themselves in a position for such
an operation of crossing-over immediately before meiosis takes place;
they extend side by side, each point in one chromosome opposite the
homologous point in the other (synapsis). If afterwards balanced
meiosis occurs, the new gametes K, K* will be of the same species o
as K, K* Linkage between two points a,b of a chromosome will be the
looser the more ways there exist to separate them by crossing-over.

C'omplexes may undergo two sorts of mutations. Besides the point
mutations in which the joins are not tampered with while the points
p change their classes C, (without changing their genera), we have
structure mutations that leave the state of the points undisturbed but
alter the joins.? The operation described above as crossing-over may
be performed with-any four distinct points a, b, a*, b* (and may then
be called ‘switching-over’). A simple break and this process of
switching-over seem to play the role of elementary operations for
structure mutations. Mutations are rare events, in contrast to
crossing-over for which an opportunity is provided by synapsis before
every meiosis.

The simplest connected complexes are the rod a;,—a,— -

— ay (in which consecutive points a; are connected by the joins —)
and the ring. With few exceptions the chromosomes seem to be rods
(T. H. Morgan’s law of linear arrangement). However, switching-
over when occurring in one rod (not between two rods) may produce a
rod plus a ring (or reproduce the rod with an inverted section). A
complex consisting of separate rods and rings will preserve this char-
acter under any breaks and switchings-over.

A chromosome has a centromere. If a structural change produces
chromosomes with no or two centromeres then they are usually left
behind when the cell divides, and thus deficiencies result. There are
also several ways in which the whole chromosome outfit of a cell
nucleus, or an individual chromosome, or part of a chromosome, may
be duplicated.

Here we have attempted to develop the formal scheme ot genetics
in such general form as to comprise all more or less irregular occur-
rences. Nowhere in this scheme was it necessary so far to speak of
sex; but of course the fact cannot be ignored forever that syngamy
between two gametes takes place only if one is a sperm, the other an

®On the basis of the position-effect, R. (ioldschmidt has recently challenged
the entire conception of gene and the distinction between poiny and structure
mutations.
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egg. Thisis a polarity (gamete sexuality) that has nothing to do with
genes.!® On the other hand, whether an individual organism is a
sperm-producing male or an egg-producing female (zygote sexuality)
is determined like all its other ‘ visible characters’ by the genotype of
its zygote — in conjunction with the external circumstances influenc-
ing development. Experience shows that it is not a single gene in the
zygote, but a balance between many genes, that determines the sex.
The sex chromosome (where it is distinguishable from the autosomes)
merely tips the scales. This explains the phenomenon of intersexes
and modifies the common belief that sees in sex the outstanding
example of a non-quantitative, an either-or, character.

{5. Our remarks about entropy and statistics in Section 23B of
the main text and in the following Appendix C on quantum physics
will be made clearer if we say at this place, in parenthesis as it were,
a few words about the foundations of statistical thermodynamics. Here
quantum theory has introduced a decisive simplification. Indeed, in
quantum physics a system Z is capable of no more than a discrete
series of (complete) states with definite energy levels

U (=0,1,2 ...).

In view of the conservation law for energy, let us distribute a large
number N of systems Z at random over its possible states 7,
yet so that the total energy of the N systems has a preassigned
value N+ A (A = average energy of the individual system). One
finds that in the overwhelming majority of all distributions the rela-
tive frequencies N;/N with which the several states ¢ are represented
is, in the limit for N — «, proportional to e~"i, Here a denotes a
constant that is to be determined in terms of the given average energy
A. We therefore define the canonic distribution of parameter a by
assigning the relative probability w; = e—*Vi to the state . (Relative
probabilities need not satisfy the normalizing condition Z;w; = 1.)
Any quantity Z; dependent on the state ¢ will then have the mean valuet

(Z)a = z AR e‘ﬂ"-‘/E e=avi,

and it is this value that we ascribe to the quantity in ‘thermic equilib-

10 Denote by Qag an organism arising from syngamy of a sperm of genotype o
and an egg of genotype 8. The fact that there are cases when, even under equal
circumstances, the reciprocal cross (g, differs in appearance from g is evidence
that interpretation of organic development in terms of genes alone will not always
suffice. Besides the genes in the chromosomes of the cell nuclei, other hereditary
agents influcncing the development have to be assumed in the cytoplasm. This
problem however is still far from a satisfactory solution.
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rium.” The parameter « is connected with the given mean energy A
by the equation (U), = A. The systems occurring in nature are
capable of states with arbitrarily high energy values; consequently a
must be positive, and the standard distribution which assigns to every
state 7 the same probability w;° = 1 may only approximately be realized
as long as the energy A stays finite (namely for large values of A and
correspondingly low values of «). The reciprocal number a—! has the
dimension of energy and may for the moment be called statistical
temperature.

Because of the conservation law of energy, the canonical distribu-
tion is stationary in time. The possible states of a system X consisting
of two parts Z, 2’ is characterized by the pairs (Z, k) formed from any
state 7 of the system Z and any state k of the system 2’. Let U;, U}
designate the energy of = in the state 7 and of 2’ in the state k respec-
tively; then the energy of £ in the state (¢, k) equals U; + U}, pro-
vided no interaction takes place between the two parts. For the
probability of the state (¢, k) in thermic equilibrium we obtain

Wi = e—a(Ui-H/b') = g—ali. e—aUh' (_—_- w; - w;‘)

This means three things: (1) thermic equilibrium of the whole implies
thermic equilibrium for the parts; (2) the law of statistical independ-
ence prevails for the combination of the parts, wix = w; - w; (3) the
parameter « has the same value for both parts, with which the value
for the total system also agrees. On account of this third point
statistical temperature shares with ordinary observable temperature
(a more-or-less rather than a quantitative character of bodies) the
decisive property that bodies in contact level their temperatures.

An ideal gas, i.e. an aggregate of n particles the states of which are
completely described by position and velocity and the interaction of
which is negligible, will occupy a definite volume V under a definite
pressure p. Application of classical physics and the canonical dis-
tribution to such a gas yields the value pV /= for its statistical tem-
perature. Hence if T designates the (absolute) temperature read
from a gas thermometer in contact with the system Z and filled with
an ideal gas, then the statistical temperature turns out to be kT' where
k is a universal factor of proportionality (Boltzmann’s constant) that
must be added in order to reduce the scale of temperature to the
customary Celsius degrees (100°C = difference of the boiling and
freezing points of water under pressure of one atmosphere).!! The

11 The mass M = n - u of the gas is proportional to the number 7 of particles.
v = V/M denoting the specific volume, the Gay-Lussac laws are obtained in the
usual form pv = RT with a constant B = k/u characteristic for the gas. Conse-

quently k is of atomistic smallness, and for different gases the product of R and the
‘molecular weight’ has the same value.
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entire theory of thermic equilibrium thus boils down to this one
principle holding in quantum as well as classical physics: the canonical
distribution w arises from the standard distribution w° by means of

the equation
= w0 . g~U/KT

where U denotes the energy (variable from state to state) and T the
fixed temperature of the system (or of the heat bath in which the
system is immersed). }
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APPENDIX C:

Quantum Physics and Causality

1. Modern quantum theory has done away with strict causal deter-
mination for the elementary atomic processes. It does not deny
strict laws altogether, but the quantities with which they deal regulate
the observable phenomena only statistically. Quantum theory is
incompatible with the idea that a strictly causal theory of unknown
content stands behind it — in the manner in which it may be true that
strictly causal motion of individual particles stands behind the statis-
tical-thermodynamical regularities of a gas consisting of many par-
ticles. What is thinkable for the laws of a collective is demonstrably
impossible for the elementary quantum laws. The uncertainty of the
outcome of an atomic experiment is not such as to be gradually
reducible to zero by increasing knowledge of the determining factors.
The reasons for the passage from classical to quantum physics are no
less compelling than those for the relinquishment of absolute space
and time by relativity theory; the success, if measured by the empirical
facts made intelligible, is incomparably greater. True, a final stage
has not yet been attained; certain serious difficulties remain unsolved.
But whatever the future may bring, the road will not lead back to the
old classical scheme.

One of the most poignant revelations of light’s corpuscular nature
is the photoelectric effect: a metal plate when irradiated with ultra-
violet or X-rays releases electrons. Observation shows that strangely
enough their energy is determined by the color of the incident radia-
tion, namely equal to or less than A times its frequency. One thus
arrives at the conception that light of frequency » gets absorbed in
discontinuous quanta (photons) of energy hv (Einstein 1905). This
energy is used for the emission of an electron (whose kinetic energy
may be short of hv on account of the work used in the liberation of the
electron). The intensity of the radiation does not determine the
energy of the individual electron, but the number of electrons released
per time unit. The process sets in at once even if the radiation is so
weak that it would take hours before the accumulated influx of field
enargy into the region of an atom reaches the amount kv necessary for
the ejection of an electron. What a continuous field theory would
describe as presence of a fraction of the radiating energy hv must in fact
be interpreted as small probability for the presence of a whole photon
of that energy. The process inverse to the photoelectric effect is the
transformation of primary electrons into secondary X-rays in a tube
whose anode stops the electrons. Since the stopping may take place
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in several steps, a continuous spectrum for the X-rays is to be expected
with a sharp edge at the frequency v = eV /h (where —e is the charge
of the electron and V the voltage of the tube). Experience has con-
firmed these relations first predicted by Einstein, including the numeri-
cal value for h that has to agree with Planck’s constant derived from
the thermodynamical laws of Hohlraum radiation.

The problem of reconciling the conceptions of light wave and
photon is perhaps best illustrated by polarization. Let a plane

monochromatic light wave that propagates in a definite direction a
be linearly polarized; the direction of polarization, represented by a

vector s of length 1, is perpendicular to a. Choose an arbitrary point
O as origin and draw a ‘cross’ G consisting of two mutually perpen-

dicular axes 1 and 2 through O that are perpendicular to ;. The cross

as well as the vector s lies in the plane perpendicular to a. Assume
that the light ray passes through a Nicol prism of orientation G; it
splits into two parts 1 and 2, the part 1 being linearly polarized in the
direction 1, the part 2 in the direction 2. The relative intensities of
the two partial rays with respect to the total ray are given by the

squares (of the lengths of the projection of Ts-’upon the axes 1 and 2, or)

of the components s;, s2 of the vector s with respect to the cross G.
On assuming the light ray to consist of photons we are forced to con-
clude that photons of two distinct ‘characters’ 1 and 2 (white balls
and black balls as it were) occur with the respective probabilities
s? and si. (By Pythagoras’s theorem, s? + s} = 1, the probability
for a photon to be ‘white or black’ equals unity, as it should.) The
characters 1 and 2 are relative to G. The photons of both kinds are
separated by the Nicol prism, that operates like a sieve catching 1 and
letting 2 pass. One should therefore expect the ray that has passed
the Nicol prism and is polarized in the direction 2 to be more homo-
geneous than the original ray. Such however is not the case, as the
polarized plane monochromatic light wave represents the highest
degree of homogeneity obtainable for light. The partial ray polarized
in the direction 2, when sent through a second Nicol prism of a differ-
ent orientation G, will again split up according to the rule of intensity
just described. Something similar to polarization happens when a
ray of silver atoms is acted upon by a non-homogeneous magnetic
field. Using Cartesian coordinates z, y, z, let us assume that the
field strength depends on z only. A silver atom is a small magnetic

dipole with a vectorial magnetic momentum m. The field should split
the ray into various parts according to the various values of the
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z-component m, of m. Since only two partial rays (of opposite
curvature) are observed, one must conclude that this component is
capable of two values only, 4+ and —u (u = ‘magneton’). This
must hold whatever direction the z-axis has. A vector, however,
whose components in every possible direction are either +u or —pu is
geometric nonsense! The impossibility of simultaneously ascribing to
the photon or silver atom the several characters that correspond to the
various orientations G of the ‘“‘sieve” lies clearly in the nature of things
and is not due to human limitations. The sorting by a sieve of
orientation G is destroyed by a subsequent sifting of orientation G’.
But for the particles passed by the sieve G one may ask what proba-
bility they have to pass the sieve G’; this probability can be computed
a priort in terms of the orientation of G’ with respect to G.

By a prism as Newton used it, or by a grating, light is decomposed
according to its various monochromatic constituents. A ‘sieve’
permitting separation not only of two but of several ‘sizes of grain’
may, therefore, be called a ‘grating.” The photoelectric effect sifts
photons according to the place where they hit. For good reasons
Eddington says in his beautiful book New Pathways tn Science (p. 267):
“In Einstein’s theory of relativity the observer is a man who sets out
in quest of truth armed with a measuring-rod. In quantum theory
he sets out armed with a sieve.” By a certain operation M the
mammals are sifted from the other animals in a z00. Let F be the
corresponding operation for fish. The iterated operation MM yields
no other result than the simple M, whereas the catch of MF, that is of
the operation M followed by F, is zero. In view of the equations

MM =M, FF =F, MF =FM =0,

M and F are called mutually orthogonal idempotent operators. A
grating in classical physics is nothing but a classification of the states
that a given physical system is capable of. Here the states are con-
sidered as the elements of an aggregate. Assuming the number of

states to be finite, let E,, . . . , E, denote the several classes. The
operation sifting the states of class E; from the rest may also be desig-
nated by E;. The grating G = {E,, . . . , E,} may be refined by

dividing each class into subclasses. There is a finest division in which
each class contains only one member. Two gratings, the division into
the classes E; and the division into the classes E;, may be superposed.
The operation E;E, sorts out the members common to the two classes
E; and E;; commutativity prevails, E;E; = E.E;, and the total aggre-
gate is divided up into the classes E;E; (some of which may be vacu-
ous). After associating distinct numbers o; with the several classes
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E. one may speak of an observable (or state quantity) A that assumes
the value a; when the state of the system belongs to the class E:.
This classical scheme is now to be confronted with that of quantum
physics as adumbrated by the typical example of polarization. The
aggregate of n states has to be replaced by an n-dimensional Euclidean

vector space I. Given a linear subspace E of I, any vector £ may be

orthogonally projected upon E; the projection is a vector Ez, and the
operation E of projection is idempotent, EE = E. Two linear
subspaces E;, E; are said to be orthogonal if each vector in the
one is orthogonal to each vector in the other. We may then form

their sum E = E, 4+ E, consisting of all sums of a vector z,in E; and a
vector z; in E;. The decomposition of a vector z of E into these two

summands z; and ;2 is unique and effected by the orthogonal pro-
jections E,, E,. In this way a three-dimensional vector space, for
instance, splits into a horizontal plane and a vertical line. The situa-
tion is hardly more complicated when we deal with more than two
mutually orthogonal subspaces E,, Ey, . . . E,. If their sum is the

total space, then every vector z splits into r component vectors lying
in the several subspaces E;, according to the formula

z=Ez+ - +Ez,
and the total space is said to be split into, Ey + - - - + E,. The
projections E; (t =1, - - - , r) are idempotent and mutually ortho-

gonal. Let |;l designate the length of a vector z.

By a direction in I, or by a vector z laid off in that direction,
quantum physics represents the wave state of the physical system under
investigation (be it a simple particle, or an aggregate of many, or even of
an indeterminate number of particles). A gratingG = {E,, - - - , E,}
is a splitting of the total vector space into mutually orthogonal
subspaces E, + - - - + E,. We speak of a character 7, more pre-
cisely (G; 7), corresponding to any one of these subspaces E;. If the

system is in the wave state z, then its probability of having the char-
acter 7 equals

(1) pi = |Eiz|*/|x|%
Pythagoras’s equation,
Byalt + - - - 4 |Ba] = [als

states that the sum of these probabilities p; equals unity. No grating
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can furnish more than n distinct characters; thus our model, like the
classical model it is compared with, corresponds to a situation where
the number of character values is limited. That is not so in nature,
but no essential features of quantum mechanics are lost by using the
finite-dimensional model. It is clear wherein the refinement of a
grating G consists: indeed every E: may again be split into mutually
orthogonal subspaces. A finest grating consists of n mutually ortho-
gonal axes and is thus identical with a ‘cross’ (= Cartesian coordinate
system). Let us from now on refer to the characters (G; 1), . . .,
(G; r) as the r quantum states defined by the grating G and call them
complete quantum states if G is a finest grating.

I cannot refrain from pointing out that, without thinking of
quantum physics, I used this very model at the end of Section 17 to
illustrate the relationship between object, observer, and observed
phenomenon. Its decisive difference in comparison to the classical
meodel is the fact that gratings in vector space defy superposition.
Suppose I has been split into orthogonal subspaces in two manners,

I=E,+---+E, and I =E/ + - 4+ E.

It is of course possible to split any vector x of E, into its components

E,z (k=1, - - ., s); but they will in general no longer lie in E,.
Only if the operator E; commutes with the operators E;, Ej, . . .,
will this be so. Thus combination of two gratings presupposes com-
mutability of the r operators E; with the s operators E), and, that
condition satisfied, the order of combination, whether @ is followed by
@ or @ by G, is irrelevant. The strange thing about the quantum-
physical sieves is exactly this feature, that two such sieves may, and
usually will, be non-commutative because of their ‘discordant orienta-
tions.” Characters ¢ and k referring to two non-commutative gratings
are incompatible, and in a situation where 7 is determined, k is not.
In this sense, position and momentum of a particle are incompatible.
If Az, Ap are the uncertainties of the z-coordinate of a particle and of
the z-component of its momentum respectively, then the product
Az - Ap necessarily exceeds h. This principle of indeterminacy due to
Heisenberg embodies the idea of complementarity in a precise form.
If color and shape of a body were such incompatible characters, it
would make sense to ask whether a body is green, and it would also
make sense to ask whether it is round; but the question *Is it green
and round?”’ would make no sense. Here as in the classical model
distinct numbers a; may be assigned to the several quantum states
(@; ?) and thereby an observable A be defined that is capable of the
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r values ai, . . . , o and assumes the value a; with the probability

pi, (1), provided the system is in the wave state z.!

Decomposition by a grating G of the vector space I into the several
subspaces E; is in itself a purely ideal process. The actual application
of the grating to a physical system, however, throws the system from

the wave state x into one of the wave states E1z, . . . , E,z. Which

wave state cannot be foretold; only the relative probabilities |Ez|? of
these r events are predetermined. In this sense every measurement
or observation implies an encroachment on the phenomenon, with
results of no more than statistical predictability. At no time have
experimental physicists closed their eyes to the fact that every meas-
urement is coupled with a reaction of the measuring instrument on
the object under investigation. As long as.the hypothesis seemed
admissible that the instrument could be made infinitely more sensitive
than the object, this involved no difficulty of principle. But what if
the object itself is of atomic refinement, which cannot be surpassed by
any instrument? Then the very idea of facts prevailing independently
of observation becomes dubious.

2. Let us for a moment return to the classical model, and use it to
depict the temporal succession of events. The simplifying hypothesis
of a finite number of states forces us to operate within a discontinuous
time. The dynamical law will then assert that from one moment ¢ to
the next ¢-+ 1 the n states 1, - - - , » undergo a certain permutation
s, the same at every moment t = - - - -2, —1,0, 1,2, - - - . If
this permutation s is of ‘order m,” i.e. if one reaches identity after
having performed the permutation m times, then the system returns
to its initial stage after each period of length m (eternal recurrence).
Quantum physics does not force a discontinuous time upon us even
if the number of quantum states separable by a grating is universally
limited. During the infinitesimal time interval df the vector space
experiences a certain infinitesimal rotation imparting the increment

dz = Lz - dt to the arbitrary vector ; This dynamical law

®) dz/dt = La
(in which the operation L is independent of ¢ and z) is expressed in
terms of Cartesian coordinates z; by equations of the form
dxt'/dt = zlii xi(t)’ (’L,] = 1; Y n),
;

with given constant antisymmetric coefficients l; (I = —l;). The

1 According to their definition such quantities can be added and multiplied
provided they belong to commutating gratings.
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salient point is that the wave state x varies according to a strict
causal law; its mathematical simplicity is gratifying. A grating G =
{E,, . . ., E.} and the corresponding quantum states (G; 1), . . .,
(G; r) are stationary if the subspaces E; are invariant in time, i.e. if the
linear operators E; commute with the linear operator L.

What in Appendix B has been called state of a particle or of an
aggregate is now to be more precisely interpreted as quantum state.
A circumstance that may have caused some misgivings there, the
relativity of the notion of photon with respect to the Hohlraum and its
proper frequencies, now appears as a special instance of a general
phenomenon: the distinction of quantum states is relative to a grating.

Measurement means application of a sieve or grating. One must
not imagine the wave state as something given independently of such
measurements. In fact the monochromatic polarized light ray that
is sent through the Nicol prism had itself been sorted out by a grating
from natural light of unknown quality. This is in accordance with
the fundamental fact that only the relative position of one Cartesian
coordinate system with respect to another may be characterized in
objective terms. Given the gratings G = {E,, - - -, E,} and
G' = {E;, - - -, E'}, we are, however, entitled to ask questions of
this type: ‘If the first grating shows our particle to be in the quantum
state (G; 7), between what limits does the probability lie that a test
by the second grating G' finds it in the quantum state (G’; k)?’ In
geometric terms this amounts to the following question: (I) ‘Between

which limits does the quotient |E}, z |*/|z|? lie if z varies freely over the
space E,?” Should time elapse between application of the first and
the second grating, then the change of the wave state between the
two moments as determined by the dynamical law (2) has to be taken
into account.

A system is never completely isolated from its surroundings, and
its wave state is therefore subject to perpetual disturbances. This is
the reason why the secondary statistics of thermodynamics is to be
superimposed upon the primary statistics dealing with a given wave
state and its reaction to a grating. In Euclidean space there is an
a priori probability for the random distribution of vectors of length 1
according to which regions of equal area on the unit sphere are of equal
probability. This ‘standard distribution’ assigns to the 7 quantum
states ¢ = 1, - - - | r defined by a grating G = {E,, - - - , E,} the
probabilities n;/n where n; is the dimensionality of E;, and in particular
equal probabilities to the n quantum states defined by a complete
grating. The actual probability distribution (Gibbs ensemble) need
by no means coincide with this standard distribution. At the end
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of the previous section it has been described how the particular
canonical distribution for a system embedded in a heat bath of known
temperature proceeds from the standard distribution. A general
question somewhat different from the one considered above now
arises, namely: (II) ‘Suppose a grating G and the statistical distribu-
tion of wave states is given, what probabilities result therefrom for
the several quantum states (G; ¢)?” A grating and a statistical
ensemble, rather than two gratings, are here compared with each other.
To find the answer one has to average the probability p;, (1), which

depends on ;: according to the given statistical distribution of vectors

z over the unit sphere. In the same manner one may ascertain the
average probability that a particle in the quantum state (G; ) is
encountered in the quantum state (G’; k) if tested by another grating
@. Whether question (I) or (II) is posed, the interest will always
be focused, especially when we are concerned with systems consisting
of numerous particles, on such events as can be foretold with over-
whelming probability. In splitting a light ray by a Nicol prism the
fate of the individual photon is unpredictable. Predictable however
are the relative intensities of the two partial rays with an accuracy
that increases with the number of photons.

The description here given must be corrected throughout in one
point: the coordinates z; in the underlying n-dimensional vector space
are not real but arbitrary complex numbers and as such have an abso-

lute value |z| and a phase. The square of the length of the vector is
expressed in terms of a Cartesian coordinate system by the sum of the
squares of the absolute values of the coordinates. The simplest of all
dynamical laws (2) in such a complex space is of the form

@3) dz/dt = ivz, @ = v/ —=1).

Here v is a real constant. The wave state z then carries out a simple
oscillation of frequency v,

z= ;o{cos(vt) + 4 sin(vt) } (;o = const.),

and hence the energy has the definite constant value hv (Planck’s law).
But whatever the dynamical law (2), the space can always be broken
up into a number of mutually orthogonal subspacesE; (j =1, - - - ,7)
such that an equation (3) with a definite frequency » = »; holds in E;.
The grating G = {E,, - - - , E,} thus obtained is stationary and
effects a sifting with respect to different frequencies »; and ¢c rrespond-
ing energy levels U; = hy;, Thermodynamics is based on this G
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Any vector z in E; satisfies the equation Lz = iv -2 (v = »;), and

this fact is expressed in mathematical language by saying that z is an
eigenvector of the operation L with the eigenvalue t». The operator

= %L, called energy, has the same eigenvectors, but the correspond-

ing eigenvalues are the energy levels hv. The general equation (2)

dz _
i

The ‘physical process’ undisturbed by observation is represented
by a mathematical formalism without intuitive (anschauliche) inter-
pretation; only the concrete experiment, the measurement by means
of a grating, can be described in intuitive terms. This contrast of
physical process and measurement has its analogue in the contrast
of formalism and meaningful thinking in Hilbert’s system of mathe-
matics. As it is possible to formalize an intuitive mathematical argu-
ment, so is it true that measurement by a grating G may be inter-
preted as a physical process. In doing so one has to extend the original
system Z to a system Z* by inclusion of the grating G. But as soon
as we want to learn something about Z* that can be told in concrete
terms, then the undisturbed course of events as ruled by the dynamical
law (2) must again be disrupted by subjecting =* to the test of a grat-
ing outside Z*.

3. Given two systems Z, Z’, their union £ = = + Z’ is capable
of all states (¢, k) consisting of a combination of an arbitrary state ¢ of
Z and an arbitrary state k of Z’. That is the prescription for com-
bination given by classical physics. Quantum physics agrees pro-
vided state means quantum state; a (finest) grating for = together
with a (finest) grating for 2’ yields a (finest) grating for . Assuming
therefore that a wave state of the first system is represented by a

now reads% Hz (Schrodinger’s equation).

vector £ = (1, *+ + -, Zw) in an m-dimensional Euclidean space S
referred to a Cartesian coordinate system, and that the generic vector

¥y = (y1, - - -, y.) of an n-dimensional space S’ has the same sig-
nificance for the second system, we conclude that the wave state of
the united system is represented by a vector

—

z=(z“, "',211.1,212,"',zm2,"',zln,"’,zmn)

in an mn-dimensional ‘product space’ S =8 X 8. A vector z

in S and a vector y in S’ determine the vector Z=2zX y with the
components

(4) Z2ik = TiYk (1,'=1,---,m;k=1,---,'n)
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in S. This fixes what rotation in S is induced by two arbitrary rota-
tions of the coordinate systems in S and S’. Since (4) implies |22
= |z4|? |yx|? one finds the probabilities of the quantum states of the
two parts £ and 2’ to be independent of each other in a wave state of

X of the special kind z = 2 X y. But the manifold of the possible
wave states of the joint system X is much larger than those represent-

able by the combinations z X ; of arbitrary wave states £ and ; of the

two parts. In fact every vector z in the product space represents a
possible wave state. In this very radical sense quantum physics sup-
ports the doctrine that the whole is more than the combination of its
parts. In general the probabilities of the quantum states of the whole
system cannot be determined from the probabilities of the quantum
states of the parts by the product rule of statistical independence.
And this is so even when both parts are not in dynamical interaction.

This consideration is of special importance for a pair of two equal
systems Z, 2’, e.g. for a pair of electrons. Then the wave states of
both parts are represented by vectors in one and the same Euclidean

space S, and among the vectors z = (zi) of the product space S X 8
(‘tensors’) one may distinguish the antisymmetric ones satisfying the
condition 2x = —z; and the symmetric ones with the property
2k = zi. Once the pair is in an antisymmetric wave state, its wave
state will remain antisymmetric; no external influences can altes that
because equal particles enter into the law of action in a symmetric
fashion. It is therefore to be expected that the wave state of a pair
of electrons has a definite symmetry character, that it is either anti-
symmetric or symmetric. Experience proves the first alternative to
be correct. For an antisymmetric vector z; the equation |zi|? = 0
holds, i.e. the probability that both electrons are found in the same
complete quantum state ¢ is zero; the permanent antisymmetry of the
wave state thus explains Pauli’'s exclusion principle. The statistical
independence of the quantum states of two electrons could scarcely
be denied in a more radical fashion than by this principle! The hydro-
gen molecule may be treated, at least in first approximation, as a
system of two electrons circling around two fixed nuclei, and it is
obvious that the restriction by antisymmetry of the wave state of the
electronic pair must be of decisive influence upon the result of the
computation of their motion. It leads indeed, as London and Heitler
have shown, to a full explanation of the chemical binding of neutral
atoms in a molecule. Under the reign of classical physics this had
remained an inscrutable conundrum.

The fact of antisymmetry carries over from two to more electrons.
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Since statistical independence of several particles is at variance with
this law, it is not the same whether again and again an electron of given
wave state or a simultaneous shower of many electrons is sent through
a grating. A similar remark applies to a shower of photons. Its
wave state is to be restricted by the condition of symmetry rather than
of antisymmetry. (We know indeed that the exclusion principle does
not hold for photons!) In its final form the theory does not require
the number of particles to be constant. Not only may photons appear
and disappear, but owing to a bold interpretation of Dirac’s it also
accounts for the process of mutual annihilation of a positive and nega-
tive electron under emission of a photon of corresponding energy
(“Zerstrahlung”’) and the inverse process.

4. I summarize those features of quantum physics which seem to me
of paramount philosophical significance.

(1) Observation is impossible without an encroachment the effect
of which can be predicted only in a statistical sense. Thus new light
is thrown on the relationship of subject and object; they are more
closely tied together than classical physics had realized. It has been
said in Section 20 that quantitative results derived from the observa-
tion of reactions of a body with other bodies are ascribed as inherent
characters to the body itself, whether or not the reactions are actually
carried out. We now see that this ‘Euler principle’ has very serious
limitations. There are obvious analogies to this situation in the
domain of psychic self-observation.

(2) Characters referring to two different gratings cannot meaning-
fully be combined by ‘and’ or ‘or.” Classical logic does not fit in with
quantum physics and is to be replaced by a kind of ‘quantum logic.’

(3) The principle of causality holds for the temporal change of the
wave state, but must be dropped as far as the relation between wave
and quantum states is concerned.

(4) The whole is always more, is capable of a much greater variety
of wave states, than the combination of the parts. Disjoint parts in
an isolated system of fixed wave state are in general not statistically
independent even if they do not interact.

(5) The Leibniz-Pauli exclusion principle, according to which no
two electrons may be in the same quantum state, is made comprehensi-
ble by quantum physics as a consequence of the law of antisymmetry.

(6) There exists a primary probability, as a basic trait of nature
itself, that has nothing to do with the observer’s knowledge or ignor-
ance. The probabilities |z:|? of the individual complete quantum
states ¢ are derived from the components z; of a vector quantity

=

z = (z, - - -, z,) describing the ‘wave state.” This seems to me to
confirm the opinion expressed in the main text, namely that proba-
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bility is connected with certain basic physical quantities and can in
general be determined only on the ground of empirical laws governing
these quantities.

It must be admitted that the meaning of quantum physics, in spite
of all its achievements, is not yet clarified as thoroughly as, for instance,
the ideas underlying relativity theory. The relation of reality and
observation is the central problem. We seem to need a deeper epi-
stemological analysis of what constitutes an experiment, a measure-
ment, and what sort of language is used to communicate its result.
Is it that of classical physics, as Niels Bohr seems to think, or is it the
‘natural language,” in which everyone in the conduct of his daily life
encounters the world, his fellow men, and himself? The analogy
with Hilbert’s mathematics, where the practical manipulation of con-
crete symbols rather than the data of some ‘pure consciousness’ serves
as the essential extra-logical basis, seems to suggest the latter. Does
this mean that the development of modern mathematics and physics
points in the same direction as the movement we observe in current
philosophy, away from an idealistic toward an ‘existential’ standpoint ?

Aside from the riddles of epistemological interpretation, quantum
physics is also beset by serious internal difficulties; we do not yet
possess a really consistent and complete quantum theory of the inter-
action between electromagnetic radiation and (negative and positive)
electrons, let alone the other elementary particles.

Returning to safer ground, let us add a word about the position of
quantum physics towards the problem of past and future as discussed
in Section 23C. What one wishes to understand is why light is
emitted only ‘towards the future.” We saw that physics can account
for this distinction of the future from the past half of the light cone by
keeping merely the retarded part of the potential in the Liénard-
Wiechert formula. Quantum theory describes the interaction between
the electrons of an atom and the field of Hohlraum radiation as a
sequence of individual acts in which a light-quantum is emitted or
absorbed under a corresponding energy jump of the atom. The
formula for the frequencies of these acts can be interpreted as indicat-
ing that the individual act is either spontaneous or enforced. The
frequency of the enforced acts is proportional to the density of
the radiation, while the spontaneous acts are independent of it. The
enforced part is symmetric with respect to past and future. Not so
the spontaneous part; there is only spontaneous emission, but no
spontaneous absorption. This asymmetry is accounted for by prob-
ability arguments of the same sort as led to the law of increasing
entropy. Hence the distinction of the future half of the light cone
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has its roots here in the statistical principles of thermodynamics rather
than in any elementary laws.
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Chemical Valence
and the Hierarchy of Structures

The symbolic structure in terms of which quantum theory explains
the atomic phenomena may well be of a primitive and irreducible
nature. In contrast, the aggregate of atomic points joined by valence
strokes, as which Kekulé depicts a chemical molecule, is only of an
intermediary character. Indeed the valence bonds are an abbrevi-
ated symbol for the actual quantum-physical forces acting between
the atoms, which in themselves are complex dynamical systems. The
Kekulé diagram is thus seen to be founded on a more primary struc-
ture, that of quantum mechanics. This is one instance of what
Hilbert generally described as ‘‘ Tieferlegung der Fundamente.”

The theory of chemical bondage affords such a striking illustration
of the hierarchy of structures that I cannot refrain from describing
it in a little more detail. The electronic spin and the exclusion prin-
ciple are those features made responsible by quantum mechanics for
chemical valence. Position is certainly a character of the electron.
If separation according to position were a finest grating then the
wave state of an electron would be given by a (complex-valued) func-
tion ¢(P) of an argument P ranging over all points in space [the square
of the length of this vector being the integral of |¢(P)|2]; and the wave
state of an aggregate of f electrons 1, 2, . . . , f would be an anti-
symmetric function ¢(Py, . . . , Py) of their positions Py, . . . , P;.
The exclusion principle is a consequence of antisymmetry. Because
of the inner likeness of all electrons no dynamic action is imagin-
able that would ever carry an antisymmetric ¢ over into one
that is not. A function of several arguments ¢, ¥(¢,, . . . , %), is
symmetric if it stays unaltered under all f! permutations of its f argu-
ments; it is anti-symmetric if all even permutations leave it unchanged,
all odd permutations carry it into —y. The nature of the argument ¢
does not matter. It may range over a finite number of values 7 =
1,2, ..., n, as we assumed for simplicity’s sake in our exposition of
quantum mechanics, or range over a whole continuum, as P does. We
have previously seen that the distinction between even and odd per-
mutations is the combinatorial basis for the polarity of left and right;
we now find that it lies at the root of the periodic system of chemical
elements and of a number of decisive traits of the physical world that
defy explanation by the notions of classical physics.

Spectroscopic experience has shown that, over and in addition to
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separation of electrons by position, a splitting into two beams takes
place, e.g. under the influence of a magnetic field. We have to con-
clude that the wave function of a single electron y¥(Pp) depends on two
variables, the continuous variable of position P, and a second variable
p, called spin, that is capable of two values +1 and —1 only. The
two components Y(P, + 1) = ¢(P) and ¢(P, —1) = ¢_(P) are rela-
tive to a Cartesian frame and, as W. Pauli first recognized, transform
according to the spinor representation mentioned in Section 15, when
one passes by rotation to another such frame. The wave function
of an aggregate of f electrons is an antisymmetric function
¥(Pipy, Paps, . . ., Py py) of f pairs (Pp).

A third circumstance besides spin and antisymmetry is relevant:
with considerable approximation the dynamic influence of the spin
may be disregarded. Let us assume that it is strictly nil, i.e. that the
dynamical operator H of energy operates only on the positional vari-
ables P, not on the spin variables. At first one may think that then
one could ignore the spin altogether. That this is not so is due to the
condition of antisymmetry with respect to the pairs (Pp). Let
n(P1, . . . , Ps) be an eigenfunction of the operator H with the eigen-
value hv, Hy = hv - 7, n thus representing a stationary wave state of
energy hv. Assume 5 to be antisymmetric in its f arguments P. On
taking the existence of the spin into account one obtains a whole
linear manifold of wave functions ¥ of energy hv,

Y(Pipy, - -, Pspp) = a(Py, - - -, Pg) ooy, + ¢ -, pp).

Here the second factor ¢(p1 . . . ps) could be any function of the f
spin variables p; but antisymmetry of ¥ requires ¢ to be symmetric.
A symmetric function ¢ of p1, . . . , ps assumes a definite value ¢,
if a given number ¢ of the arguments p are +1 and f — g of them are
—1; and the function is completely characterized by its f + 1 values
©f, ©s—1, - . « , wo. Hence the linear manifold of the symmetric
functions ¢ is (f 4+ 1)-dimensional, and the existence of the spin has
the effect that the energy level Av or ‘term’ » acquires the multiplicity
f+ 1. Only when the actually existing weak interaction of the spins
is taken into account, this term of multiplicity f + 1 splits up into a
multiplet of f + 1 different terms. Consider for a moment what
would happen, on the other hand, if  were symmetric. Then ¢ must
be antisymmetric. But an anti-symmetric function vanishes when-
ever two of its arguments have equal values. Hence if the individual
argument is capable of two values only the function will vanish
identically provided f > 2, and the term » corresponding to a sym-
metric n is wiped out, its multiplicity becomes 0. Owing to the low
dimensionality 2 of the spin space the possible permutational sym-
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metry characters of functions ¢(p: . . . ps) can be described by one
number, the valence v, which is capable of all values 0 < v < f that
differ from f by an even number. States in which % is antisymmetric
(and hence ¢ symmetric) are of valence f. A term of valence v has,
merely on account of the permutability of electrons, the multiplicity
v 4+ 1.

We consider a neutral atom as an aggregate of f electrons of charge
—e that move in the field of a nucleus of charge f e fixed at a center
0. Non-relativistic mechanics is applied to this model in taking into
account only the electrostatic forces between these charges plus the
kinetic energy of the electrons. Let #(P: ... P;) be an antisym-
metric eigenfunction of the energy operator H corresponding to the
term ». The atom in this state n has the energy hv and the highest
possible valence f. (Any permutation of the f points P, . . . , Py
would change » into an eigenfunction for the same term »; but because
of antisymmetry this causes no permutational multiplicity.) It is
also true that the effect of any common rotation about O of the points
P,, . . ., P; transforms 9(P; . . . Py) into an eigenfunction for the
same term ». Hence if we wish to avoid ‘rotational’ multiplicity of
» we must assume that the function (P, . . . Py) of the constellation
P, . . . P; of the electrons is invariant with respect to all rotations
(central symmetry). Such a stationary wave state is called an S-state
in spectroscopy. Thus we assume the atom to have its highest
valence f and to be in an S-state. The probability ®(r) to find one of
the electrons at a distance greater than r from the center O is deter-
mined by 5, and it turns out that ®(r) falls off exponentially with
increasing 7.

After introducing two ‘indeterminates’ z,, z_ corresponding to
the two values p = +1 and —1 of the spin, a symmetric function
¢(p1 . . . ps) is conveniently represented by the algebraic form of
z4, z— of degree f,

f!
<p(p "‘p)x,"'x = —‘vaxi-a
z Lo " z glf =t

P

with the coefficients ¢. The sum at the left consists of 2/ terms as
each p takes on its two values 4+ and — while the range of g at the
right side is the sequence f, f — 1, . . . , 0. Considering the inde-
terminates z,, z_ as components of a vector z in a plane we submit
them to an arbitrary linear transformation

(1) Ty = axl, + Bz, z_ = yal, + da_
of modulus aé — By = 1. A form F(z, y, . . . ) of several indeter-
minate vectors z, ¥, . . . which is of degree foin z, foiny, . .., is
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said to be an invariant if F(z, y, - - - ) = F(«/, ', - - - ) whenever
z and 2/, y and y’, . . . , are connected by the same transformation
(1) of modulus 1.

Envisage now a number of neutral atoms a, b, . . . of fo, fo, . . .

electrons with their nuclei fixed at definite points in space Oq, Os, . . . ,
and suppose that each is in a stationary S-state of highest valence,
their respective energy levels being hv,, hw, . . . . This implies
that the combined system of these atoms has the energy hv,, vy =
ve + v + - - -, and that its state belongs to a linear manifold IT of
(fa+ D)(fo+ 1) - - - dimensions. Speaking in this way we have dis-
regarded the mutual interaction of the atoms and thus violated the essen-
tial likeness of allf = f, + fy + - - - electrons by assigning f, of them to
the entourage of O, and letting these f, electrons interact only among
themselves and with the nucleus O,. We assume the mutual distances
r of the nuclei at O,, Oy, . . . to be large in comparison to the Bohr
radius h?/me?. Taking now the interaction between the several atoms
into account as a small perturbation one finds that the term », breaks
up by ‘permutational resonance’ into a number of term systems of
the molecule according to the various possible valences v = f, f — 2,

The states of valence v form a linear submanifold II, of 7,
dimensions that, in the approximation of perturbation theory, as a
whole is invariant with respect to the energy operator H and hence
stationary. The corresponding n, terms v = vy + Av and individual
stationary states of the molecule are to be determined as the eigen-
values and eigenfunctions of H operating in II,. Since each of the =,
terms » of the molecule in a state of valence » has the multiplicity
v + 1, comparison of dimension leads to the equation

Gt DG+ - =)+ 1),
The shifts Av = V(Os, Oy - - - ) are functions of the constellation
0, Oy . . . of the nuclei which are found to be of the same type as the

probability ®(r) mentioned above, namely falling off exponentially
with increasing distances r. This accounts for the fact that the homo-
polar bond between neutral atoms is a short range force. (The
attraction of two ions of opposite charges at a distance r, the hetero-
polar bond, is no mystery at all. Its energy follows the Coulomb
law 1/r and is thus of the long range type.)

Let an imdeterminate binary vector z = (x4, z_), ¥, . . . be
associated with each of the atoms a, b, . . . and add one more ‘free’
vector [. Then II, is best described as the linear manifold of all
invariants J(z, ¥, . . . , ) depending on the indeterminate vectors
z, Y, ..., with the given degrees f,, fs, . . . , ©. The details do
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not matter here. But so much should be clear that the two-dimen-
sional vectors and invariance with respect to linear transformations
play a role because, owing to the spin, the state (¢4, ¢_) of an electron
is such a vector. The dimensionality 7, of IT, is the number of linearly
independent invariants (of degrees f,, fo, . . . in the vectorsz,y, . . .
and) of degree v in the free vector /.

The simplest invariant, linearly depending on two indeterminate
vectors z, y, is the ‘bracket factor’ [xy] = z;y— — z_y;+. Any product
of such bracket factors is called a monomial invariant. A monomial
invariant is completely described by a diagram in which each of the
argument vectors z, ¥, . . . , [ is represented by a point and each
bracket factor like [zy] by a line joining the points z and y. (A
bracket factor [zl] involving the free vector | may instead be repre-
sented by a stroke issuing from z the other end of which remains free.)
The degrees fa, f5, . . . , v of the monomial invariant are the numbers
of strokes ending at the respective points z, y, . . . , . Hence the
monomial invariants correspond completely to the Kekulé valence
diagrams. We shall therefore call a state described by such an
invariant a pure valence state. The first main theorem of the theory
of invariants states that every invariant of given degrees is a linear
combination of monomial invariants of those degrees.

For a molecule consisting of two atoms z, y of valences a and b,
a > b, we find only one invariant

[zy)? [xlle= [yl

for each of the possible molecular valences v = a +b — 2d, d =
0,1, . ..,b. This corresponds exactly to what the valence diagrams
would have us expect; d is the number of valence strokes joining the
two atoms, and @ — d, b — d are the numbers of free valence strokes
issuing from z and y respectively. For the corresponding term
vo + Av of the molecule one finds Av = \- V(r) where V(r) is a func-
tion of the distance r of the two atoms that does not depend on d,
while the form factor X = (a — d)(b — d) — d depends on d but not
on r. The function V(r) is difficult to compute, but in the simplest
cases turns out to be positive for large . Assuming this to be gen-
erally true one obtains a force of attraction or repulsion according to
whether the form factor A\ is negative or positive. A is negative for
d = b; but since \ varies from —b to ab while d assumes the values
b,b—1,...0,theform factor will be negative only for the strongest
binding d = b, or possibly for a few of the stronger bindings d = b,
b—1, - - -

The picture changes somewhat when more than two atoms come
into play. Then the number n, of linearly independent invariants is
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less than that of the possible diagrams with v free valence strokes,
owing to the existence of linear relations among the monomial invari-
ants. Moreover the individual stationary states with definite energy
levels v + Av do no longer coincide with any of the pure valence
states. There are clear indications for this in chemistry. For
instance, Kekulé’s famous formula for the benzene ring, a regular
arrangement of six CH groups, foresees two possibilities whereas the
study of ortho-derivatives proves conclusively that there is only one
in nature. The skeleton shown in the valence

diagram S has the full hexagonal symmetry H
which one expects for the benzene ring; but it g H
leaves one valence electron in each C-atom

unattached. This conception of a fixed skele-

ton upon which the variable state of bondage

between the remaining valence electrons is H

superimposed may be an unwarranted simpli-

fication, but is useful for a first orientation and ) H

reduces our problem (which in fact involves forty-two electrons) to
that of six equal one-electron atoms arranged in a regular hexagon of
side . Here the states of valence 0 form the linear manifold of all
invariants depending linearly on six argument vectors 1, 2, 3, 4, 5, 6.
The five monomial invariants 4, A’; B,, Bs, B; shown below represent
a basis for that manifold. (Their diagrams should be superimposed

[12][34](56] [23](45](61]
A A’

5 \
6 6
[61](52](43] [21][36][45] [23][14](65]
Bl Bz B!
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upon the skeleton S; the corresponding five pure valence states are
‘in resonance.’) The term shifts Av = X V(r) of the various sta-
tionary states n differ by the form factor \; the potential function
V(r) of r, however, is a common factor of the short range exponential
type. Here is a list of the stationary states with their form factors \:

A+ 4 A=0
BxBl+l3sz+ﬂaBa (ﬂ1+l32+33 =0) A=2
6(A —A) — (1 +V18)(Bi+ B2+ B;) |A=1+ 13
1=6(4—A)—(1—-+VI8)(B:i+B:+By) |x=1-+13<0.

As we know, a negative value of \ is suggestive of the existence of a
stable molecule in the corresponding quantum state n. Only the 5 of
the last line satisfies this condition, and thus it is this 4 that indicates
the direction in which the quantum mechanical correction of Kekulé’s
benzene formula will lie: To the difference of the monomial invariants
A, A’ depicted by Kekulé’s two diagrams is added a multiple of the
sum of the three terms represented by the Dewar diagrams B, B,, B;.
(Both A — A’ and B, 4+ B, 4+ B; change sign under the influence of a
rotation of the hexagon by 60° and remain unalter:d by reflection in
one of the three diagonals.)?

The notion of quantum-mechanical resonance between states of
(nearly) equal energy levels plays an important role in modern struc-
tural chemistry. At the same time one tries to hold on to well-tested
and plausible valence schemes, keeping the modifications required by
resonance to a minimum; and one is content in most cases to deter-
mine the perturbation energies by empirical observation rather than
computation. This conservative procedure, illustrated here by the
classical example of the benzene ring, has met with surprising success
— surprising to the scrupulous mathematician, who finds it hard to
justify some of the ‘plausible’ assumptions of approximative char-
acter on which it is based. (A more exact analysis may soon become
feasible with the help of the high-speed computing machines now
under construction.)

Finally I come to the lesson which I want to draw from this long
excursus into quantum-mechanical chemistry. It concerns the hier-
archy of structures. On the deepest level @ we have the structure
of quantum mechanics itself in terms of which we seem to be able to
interpret all spectroscopic and chemical facts, all physical facts in
short for which the inner constitution of the atomic nuclei is irrelevant.

1If one would treat the benzene molecule as a ring of six CH groups of valence
3, the number of resonant independent possibilities would increase from 5 to 34;

for the linear manifold of binary invariants of six argument vectors and of degree
3 in each of them has the dimensionality 34.
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On the second level 8 the structure representing a molecule in its
various possible states is the linear manifold of binary invariants.
This picture has limited truth only. Above all it does not refer to the
ready-made molecule but to the aggregate of its atoms with their nuclei
fixed at distances large in comparison to the extension of the atoms.
Moreover, as to the individual atoms, conditions as simple as possible
are assumed with respect to the permutations of its electrons and
rotation of their configuration in space. The structures which are
used on the third level v for the interpretation of chemical facts are
the valence diagrams. In the light of 8 the picture v is correct in one
essential respect: all possible states of the molecule (all invariants) are
indeed linear combinations of the pure valence states (monomial
invariants). But it errs on three other counts: (1) There are not only
a few discrete states, such as the pure valence states, but rather a
whole linear manifold of wave states; this, of course, is the decisive
contrast between classical and quantum mechanics. (2) The linear
relations between the monomial invariants are ignored, and therefore
too high a value is obtained for the number 7, of independent possi-
bilities. (3) The n, stationary quantum states coincide in general
with none of the pure valence states but are certain linear combinations
of them.

Contrary to our exposition, the historical order is that of descent
to an ever deeper level,y — 8 — a. A. Kekulé developed his graphical
representation of chemical structure in 1859. The intermediate level
B was first reached by J. J. Sylvester in 1878! (he was later followed

1 Sylvester’s paper published in the first volume of the American Journal of
Mathematics, which he founded at Johns Hopkins, bears the title On an applica-
tion of the new atomic theory to the graphical representation of the invariants and
covariants of binary quantics. Of the opening sentences the first is such a charac-
teristic statement of 19th century natural philosophy and the second such a charm-
ing piece of Sylvesterian prose that they may be quoted here. “By the new
Atomic Theory I mean that sublime invention of Kekulé which stands to the old
in a somewhat similar relation as the Astronomy of Kepler to Ptolemy’s, or the
System of Nature of Darwin to that of Linnaeus; — like the latter it lies outside
of the immediate sphere of energetics, basing its laws on pure relations of form,
and like the former as perfected by Newton, these laws admit of exact arithmetical
definitions. — Casting about, as I lay awake in bed one night, to discover some
means of conveying an intelligible conception of the objects of modern algebra
to a mixed society mainly composed of physicists, chemists and biologists, inter-
spersed only with a few mathematicians, to which I stood engaged to give some
account of my recent researches in this subject of my predilection, and impressed
as I had long been with the feeling of affinity, if not identity of object, between the
inquiry into compound radicals and the search for ‘Grundformen’ or irreducible
invariants, I was agreeably surprised to find of a sudden distinctly pictured on my
mental retina a chemico-graphical image serving to embody and illustrate the
relations of these derived algebraic forms to their primitives and to each other,
which would perfectly accomplish the object I had in view, as I will now proceed
to explain.”
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by the German invariant theorist P. Gordan and the Russian chemist
W. Alexejeff). However in the absence of a physical interpretation
for the addition of invariants and of dynamical laws by which to
determine the binding forces and the actual stationary states the
chemists stuck to their familiar valence diagrams. We can see today
that only such radical departure as that of quantum mechanics could
reveal the significance of the picture that Sylvester had stumbled
upon as a purely formal, though very appealing, mathematical analogy.

The moral of this story is evident: do not take too literally such
preliminary combinatorial schemes as the valence diagrams, useful as
they are as a first guide in a seemingly incoherent mass of facts. A
picture of reality drawn in a few sharp lines can not be expected to be
adequate to the variety of all its shades. Yet even so the draftsman
must have the courage to draw the lines firm. There is no doubt
that the gene aggregates of genetics with their linkages are structures
of no less preliminary character than the valence diagrams of chemis-
try. The cytological study of cells reveals complicated motions of
chromosomes and multiform physical processes whose details are
capable of continuous variation and of whose result the discrete genetic
diagrams are no more than abbreviated abstracts of limited validity.
I should therefore not vouch too much for the adequacy of the primi-
tive combinatorial scheme as depicted in Appendix B, and yet it
seemed best to make the picture itself, however limited its value, as
definite as possible. (This is a principle which Nicolaus Cusanus
stressed in De docta ignorantia: if the transcendental is accessible to us
only through the medium of images and symbols, let the symbols at
least be as distinct and unambiguous as mathematics will permit.)

The facts related in the next Appendix leave little doubt that the
laws of inheritance are ultimately based on the same structure as the
laws of chemistry: on the structure of quantum mechanics. A struc-
ture that could serve to mediate between the genetic diagrams and
quantum physics should be one that takes into account the chemical
complexity of the carriers of life. Perhaps the simplest combinatorial
entity is the group of the n! permutations of n things. This group
has a different constitution for each individual number n. The
question is whether there are nevertheless some asymptotic uniformi-
ties prevailing for large n or for some distinctive class of large n.
Mathematics has still little to tell about such problems. One wonders
whether a quantum theory of organic processes is tied up with their
solution.

Whereas the quantum structure described in Appendix C has for
the present been accepted by physics as the ultimate layer, the skeptic
philosopher may wonder whether this reduction is more than one step,
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the last at the moment, in a regressus ad infinitum. But, so warns the
scientist, nothing is cheaper and on the whole more barren than to
play with such possibilities in one’s thoughts before new discoveries
place one before a concrete situation that enforces a further Tieferle-
gung of the foundations.

Physical phenomena are spread out in the continuous extensive
medium of space and time; it was this aspect which dominated to a
considerable degree the epistemological thoughts about natural
science that the main part of this book tried to collect in 1926. This
was historically justified, and the accomplishments of general rela-
tivity, still very fresh at that time, lent additional emphasis to this
point of view. In the last two decades, however, discontinuous and
combinatorial structures underlying the natural phenomena have
become of increasing significance. Here a deeper layer seems to come
to light, for the description of which our ordinary language is woefully
inadequate. The preceding Appendices bear witness to this changed
outlook. However, we could not do much more than assemble
relevant material; the philosophical penetration remains largely a task
for the future.
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Physics and Biology

1. One of the profoundest enigmas of nature is the contrast of dead
and living matter. However one may characterize life phenomeno-
logically : animate matter is obviously separated from inanimate by a
deep chasm. Life dwells only in material systems that from a physico-
chemical standpoint are to be considered as highly complex. In a
descriptive way and without claiming completeness we enumerate
some of the typical features of the living organism: its composition of
cells, living units that are uniform in their more basic characteristics;
wholeness as form (morphé, Gestalt) and as functional complex, with
mutual adjustment of all cell differentiations to each other (“‘geprigte
Form, die lebend sich entwickelt,”” Goethe); endowed through metabo-
lism with the capacity of using alien matter as food and incorporating
it into its own organization; development by assimilation of food, by
growth and differentiation from relatively simple to more complicated
states; in spite of inner lability, far-reaching though not unlimited
capacity to maintain itself as this differentiated whole under changing
external influences, in particular in the turmoil of the molecular heat
motion, and to restore itself after disturbing encroachments; limita-
tion of individual existence in time (birth and death); the capacity of
propagation and of transmitting its specific constitution to its progeny.
While dead matter is inert, the organism is a source of activity that
bears the stamp of spontaneity ever more manifestly (with volitional
action as its climax) the higher one climbs in the world of organisms.
It is at the same time susceptible to stimuli (perceptions on the highest
level) and endowed with the capacity of storing stimulative experi-
ences (mneme). Life has unfolded into a vast multitude of species of
typically diverse constitution, and the organisms are woven into
a dense net of adaptations and relations to each other and their
surroundings.

The last unit and its one basic property to which the essential
characteristics of living matter seem to have been reduced by scientific
analysis is the gene and its power of self-duplication. By this process
a copy of the model gene is synthesized from the material available in
the living cell. Incidentally, the gap between organic and inorganic
matter has been bridged to a certain extent by the discovery of viruses.
Viruses are submicroscopic entities that behave like dead inert mat-
ter unless placed in certain living cells. As parasites in these cells,
however, they show the fundamental characteristics of life — self-dupli-
cation and mutation. On the other hand many viruses have the struc-
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ture typical of inorganic matter; they are crystals. In size they range
from the more complex protein molecules to the smaller bacteria.
Chemically they consist of nucleo-protein, as the genes do. A virus
is clearly something like a naked gene. The best studied virus, that
of the tobacco mosaic disease, is a nucleo-protein of high molecular
weight consisting of 95 per cent protein and 5 per cent nucleic acid;
it crystallizes in long thin needles.

The elementary laws of matter that physics reveals and chemistry
is ruled by are no doubt also binding on living matter. Hence such a
profound change of physics as brought about by quantum theory must
have its repercussions in biology. As long as progress from simple
to more complicated configurations remains the methodologically
sound way of science, biology will rest on physics, and not the other
way around. The specific properties of living matter will have to be
studied within the general laws valid for all matter; the viewpoint of
holism that the theory of life comes first and that one descends from
there by a sort of deprivation to inorganic matter must be rejected.
It is therefore significant that certain simple and clearcut traits
of wholeness, organization, acausality, are ascribed by quantum
mechanics to the elementary constituents of all matter. A rapproche-
ment between physics and biology has undoubtedly taken place in this
regard. Structure and organization are not peculiar to living beings;
physics is thoroughly familiar with this aspect and represents it by
the symbolic apparatus of the theory that precedes all dynamical laws.
The quantum physics of atomic processes will become relevant for
biology wherever in the life cycle of an organism a moderate number
of atoms exercises a steering effect upon the large scale happenings.
(The radio tube is today the most familiar inorganic example of such
a steering mechanism.)

On a broad empirical foundation, genetics furnishes the most con-
vineing proof that organisms are controlled by processes of atomic
range, where the acausality of quantum mechanics may make itself
felt. At the turn of the century, when Planck introduced the action
quantum into physics, de Vries discovered the jumplike mutations of
the genetic constitution of Oenothera (the larger part of which, to be
sure, are today recognized as structure rather than point mutations).
For a physical understanding of mutations, ‘their artificial generation
by exposing chromosomes to X-rays has proved of momentous impor-
tance. The mere fact of such X-ray induced mutations proves that
the genes are physical structures. When X-rays fall upon matter
this or that photon relinquishes all or a large part of its energy to a fast
secondary electron, and this in turn loses its energy in a number of
steps by ionization (or excitation) of atoms. The average energy of
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ionization amounts to about 30 electron volts. By ingenious methods
H. J. Muller, N. W. Timoféeff-Ressowsky, and others have succeeded
in establishing simple quantitative laws concerning the rate of induced
mutations. These results indicate that the mutation is brought about
by a single hit, not by the concerted action of several hits, and that
this hit consists of an ionization, and is not, as one might have thought,
a process directly released by the X-ray photon or absorbing the whole
energy of the secondary electron.

These facts suggest the hypothesis that a gene is a (nucleo-protein)
molecule of highly complicated structure, that a mutation consists in a
chemical change of this molecule brought about by the effect of an
ionization on the bonding electrons, and that thus allele genes are
essentially isomeric molecules. The most elementary chemical
changes which quantum physics can devise are localized two-step
quantum jumps — first the molecule is lifted from an energy level 1
to a higher level 2, and from there it drops to a new stable state of
energy level 3. The difference 2 minus 1 is the necessary activation
energy U. The rate at which a specific quantum jump requiring the
activation energy U occurs spontaneously at a given temperature
depends essentially on U alone, but varies extremely strongly with U
(according to an exponential law). At the temperature at present
prevailing on the earth’s surface such quantum jumps as correspond
to values of U between say 1.4 and 1.7 would be occasionally occurring
yet rare events. (For lower values of U the corresponding quantum
jumps are so frequent that the statistical law of large numbers comes
into power; they give rise to such ordinary chemical reactions as take
place in the development of an organism.) Thus one is tempted to
complete the picture by interpreting mutation as a rare quantum
jump with an activation energy within the range just mentioned
(Delbriick’s model).! The observed absolute rate of mutations would
be explained if a specific mutation requires that a hit occurs within a
critical volume (‘target’) in the gene, the magnitude of which amounts
to about 5-10 A cube (5-10 atomic distances cube). The physicist
finds it, if not plausible at least acceptable, that a quantum jump at a
specific point requiring an activation energy of about 1.5 is released
by a hit of 30 electron volts within a sensitive volume of 5-10 A cube.
The observed thermic variation of the spontaneous mutation rate
(van’t Hoff’s factor) is in good quantitative agreement with the
picture.

There are several methods for estimating size and molecular weight

1 Cf. N. W. Timoféeff-Ressowsky, K. G. Zimmer, M. Delbriick, Uber die Natur
der Genmutation und der Genstruktur, (Nachr. Gott. Ges. Wissensch., Math.-physik.
KL, Fachg. VI, 1), 1935, pp. 189-245.
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of a gene. Most of the radiation experiments are concerned with
mutations called recessive lethals. A certain high percentage of these
is due to an ionization depriving the gene of its reproductive power
(while others are brought about by gross structure mutations). It is
plausible to put the first kind of lethals in analogy to the inactivation
of enzymes and viruses. For these latter processes, which are also due
to single ionizations, one can determine the target size, either by
means of the absolute dose of X-rays or by the relative efficiency of
the various radiations. One finds target radii that are between one
and five times as small as the radius of the enzyme molecule or the
virus. Hence the target size of a gene for the totality of recessive
lethal mutations ‘of the first kind’ ought not to be much smaller than
the size of the gene. Another method for ascertaining the size of a
gene or at least an upper bound for it is the following. The greatly
enlarged chromosomes of the salivary glands of Drosophila show a
cross striation by bands of characteristically different width and design,
and the parallelism of the genetic and cytological findings vindicates
the hypothesis that these bands correspond to genes or small groups
of genes in the many parallel threads of which the giant chromosome
consists. The several methods agree in making it likely that the
molecular weight of genes is of the order of magnitude of one million
(times the atomic weight of hydrogen). That is exactly what one
would have expected, considering that the weights of the threadlike
molecules of nucleic acids range from fifty thousand to several hundred
thousand while the weight of the individual tobacco mosaic virus
molecule reaches the figure of forty millions.

The investigations of the last ten years have not been favorable to
the special hypothesis that a mutation is due to a quantum jump
localized in and restricted to a few atoms. Several complications
have come to light. To give one extreme example, W. M. Stanley
found that a certain spontaneous mutation of the tobacco mosaic
virus changes its chemical composition by adding about one-thousand
molecules of histidine. One is thus forced to think of some mechanism
by which the individual ionization releases a chain of (enzymatic?)
reactions with the complex mutation as its end result. Be this as it
may, the direction in which our model points is hardly deceptive;
the gene is to be considered as a complex molecule and mutations are
closely connected with quantum jumps. The latter can be brought
about by single ionizations, and thus one may conclude with P. Jordan,
that ‘“the steering centers of life are not subject to macrophysical
causality but lie in the zone of microphysical freedom.” Incidentally
viruses that can be isolated and observed by means of the electron
microscope are in many respects better objects for the investigation of
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the physical foundations of the mutation process than the invisible
genes in the chromosomes of cells.

The nucleus of a fertilized egg is supposed to furnish by its genetic
constitution the complete determinants for the development of the
organism. In earlier times one often found great difficulty in har-
monizing this view — so closely related to the issue of ‘preformation’
versus ‘epigenesis’ — with the vast manifold of animals and plants, all
their various courses of development and all their minute differentia-
tions. However, the fantastically high number of possible combina-
tions of atoms in a gene molecule (cf. the characteristic numbers for
combinations of symbols in Appendix A) exceeds by far all that is
needed for this purpose. It is thus not inconceivable that the minia-
ture code contained in the gene molecules of the cell nucleus should
precisely correspond with a highly complicated and specified plan of
development and should somehow contain the means to put it into
operation. In a famous experiment Driesch observed that the cut-off
upper third of a Clavellina, its gill basket, reverts to an amorphous
conglomerate of cells from which there develops a new complete
Clavellina of reduced scale. He saw in this experiment a proof for
the existence of an entelechy not expressible in terms of physical
structure. Today we have a rather definite picture of the physical
structure that can serve as such an entelechy. The question of selec-
tion among the combinatorial possibilities is something else; it points
(1) towards the physicochemical problem of the stability of complex
molecular compounds, (ii) to the mechanism by which the ‘code’ is
translated into the development of an organism, and (iii) to the
process of evolution.

The stability of a molecule stems from the chemical bonds between
its atoms. As mentioned before, it was quantum physics that threw
the first light upon the previously rather obscure nature of chemi-
cal bonds. A crystal (like diamond) is a regular pattern of atoms
(C-atoms in the case of diamond) periodic in three independent spatial
directions. Here the bonds extend between ail atoms and thus the
entire crystal is as it were a single molecule. The stability of solid
bodies is that of crystals, and if the Delbriick model is basically correct,
then the stability of genes rests on the same quantumtheoretic
foundation. Yet while in a crystal the same building bricks are
repeated periodically, each atom in the gene has its specific non-
interchangeable place and role. Schrodinger therefore speaks of the
gene as an aperiodic crystal and ascribes to it a higher degree of order
and organization than to the periodic crystal. Whereas the macro-
scopic order and regularity of nature is based by statistical thermo-
dynamics upon microscopic disorder, we encounter here in the crystals
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and the chromosomes of cell nuclei an order that is not overwhelmed
by thermic disorder. In contrast to ordinary chemical reactions, the
laws of which are obtained by averaging over an enormous number of
molecular processes, mutations attack single genes. Inasmuch as
(a) the order of the zygote is transmitted by self-duplication and
mitosis to all somatic cells, and (b) the relatively minute speck of
well-ordered atoms in the chromosomes of the cells controls the
development of the living being, the dislocation of a few atoms in the
mutant gene results in a well defined change in the macroscopic
hereditary character of an organism. Before we have gained insight
into the mechanism underlying the processes (a) and (b) we cannot
claim to understand ontogenetic development.

While formal genetics has advanced by leaps and bounds during
the last forty to fifty years, our knowledge in these fields is still very
sketchy. As to the central problem of self-duplication, M. Delbriick
has recently (1941) ventured to give a detailed but admittedly hypo-
thetical picture of how amino-acids might conceivably be strung
together in a pattern emulating a preexisting gene model by quantum-
mechanical resonance at the site of the peptide links. Connection
between gene and visible character, e.g. between the wing form of
Drosophila called jaunty and its gene, is certainly the resultant of a
chain of intermediary actions. It is therefore an important step ahead
that recently attention has been concentrated on genetic control of
enzymatic action; many experiences point to a close relation between
genes and specific enzymes (cf. the recent work of G. W. Beadle and
others on Neurospora). When a tiny speck of solid crystalline sub-
stance causes a saturated solution of the same substance to crys-
talize, we witness bow a germ of order is capable of spreading order.
Although we are as yet unable to pursue this physical process in
theoretical detail there is no doubt that it lies within the scope of our
known physical laws. Science will press on to analyze the manifold
processes on which the order in living organisms depends in funda-
mentally the same way, i.e. on the ultimate basis of quantum physics
with its primary statistics. But there may be a bifurcation in the
following sense: as order is derived from disorder by means of the
secondary statistics of thermodynamics, so may a parallel but different
type of macro-law account for the production of large-scale order from
small-scale order in an organism (Schrédinger).

2. With the mutations a clearly recognizable non-causal element
penetrates into the behavior of organisms. Whereas my perceptions
and actions are in general the resultants of innumerable individual
atomic processes and thus fall under the rule of statistical regularity,
it is a noticeable fact that, if favorable circumstances prevail, a few

281



APPENDIX E

photons (not more than 5 to 8) suffice to set off a visual perception of
light. From here, from the quantum mutations in the gene molecule
and the translation of a stimulus of a few photons into visual percep-
tion, it is still a long, long way to the full psychophysical reality with
which man finds himself confronted, and to an integrated theoretical
picture of it that would account for the facts of free insight and free
will. ““Although the door of human freedom is opened,” says Edding-
ton in New Pathways in Science (p. 87), ‘it is not flung wide open; only
a chink of daylight appears. But it is no longer actually barred and
efforts to prise it further open are encouraged.” How far, we may ask,
is the example of mutations representative, how far may organic
processes be ascribed to the trigger action of small groups of atoms of
unpredetermined behavior? The physicist P. Jordan has argued the
point that to a considerable extent this is indeed the case, but has met
with much opposition among biologists. Also Schriédinger warns
that, without the almost complete precision and reliability of the
macroscopic thermodynamical laws ruling the nervous and cerebral
processes of the human body and its interactions with the surrounding
world, perception and thought would be impossible. Niels Bohr,
however, is inclined to widen the domain of uncertainty by adding a
specific biological principle of indeterminacy (the precise content of
which is still unknown) to Heisenberg's well-established quantum-
mechanical principal of indeterminacy. He has pointed out in this
connection that an observation of the state of the brain cells exact
enough for a fairly definite prediction of the victim’s behavior during
the next few seconds may involve an encroachment of necessarily
lethal effect — and thereby make the organism predictable indeed.
Bohr maintains that in this way analysis of vital phenomena by
physical concepts has its natural limits; just as one had to put
up with complementarity as expressed by Heisenberg’s principle of
indeterminacy in order to explain the stability of atoms, so are further
renouncements demanded of him who tries to account for the self-
stabilization of living organisms.

Such theoretical acts as the judgment that 2 + 2 makes 4 have
served in the main text to bring out the salient point of the problem
of freedom. Thought as thought would be abrogated if it were denied
that in my judging thus the mental fact that 2 4+ 2 actually makes
4 gains power over an individual psychic act, and not only over the
psychic act but also over the movements of my lips that form the
corresponding words pregnant with meaning, or over the movements
of the hand that, perhaps in the context of a mathematical proof,
writes down the marks ‘2 4+ 2 = 4’ on paper. Punching a hole in
the strict causality of nature does not therefore suffice; a representa-
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tion within the theory must be found for vital, psychic, and spiritual
factors that in some way direct and steer the atomic process. It is
certainly important in that grasp of the totality of nature that pre-
cedes all theory not to lose sight of such traits. Insumming up his life
work H. Spemann comes to the conclusion that the ‘‘processes of
development . . . are comparable, in the way they are connected, to
nothing we know irrsuch a degree as to those vital processes of which we
have the most intimate knowledge, viz., the psychical ones.” Such
voices as this — and it is not an isolated one — should be heeded.
And yet, I believe that in a theory of reality the ideal factors which are
here in question must be represented in basically the same way as the
physical elementary particles and their forces, namely by a structure
expressed in terms of symbols. I put no undue confidence in the sug-
gestion made in the main text, that this purpose could be served by
correlations betiween such atomic events as are treated as statistically
independent by thermodynamics. Indeed the example of quantum
mechanics has once more demonstrated how the possibilities with
which our imagination plays before a problem is ripe for solution are
always far surpassed by reality. Even so, the explanation of the
chemical bond by Pauli’s exclusion principle is perhaps a hint that the
radical break with the classical scheme of statistical independence is
an opening of the door as significant as the quantum mechanical
complementarity.

Scientists would be wrong to ignore the fact that theoretical con-
struction is not the only approach to the phenomena of life; another
way, that of understanding from within (interpretation), is open to us.
Woltereck, in a broadly executed Philosophie der lebendigen Wirklich-
keit, has recently ventured to describe in some detail the ‘“within”
of organic life. Of myself, of my own acts of perception, thought,
volition, feeling and doing, I have a direct knowledge entirely different
from the theoretical knowledge that represents the ‘parallel’ cerebral
processes in symbols. This inner awareness of myself is the basis for
the understanding of my fellow-men whom I meet and acknowledge
as beings of my own kind, with whom I communicate, sometimes so
intimately as to share joy and sorrow with them. Even if I do not
know of their consciousness in the same manner as of my own, never-
theless my ‘interpretative’ understanding of it is apprehension of
indisputable adequacy. Its illuminating light is directed not only on
my fellow men; it also reaches, though with ever increasing dimness
and incertitude, deeply into the animal kingdom. Albert Schweitzer
is right when he ridicules Kant’s narrow opinion that man is capable
of compassion, but not of sharing joy with the living creature, by the
question, ‘ Did he never see an ox coming home from the fields drink ?”’
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It is idle to disparage this hold on nature ‘from within’ as anthropo-
morphic and elevate the objectivity of theoretical construction. Both
roads run, as it were, in opposite directions: what is darkest for theory,
man, is the most luminous for the understanding from within; and to
the elementary inorganic processes, that are most easily approachable
by theory, interpretation finds no access whatsoever. For objective
theory the understanding from within can serve as a guide to impor-
tant problems although it cannot provide their objective solution.
A recent example is provided by investigations about the direction of
the instinctive behavior of animals by ‘appetences.’

It is tempting to stretch Bohr’s idea of complementarity far enough
to cover the relation of the two opposite modes of approach we are
discussing here. But however one may weigh them against each
other, one cannot get around the following significant and undeniable
fact: the way of constructive theory, during the last three centuries,
has proved to be a method that is capable of progressive develop-
ment of seemingly unlimited width and depth; here each problem
solved poses new ones for which the coordinated effort of thought and
experiment can find precise and universally convincing solutions. In
contrast the scope of the understanding from within appears prac-
tically fixed by human nature once for all, and may at most be widened
a little by the refinement of language, especially of language in the
mouth of the poets. Understanding, for the very reason that it is
concrete and full, lacks the freedom of the ‘hollow symbol.” A biology
from within as advocated by Woltereck will, I am afraid, be without
that never-ending impetus of problems that drives constructive biology
on and on.
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The Main Features of the Physical
World; Morphe and Evolution

The whale is a spouting fish with a horizontal tail.—H. MELVILLE,
Moby Dick, Chap. XXXII.

Life must not cease. That comes before everything. It is silly to
say you do not care. You do care. It isthat care that will prompt your
imagination; inflame your desires; make your will irresistible, and create
out of nothing.—The Serpent to Eve, in G. B. SuAw, Back to Methuselah,
Act 1.

Farewell, farewell! but this I tell
To thee, thou Wedding-Guest!
He prayeth well, who loveth well
Both man and bird and beast.
CoLERIDGE, The Rime of the Ancient Mariner.

Whence this creation has its origin,
Whether created whether uncreated,
He who looks down from heaven’s highest seat,
He only knows — or does He know not either?
Rig-Veda, Mandala X, Hymn 129.

Not content with an answer to the question ‘How is it?’ we wish to
know ‘How did it come to be so?” Man, wherever he awakens to
ponder the riddles of existence, is prone to expect evolution to enlighten
him about the essence of things. The idea of evolution plays a pre-
dominant role in mythology and the primitive philosophical thoughts
of mankind. The Indian speculations about Brahma as the eternal
self-existing being unfolding itself into the manifold world of material
objects and individual souls continue the same line. So does the
Neo-Platonists’ doctrine of ‘““emanation,” while the early Ionian
philosophers try to account for the genesis of the universe on a more
physical basis. Important steps toward the modern conception of
physical evolution are taken by Empedocles and then by Lucretius.
This is not the place to review in detail the special forms which the
idea of evolution assumed in Aristotle (with his contrast of poten-
tiality and actuality), in Plato and the great philosophical systems of
our era from Descartes on. Kant’s name is associated with one of the
first scientific genetical theories, that of the origin of the planetary
system. More universal and speculative is Schelling’s notion of the
self-realization of nature in a succession of forms, points of arrest, as it
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were, brought about by a limitation of her infinite productivity, or
Hegel’s immanent and timeless dialectical process, that only in the realm
of the spirit gives rise to a truly historic development. With Buffon,
Lamarck, Treviranus and Goethe we approach the modern conception
of organic evolution.

The experience of science accumulated in her own history has led
to the recognition that evolution is far from being the basic principle
of world understanding; it is the end rather than the beginning of an
analysis of nature. Explanation of a phenomenon is to be sought not
in its origin but in its immanent law. Knowledge of the laws and of
the inner constitution of things must be far advanced before one may
hope to understand or hypothetically to reconstruct their genesis.
For want of this knowledge the speculations on pedigrees and phylo-
geny let loose by Darwinism in the last decades of the nineteenth
century were mostly premature. Even today, after all the new and
great revelations of genetics, our knowledge of facts and laws does not
by a long shot suffice to explain either ontogenetic development or
phylogenetic evolution. Without such groundwork as Newton’s
gravitational law, hypotheses about the origin of the planets would
have been futile. Only on the basis of the spectroscopic investigation
of stars and modern atomic physics, and only after well-founded
opinions about the spatial order of the stellar universe had been
derived by analysis of vast observational material could the astrono-
mers undertake to draw a picture, first of the inner constitution and
then also of the temporal development, of stars. Cosmogony still
remains a rather problematic enterprise.

In our survey of the formation of concepts and theories by science
(Sections 20-21) we saw how causal analysis proper is preceded by
ordering and classification. Perhaps more stress should have been
laid on this preliminary stage, that still plays a major role in biology
while it has become of subordinate importance in physics. The
spectacle of the immense variety of plant and animal species displayed
by nature has been an early and persistent stimulus for biology to
develop to great perfection the art of morphological and taxonomic
classification. The remarkable fact that the diverse species, not-
withstanding their range of variation, mostly exhibit clearly recogniza-
ble typical differences, has facilitated the task. The typical may be
elusive in terms of well-defined concepts, and yet we handle it with
instinctive certitude, e.g. in recognizing persons. Nor is it easy to
describe in general terms how the process of classification, step by
step and ever more convincingly, succeeds in separating essential from
unessential features. In an individual animal or plant the several
organs are distinguished by form, structure, function. Plato finds no
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better way to illustrate his diaeretic process of continued division
than through the biological simile of the dissection of a sacrificial
animal. By form, structure, and function, comparative morphology
determines the homology of organs. Whatever the logical founda-
tions, in the end no zoologist doubts that whales belong among the
mammals and not the fishes (see, however, Ishmael’s and the Nan-
tucket whalemen’s contrary view in Melville’s Moby Dick, Chap.
XXXII) or that certain cranial bones of the higher groups of verte-
brates are homologous to the gill arches of fish. The purely morpho-
logical classification of the forms of crystals observed in nature is an
analogue in the field of physics; here we can go to the end of the road
where description gives way to dynamical theory. Much labor had
to be spent on ordering the material of spectroscopy before the quan-
tum theory of spectra and atoms could come into existence.

Classification looks for forms of distinct stamp, for regularities
of arrangement in space and of sequence in time, for a permanent struc-
ture as the ‘““rubende Pol in der Erscheinungen Flucht.” Under the
title of morphé we shall now briefly pass in review the primary struc-
tures encountered by science in its search for order and law.

2. Let us begin with the absolute constants of nature. Today’s
physical theories can claim to provide a radical understanding for two
of them, the velocity of light, ¢, and Planck’s action quantum, h.
According to relativity theory there is but one arbitrary standard unit
that enters into the measurement of distances in the four-dimensional
world; the velocity of light thus measured as the ratio of two equal
distances (one ‘spatial,’ one ‘temporal’), turns out to be 1. The
universal connection U = hv established by quantum theory between
energy U and frequency » (and also between momentum and wave
number) suggests measuring energy directly by frequency. Indeed
what the basic operator L of the dynamical law [Appendix C, formula
(2)] reptesents may be described either as frequency or as energy.
Thereby the value of h also reduces to unity.

More difficulties are caused by the elementary electrical charge e.
All known kinds of elementary particles— as far as they are not
neutral, like the photon and the neutron — have, except for the sign,
the same charge e. Thus we cannot but accept this value e as a con-
stant of nature no less fundamental than ¢ and h. Measured in terms
of the ‘natural’ units that make ¢ and h equal to unity, the electrical
repulsion of two electrons obeying Coulomb’s inverse square law with
respect to their variable distance r assumes the value o/r%. The
constant factor « (the square of ¢) is a pure dimensionless number
equaling approximately 1{37. A complete theory ought to account
for this value by mathematical reasons — just as geometry predicts
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the value = = 3.1415 . . . of the ratio between circumference and
diameter of a circle. Whatever Eddington may have thought, no
such theory is available today.

The first step would be to comprehend how it happens that the
same particle with its definite charge and mass (the same ‘entity’ in
the terminology of Appendix B) occurs in the world in a large number
of copies. Classical physics derives the conservation of charge and
mass from a tendency of perseverance, but permits bodies of arbitrary
charge and mass to exist. This viewpoint is unsatisfactory as far
as the fixed charges and masses of elementary particles are concerned.
Their conservation must depend on adjustment rather than on per-
severance. The direction of the axis of a rotating top (e.g. the position
of Earth’s axis) is indeed transferred from moment to moment by
means of a tendency of perseverance or inertia — we have called it the
inertial field — whereas the direction of a magnetic needle is deter-
mined by adjustment to the magnetic field. If conservation of a
quantity depends on inertia then its initial value may be chosen
arbitrarily; but since perturbation can never entirely be eliminated,
deviations are apt to occur in the course of time. Adjustment how-
ever enforces a definite value that is independent of past history and
hence reasserts itself after any disturbances and any lapse of time as
soon as the old conditions are restored. The rigid rods and the clocks
by which Einstein measures the fundamental quantity ds? of his
metric theory of the gravitational field preserve their length and period
in the last instance because charge ¢ and mass m of the composing
elementary particles are preserved. The systematic theory, however,
proceeds in the opposite direction; it starts with a metric ground form
and thus introduces a primitive field quantity to which the Compton
wave length m~! of the particle adjusts itself in a definite proportion.
(Again we apply the natural units in which ¢ and h equal unity.) The
behavior of rods and clocks comes out as a remote consequence of the
fully developed theory. (In certain hypothetical generalizations of
Einstein’s theory of gravitation, in Weyl’s metrical and Eddington-
Einstein’s affine field theories, this field quantity appears in the
disguise of the radius of curvature of the universe and is derived from
more primitive field quantities; but that does not essentially alter the
basic relationship just described.)

G. Mie and others have tried to modify Maxwell’s equations of the
electromagnetic field in such a way that they possess only one or at
most a small number of static spherically symmetric solutions. Had
one succeeded, then adjustment would have been explained in the
framework of classical field physics. But so far this idea has led
nowhere. Quantum theory on the other hand solves the riddle, at
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least to a certain extent, by the quantization of field equations, a
process by which one passes indeed from one to an indeterminate
number of equal particles. Thus equality is accounted for, yet the
particular values of charge and mass remain as unexplained as before.

If anything in nature has the right to be considered a ‘“‘simple and
eternal mode of being,”” it is the electron, the best known among the
elementary particles. Already the proton betrays signs of complex
structure.

An electron, a proton, and a meson all have different masses. Thus
the mass of elementary particles seems to be of a less primitive and
universal nature than their charge. Charge is related to the electric
field in the same manner as mass is related to the gravitational field.
Measured in the natural units, the gravitational attraction of two
electrons amounts to e¢/r? where the pure number ¢ has a value of
about 10—, This is still more mysterious than the factor . Indeed
a simple mathematical theory may lead to numbers like 14 or 87, but
hardly to a non-dimensional number of the extravagant order of
magnitude 104!. Explaining the red shift of the spectral lines of spiral
nebulae by means of the cosmological term in Einstein’s equations,
one arrives at a world radius of the order of magnitude 10*? cm. In a
spatially closed world of this dimension a mass of 10% grams, dis-
tributed uniformly throughout space, would be in static equilibrium.
This amount of matter is in reasonable agreement with estimates of
the density of the cosmic clouds as inferred from observation. Divid-
ing by the mass of the electron (and thus by implication ignoring the
other kinds of particles), one finds that the number N of particles
present in the world amounts to about 10%:. Thus the mysterious
numerical factor ¢ =~ 10—*! seems to be connected with this number N,
which may well be accepted as accidental, by a relation like e = 1/4/N.
If this be taken seriously it would indicate that the gravitational
attraction of two particles depends on the total mass of the universe!
The idea is not as strange as it may first sound. Long ago E. Mach
tried to interpret the inertial mass of a body as an inductive effect of
the other masses of the universe. Einstein’s theory of gravitation
does not satisfy Mach’s postulate, though historically the latter
played a role in its conception. A theory that meets Mach’s challenge
remains a desideratum (would it be a statistical theory of gravitation,
as the square root in the law ¢ = 1/4/N seems to indicate?). For the
moment we can say no more than that the construction of the world
seems to be based on two pure numbers, @ and ¢, whose mystery we
have not yet penetrated.

Atoms are compounds of elementary particles. A neutral atom
consists of a highly stable nucleus around which a number Z of elec-
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trons revolve. The laws for the motion of this outer shell of electrons
and for the related energy levels have been completely elucidated by
quantum theory; the structure of the nucleus, on the other hand, is
not yet understood to the same degree. An atom remains the same
atom as long as its nucleus stays unaltered; it changes its state as an
electron is raised to a higher or drops to a lower energy level. Because
they are composed of protons and neutrons, nuclei of the same charge
may differ in mass. The fact that the chemical characteristics of
elements are essentially determined by the charge of their nuclei has
long stood in the way of separating such isotopes. Transmutations
of atoms into one another occur spontaneously (radioactive disin-
tegration) or are brought about by artificial means; they require far
greater energies than the changes of state. The several possible kinds
of atoms are ‘predestined’ by the natural laws, from which they can
be deduced by purely mathematical means. They are configurations
as eternal and primordial as the elementary particles themselves; there
is no trace of an evolution from simpler to more complicated atoms.
The fact that the lines of hydrogen prevail in the spectrum of Sirius
and iron lines in that of the Sun does not point to a development of
chemical elements underlying the development of stars but is readily
accounted for by the higher surface temperature of Sirius. What
holds for atoms holds in principle also for molecules; their composition
and their conditions of existence are fixed once for all by the universal
laws of nature. But the probability of a jump from one constellation
to another, for instance from one oxygen and two hydrogen molecules
into two water molecules, depends on temperature; these probabilities
determine the velocities of reactions. Thus molecules unstable at
high temperatures may become much more stable at lower tempera-
tures; and in this way the cooling off of the Earth may enable molecules
not found at an early phase of Earth’s history to exist at a later
phase. Since genes are highly complex molecules, this viewpoint has
some bearing on the origin and evolution of life on earth.

In the crystals we encounter impressive macroscopic structures that
are obviously governed by simple harmonious laws. The symmetry
of a crystal is exhibited not only by its external shape but by all its
physical characteristics. Suppose that the crystalline substance fills
the entire space. Its macroscopic symmetry finds its expression in a
group g of rotations; only such orientations of the crystal in space are
physically indistinguishable as are carried into each other by a rotation
of this group. For example, light, which in general propagates with
different velocities in different directions in the crystalline medium,
will propagate with the same speed in any two directions that arise
from each other by a rotation of the group g. So for all other physical
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properties. For an isotropic medium the group g consists of all rota-
tions, but for a crystal it is made up of a finite number of rotations
only, sometimes even of nothing but the identity. FEarly in the
history of crystallography the law of rational indices was derived from
the arrangement of the plane surfaces of crystals. It led to the
hypothesis of the lattice-like atomic structure of crystals. This
hypothesis, which explains the law of rational indices, has now been
definitely confirmed by the Laue interference patterns, that are essen-
tially X-ray photographs of crystals. Thus we know that the atoms
of a crystallized chemical element form a regular set of points S, i.e.
a set lying in the same manner around each of its points. More
precisely, in the group G of motions that carry all points of S into
points of S there is always a motion carrying one point of S into an
arbitrarily chosen other such point. Any motion in point space
induces a rotation in vector space. In this manner the group of
motions G induces the group ¢ of rotations in vector space, g = {G}.
G describes the hidden atomic morphé (Gestalt), g the manifest
macroscopic spatial and physical morphé of the crystal. For g there
are only 32 distinct possibilities while the possible G’s form a con-
tinuous web.

It is possible to decompose the atomic symmetry as described by
the groups & into a purely discontinuous and a purely continuous
component. As this duality, discrete versus continuous, is of funda-
mental importance for all morphological investigations and is obviously
closely connected with the distinction between ‘nature’ and ‘orienta-
tion’ that we tried to characterize on p. 87, and also with the general
contrast between fixed internal constitution and variable external
conditions, it seems worth while to describe the group-theoretic
analysis of the structure of crystals in some detail.

-[The translations contained in G form a group L that may be
generated from three independent translations ey, es, ;;. Translations
are vectors and thus L is the parallelepipedic lattice of vectors con-
sisting of all the vectors zie; + x:e3 + xses with integral coordinates

—_ —

(@1, 2, x;3) relative to the basis e = (e1, e, e;). Transition from
one lattice basis e to another e* and the opposite transition e* — ¢ is
effected by two reciprocal linear substitutions U, U—! of the variables
Z,, o, x3 with integral coefficients (unimodular substitutions). The
group g of rotations leaves the vector lattice L invariant. When
expressed in terms of the ‘lattice-adapted’ affine coordinates it appears
as a group g of homogeneous linear substitutions with integral coeffi-
cients, and G appears as a group @ of non-homogeneous linear sub-
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stitutions of the point coordinates x,, s, 3 that induces g in the vector
space, § = {®}. In view of the arbitrariness involved in the choice
of the lattice basis e, two groups g arising from each other by a uni-
modular transformation U are to be considered equivalent. In this
sense there are exactly 70 unimodularly inequivalent possibilities for
¢ (while there were 32 ‘orthogonally inequivalent’ possibilities for g),
and, what is the decisive fact, also only a finite number, namely 230,
of possibilities for @. But something must still be capable of con-
tinuous variation! Indeed, in stressing the lattice structure of the
crystal we lost sight of the metric structure of space; that has to be
carrected. The metric ground form of the space, i.e. the square of
the length of an arbitrary vector (zi, zs, z3) is a positive-definite
quadratic form of its coordinates z,, z2, 3 with respect to the lattice
basis e, a form that is left invariant by all the substitutions of the
group g. Now the positive quadratic forms left invariant by the
substitutions of g form a continuous pencil (of very elementary nature),
and the metric ground form is one individual in this continuous mani-
fold. Hence the symmetry of a crystal is finally described by one
discontinuous feature, namely one among the 230 groups &, and one
element to be picked from a continuous manifold, namely from the
pencil of positive quadratic forms invariant under g = {®}.}

The crystals actually occurring in nature display the possible types
of symmetry in an abundance of different forms that are influenced by
the prevailing external circumstances. Think of the marvelous
decorative patterns of snow crystals, of twin formations and the like!
The morphological laws are today understood in terms of atomic
dynamics: if equal atoms exert forces upon each other that make
possible a definite stable state of equilibrium for the atomic ensemble,
then the atoms will of necessity arrange themselves in a regular system
of points in our strict sense. The nature of the atoms composing the
crystal determines, under given external conditions, their metric
disposition, for which the purely morphological investigation had still
left a continuous range of possibilities. The dynamics of the crystal
lattice is also responsible for the crystal’s physical behavior, in par-
ticular for the manner of its growth, and this in turn determines the
peculiar shape it assumes under the influence of the environmental
factors.

The visible characters of physical objects usually are the resultants
of constitution and environment. Whether water, whosemolecule has
a definite chemical constitution, is solid, liquid, or vaporous depends
on temperature. The examples of crystallography, chemistry, and
genetics cause one to suspect that this duality is in some way bound up
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with the distinction between discrete and continuous. Here is one
tentative suggestion. For a character like the symmetry group ® of a
crystal that by its very nature (in agreement with an adopted theory)
is capable of discrete values only, a specific one among these values is
constitutive, whereas for a character with a continuous range, such as
the character ‘metric compatible with the given group ®,’ merely the
range (here the pencil of all positive quadratic forms invariant under
g = {®}) is constitutive. An individual stationary quantum state
with its energy level is a good constitutional element (in spite of
quantum jumps due to interaction); not so a wave state or, more gen-
erally, a statistical ensemble of wave states. Temperature is the
environmental factor kat’ exochen. 1 think that this whole problem
is in need of epistemological clarification.

With greater abandon than anywhere else has Nature given
free course to her nisus formativus in the realm of living organisms.
Because of the colloidal state of organic matter, the forms are here less
rigid than in the inorganic world, but they combine flexibility with an
astonishing tenacity in maintaining their basic organization in the face
of disturbances. The scheme of inner permanent constitution versus
changeable external conditions, both of which factors influence
appearance and development, has stood the test here as well as in the
realm of molecules and crystals, and the science of genetics has given
us a clear picture of the inner genetic constitution of organisms.

Finally, the stellar world shows us organization of matter on the
largest scale. The fact most exigent of explanation is the conglomera-
tion of matter into individual luminous stars whose density exceeds the
average spatial density of matter about 10?” times. With relatively
few exceptions all these stars have approximately the same mass, the
variations being hardly greater than the differences in size among
human beings of all age groups. Stars form large clusters separated
from each other by wide interstices; one such group of enormous
dimensions, of which our Sun is a member, is the galactic system. A
certain part of matter is scattered through space in the form of rarefied
gaseous nebulae and clouds. Classification of the heavenly objects is
based above all on the nature of the light they emit. With the help of
atomic physics the spectroscopical findings yield detailed information
about the interior of the stars. One central question, that of the
source from which the luminous stars restore the energy lost by radia-
tion, no longer embarrasses us; we have witnessed man’s success in
harnessing the energy released by atomic transmutations for his own
destructive ends. Our information on the interior of stars and the
chemical analysis of meteorites seems to indicate that everywhere
throughout the universe the various chemical elements are mixed in
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much the same proportion. This is an argument for the common
origin of all stars.

The statement that the natural laws are at the bottom, not only of
the more or less permanent structures occurring in nature, but also of
all processes of temporal development, must be qualified by the remark
that chance factors are never missing in a concrete development.
Classical physics considers the initial state as accidental. Thus
‘common origin’ may serve to explain features that do not follow from
the laws of nature alone. Statistical thermodynamics combined with
quantum physies grants chance a much wider scope but shows at the
same time how chance is by no means incompatible with ‘almost’ per-
fect macroscopic regularity of phenomena. Evolution is not the
foundation but the keystone in the edifice of scientific knowledge.
Cosmogony deals with the evolution of the universe, geology with that
of the earth and its minerals, paleontology and phylogenetics with the
evolution of living organisms.

3. As his external features betray a person’s age, so are the spectral
lines emitted by stars clues to their stage in life, and we have thus been
enabled to write with some authenticity the ‘life’ of a typical star.
James Jeans in our day put forward a cosmogonic theory based on
observation and exact computations that traces the evolution from a
slow rotating gas ball over a spiral nebula to a cluster of stars like the
galaxy. A century earlier Laplace had advanced his hypothesis about
the birth and development of the planetary system; the fact that all
planets cirele around the Sun in the same direction in nearly coinciding
planes points very clearly to a common origin. Lemaitre has recently
ventured still further back in the history of the universe than did
Jeans. The decisive factor in his cosmogony is the expansive force as
expressed by the cosmological term in Einstein’s equations of gravita-
tion. Under the numerical conditions assumed by Lemalitre, gravita-
tional attraction almost balances the expansion, so that at a certain
precarious phase of evolution minute local variations of density give
rise to accumulative condensations. He surmises that the world has
its origin in the radioactive disintegration of a single giant atom.
There is certainly much that is hypothetical and preliminary in such
cosmogonies; to mention but one point, deeper insight into the basic
nature of gravitation will very likely result in radical modifications.
But in view of all the achievements of astrophysics, it can hardly be
doubted that the chosen approach is fundamentally right, that one has
to appeal to atomic physics in order to explain the inner constitution
of the stars and the evolution of the stellar system.

Among the three inferred evolutions mentioned above, that of the
Earth is the least hypothetical. The empirical evidence by which the
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reconstruction of Earth’s past history is supported is by far the strong-
est, and the physical interpretation of the relevant geological processes
is nowhere beset by difficulties of a principal character.

A profound mystery, however, is the evolution of life on earth. The
idea of organic evolution (conceived long before Darwin) was raised by
Darwinism to the rank of the most dominant scientific issue of our
times. Does it really deserve this position? The nineteenth century,
so blindly addicted to the gospel of progress, welcomed with open arms
a doctrine according to which the general trend of development is in
the direction from simple to complex, from lower to higher forms.
More important, however, than the question of man’s ancestors in the
animal kingdom, seems to me another fact revealed by biology, namely
the deep inner affinity of all livingbeings. Buildingfrom cells, the basic
structure of cells and the basic cellular processes, such as metabolism,
chromosome duplication, cell-division, also the processes of meiosis
and fertilization underlying procreation, all these are the same in man,
animal, and plant. As far as the fundamental features of his organiza-
tion are concerned, man is one with all other living creatures. In the
conceit and pride of his singularity, he has always found it easier to
believe with Genesis I: 1, that he is created “in God’s own image’’ and
has dominance over the Earth, than to bow his head under this
recognition of the deep community of all life. ‘Ehrfurcht vor dem
Leben’’ in each and every form (Albert Schweitzer), ‘“love and rever-
ence to all things that God made and loveth’’ (Coleridge, The Rime of
the Ancient Mariner, last gloss) is its ethical implication, St. Anthony’s
sermon to the fishes a moving religious expression of it.

We deem the atoms and molecules occurring in nature satisfactorily
explained if we derive them as possible structures from the natural
laws holding at all times. Why then our appeal to evolution when we
come to the gene aggregates that as zygotes determine the character-
istic forms, structures, and functions of plants and animals and their
organs? Individual ontogenesis from a fertilized egg to a highly
differentiated organism still has its analogies in inorganic nature,
remote though they may be, e.g. the formation of the crest of a surf
wave or the geological formation of a serrated mountain range. The
question proper concerns phylogenesis. In attempting to answer it,
let us first repeat a previous remark to the effect that the stability of
molecules depends on temperature and other environmental conditions
and that a molecule will in general be the more labile the more complex
it is. Hence it is not surprising that the molecules characteristic of
living matter, in particular the genes, are tied to a definite epoch of the
history of the earth and that their emergence is closely connected
with the earth’s own evolution. This remark, however, is clearly
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insufficient to explain the mighty drama of organic evolution tnat led
from tiny blobs of jelly-like material to the highest animals with their
wonderfully adaptive sense organs. The decisive point is perhaps
this: when one deals with complex molecules consisting of something
like a million atoms, the manifold of possible atomic combinations is
immensely larger than those actually occurring in nature. Such
combinations as are capable of functioning as genes are extremely rare
and can only be ‘found’ by a selective process that by probing many
possibilities and using previously conquered positions as bases for
further advance, slowly gropes its way from simple to more complicated
structures. But this formulation of the problem does not give more
than the vaguest hint for its solution.

The evidence for organic evolution is furnished by paleontology,
embryology, comparative anatomy, and genetics. Paleontological
evidence is the most direct, but sporadic. Embryology gives direct
information only about ontogenesis. True, the fact for example, that
the embryos of man and fish have similar gill slits, suggests the assump-
tion of common ancestors — although a more cautious interpretation
may be content with the inference that similar genotypes manifest
themselves in phenotypes bearing a closer resemblance to each other
in their earlier than in their later stages of development. T. H.
Morgan has occasionally pointed out how the ontogenesis of antlers
in deer mocks phylogenesis. In any case Haeckel’s conception of
ontogenesis as an abbreviated repetition of phylogenesis (biogepetic
law) stands on very weak foundations. The affinity between species
disclosed and evaluated by comparative anatomy need not be inter-
preted as consanguinity — as little as the systematics of chemical
compounds found in the handbooks of inorganic and organic chemistry
reflect an historical development. But an evolutionary interpretation
is suggested when one realizes that large parts of the system display a
‘tree-like’ iterated ramification in one direction.

The evidence of genetics was not yet available to Darwin. His
doctrine rests on the fact that a common hereditary equipment does
not exclude chance variations or variations caused by changeable
surroundings. Since the number of individuals from one generation
to the next fluctuates but slightly in spite of the production of an
abundance of offspring, a struggle for survival must take place among
the variously endowed individuals. Assuming the variations to be
inheritable, Darwin concludes that this natural selection will have a
cumulative effect through the generations and act constantly to main-
tain and improve the adjustment of animals and plants to their
surroundings and their way of life.! One of the main pillars of the

! The lengthening of the neck of a giraffe, trying to ‘“get at the tender leaves
high up on the tree’’ is the classical example widely discussed at the time.
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theory, the heredity of phenotypical characters, including characters
acquired by use during the individual development (Lamarck), was
overthrown by Johannsen’s experiments with pure lines. The modi-
fication of phenotype brought about by a change of environment
disappears with the return to the original environment.

4. But here the modern science of genetics has provided a substi-
tute; recombination and mutation have taken the place of Darwin’s
inheritable continuous chance variations. Mendel and his successors
disclosed the combinatorial game that meiosis and syngamy play with
genetic constitution. From a strain that is not completely uniform
(is not a pure line) segregation and recombination will produce new
inheritable variations. The sexual process in the life-cycle of organ-
isms is of momentous aid in the emergence of ever new forms. The
germ plasm of both parents is not blended; the constituent genes
preserve their nature unmingled. In one regard this ‘particulate
inheritance’ carried by genes serves the ends of evolution even better
than blending inheritance as assumed by Darwin. Blending would
drive a population which exhibits a large variability at the start rapidly
and irretrievably toward greater and greater homogeneity unless new
variations are constantly developed at a rate altogether incompatible
with the frequency of observed mutations; the more extreme variants
would quickly disappear by swamping.

Segregation and recombination account for the unceasing variety in
nature, but they alone could not explain evolution if genes and gene
structures were not allowed to mutate. It has previously been
described (Appendix B) under what circumstances species (in a strict
combinatorial sense) are conserved. Wherever these conditions are
violated new species come into being. Among the structure mutations
that alter the number of genes, the duplication of the entire chro-
mosome outfit of a cell plays a particularly important role (poly-
ploidy). Diploid zygotes will give rise to tetraploids, sometimes by
hybridization (allopolyploidy); sometimes when under the influence
of chemical agents, or a thermic shock, or for some other reason matu-
rating cells fail to carry out meiosis (autopolyploidy). It may be
expected, moreover, that genes not only change their mutant states
but that one gene changes into another (just as atoms not only change
their quantum states but are transmuted into each other), or new
genes originate. A natural tetraploid contains four homologues of
each kind of chromosomes, and yet one observes not infrequently that
only two of its points seem to be occupied by the same gene — as if in
the sequence of tetraploid generations one of the two equal gene pairs
had changed into a different one. It is perhaps not entirely excluded
that directed adaptive mutations occur, e.g. that in response to an
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adaptive phenotypical chance alteration the rate of such mutations
as would support that alteration tends to increase. The thesis of the
non-inheritance of acquired characters is based on such solid and
diversified evidence that one hesitates to tamper with it, and yet
experiments with unicellular organisms propagating by asexual divi-
sion show that it has its limits. Continued action of a chemical agent
on one hundred generations of infusoria, after first attacking the cell
plasm, then the macro-nucleus, ultimately brings about a change of
inner constitution localized in the micro-nucleus; this change is inher-
ited, to be sure, not through an indefinite time but with gradual slack-
ening effect, over perhaps the next sixty generations.

Even when we know the origin of the constantly appearing inherita-
ble variations, we still have to explain the extraordinary fact that the
result is not a chaos of interfertile types but that a definite sorting out
of variants into isolated races, species, and higher taxonomic categories
takes place. Indeed the process of evolution has two aspects, since it
involves the development of diversity as well as that of discontinuity
in the living world (Dobzhanski). One will first have to investigate
how newly created mutations fare in spreading through the successive
generations of a population under definite assumptions about viability
and mating. Mutants will differ in their adaptive value with respect
to a given environment, and thus natural selection will do its work.
The genes appear to be organized into genotypic systems such that the
adaptive value attaches to the entire systems rather than to the con-
stituent genes. The sorting out of races and biological species would
be impossible without isolating factors, of which we mention only the
two most important: infertility except between gametes of the same
or very similar species makes for genetic isolation, difference in habitats
for geographical isolation.

The ideas of progress and retrogression have no necessary connec-
tion with evolution, but if evolution is viewed under these aspects it is
certainly not always progressive. The line from autotrophic forms
that require only inorganic compounds and light (green algae and
certain bacteria), over various steps of dependence on preformed
specific organic molecules, to the ultimate in parasitic specialization
that is reached in a virus, a naked gene synthesizing copies of itself
from the living protoplasm of its host, this line may well be the picture
of a retrogressive evolution that actually took place in nature.

Our present knowledge about the laws of inheritance is certainly
not inconsistent with the doctrine of evolution, and it has scored some
success in the interpretation of geographic and ecological speciation
on a small scale. But — if a layman is entitled to an opinicn on these
matters — we are still far from a genetic explanation of evolution in
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the large and its most conspicuous features. The findings of paleontol-
ogy seem to indicate that organic evolution has followed definite
directions continuously over extended periods. Such ‘orthogenetic’
trends may be ascribable to the nature of protoplasm itself. One
school holds that they are largely unadaptive and that ‘“adaptive
sequences in evolution are superposed on the great orthogenetic
trends but are entirely independent of them’’ (R. F. Griggs); others,
like H. F. Osborn, find that new structures often arise in response to a
future functional need and therefore speak of secular adaptation. A
classical example is provided by the cones on the teeth of various
vertebrates that first arise as almost imperceptible prominences and at
that stage of evolution are of very doubtful functional use, while
later they develop into conspicuous features of obvious functional
importance.

Consideration of evolution in the large will of necessity lead to the
question of the origin of life. The evidence of genetics makes one
incline to see in life the chance success of a play of creative accidents.
Not some predictable macrophysical or macrochemical process that
with a certain natural necessity came to pass at a certain stage of
evolution and would repeat itself wherever the appropriate conditions
prevailed seems responsible for the historic beginnings of life, but a
molecular event of singular character occurring once by accident and
then starting an avalanche by autocatalytic multiplication (P. Jordan).
Jordan adduces as a strong argument for this opinion ‘‘the fact that
all the more complicated molecules found in plants and animals,
especially the protein molecules, are stereochemically different from
their mirror images.”” Indeed had they an independent origin at
many places and many times their levo- and dextro-varieties should
show nearly the same abundance. Thus it looks as if there is some
truth in the story of Adam and Eve, if not for the origin of mankind
then for that of the most primitive forms of life.

Oparin has suggested that the first self-duplicating units (‘' proto-
genes’’) arose after a great variety of organic molecules had accumu-
lated in a long pre-life evolutionary period during which they had a
much better chance to survive than under present-day conditions,
because of the absence of living organisms with their catalytic enzymes.
The chain of reactions found necessary for a gene to reproduce may
have been built up by mutations in retrograde steps, each step con-
ferring a new selective advantage. In the remote past genes may
have existed and reproduced in a free state. Whatever the merits of
such hypotheses, when we try to imagine what mechanisms of search,
presumably without direction and mneme, could have built up within
geological times the enormously complicated structures of genes, all
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the complicated biochemical processes that condition the life of
animals, and such marvels of adaptive differentiation as the human
eye, then we cannot help realizing how speculative the whole field
still is.

The temptation of an interpretation in terms of an overall plan of
evolution is almost irresistible. One of the theses at which J. C. Willis
arrives in his book The Course of Evolution (1940) asserts, ‘ The process
of evolution appears not to be a matter of natural selection of chance
variations of adaptational value. Rather it is working upon some
definite law that we do not yet comprehend. The law probably began
its operations with the commencement of life, and it is carrying this on
according to some definite plan.”

Even an author so scornful of all teleology as Julian Huxley feels
himself forced to admit, “ The biological process culminating for the
evolutionary moment in the dominance of Homo sapiens . . . could
apparently have pursued no other general course than that which it has
historically followed: or, if it be impossible to uphold such a sweeping
and universal negative, we may at least say that among the actual
inhabitants of the earth, past and present, no other lines could have
been taken which would have produced speech and conceptual thought,
the features that form the basis for man’s biological dominance.”
(Evolution, p. 569.)

Whether or not the view is tenable that the organizing power of life
establishes correlations between independent individual atomic
processes, there is no doubt that wherever thought and the causative
agent of will emerge, especially in man, that power is increasingly
controlled by a purely spiritual world of images (knowledge, ideas).
Is it conceivable that immaterial factors having the nature of images,
ideas, ‘building plans,” also intervene in the evolution of the living
world as a whole? Some biologists answer in the affirmative and set
out to describe these factors and their workings in closer detail.
Henri Bergson has developed his philosophy of évolution créatrice, and
it is essentially the same doctrine that, amidst all the fireworks of his
wit, G. B. Shaw propounds in his play Back fo Methuselah. The
eternal life of pure thought freed from the bondage of matter is,
according to this ‘“metabiological Pentateuch,” the ultimate goal of
evolution. Thus speaks Lilith: “I am Lilith: I brought Life into the
whirlpool of force, and compelled my enemy, Matter, to obey a living
soul. But in enslaving Life’s enemy I made Life’s master; for that
is the end of all slavery; and now I shall see the slave set free and the
enemy reconciled, the whirlpool become all life and no matter.”
Scientists in general will be more cautious. As things stand now, the
positing of transcendental creative agents possessing the nature of ideas,
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whether philosophically dangerous or desirable, is of no help in solving
the actual concrete problems of biology. And it is a fact that (unless
Lilith tells us) we know nothing of them, at least not in the same man-
ner in which, by interpretative understanding from within, we know of
the thoughts and impulses of ourselves and our fellow beings.
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monads, 41, 174, 175, 178
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Moraan, T. H., 248, 249, 296
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245, 249; X-ray induced —, 277

NaTorp, 136
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tion, 296
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complex —, 32; natural —, 33;
rational —, 31; real —, 40, 53;
their relation to space and time, 36

numerical symbols, 35, 222; — formula
56, 221
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73, 123; objective-relative vs. subjec-
tive-absolute, 116; objective world
‘exists and does not happen,’ 116

observable (quantity), 256

observation in quantum physics, 263

odd; see even

OPARIN, 299

or, 5; in quantum logic, 257

order, as a characteristic of life, 212;
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to living beings, 277

origin of life, 215, 299
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particulate inheritance, 297
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Pascu, M., 9
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St. Pavur, 228
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phenomenology, 134
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and environment, 244

philosophical and mathematical knowl-
edge, 65
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photoelectric effect, 253

photon, 188, 246

phylogenctics, 296
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83; — equivalence of spatial magni-
tudes, 103

planin organisms, 280, and in evolution,
300
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tum of action h, 185, 245
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150, 178, 179, 227, 285, 286

Poincarg, H., 51, 119, 127, 129, 134

point, 41; (in genetics), 241
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positional system, 36
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postulate of general relativity,
see also relativity

potentiality and actuality, 46, 178

PranTL, C., 220
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presentation = Vorstellung, 120

primary and secondary qualities, 111

principium identitatis indiscernibilium,
238; — individuationis, 131

104;

principle of indeterminacy, 257; — of
sufficient reason, 98, 159; see also
relativity
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tion,” 195; as relative dwelling time,
201; as a primary factor in the
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objective significance, 196; — and
frequency, 198; — and measure
theory, 195
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progress, 295, 298
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proof, 58, 226

proper time, 103

pseudomenos, 228

psychological origin of spatial intuition,
125

pure numbers in atomic theory, 287,
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a regulative principle (Kant), 213

PyrHAGoRraAs, 227; Pythagorean nature
of metric, 137
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quantitative measurement, 139
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140

quantization of field equations, 289

quantum of action, 185, 245

quantum logic, 263; — state, 257; —
theory, 187, 253 et seq.

quaternions, 32

reactions, 146

realism, 65; — vs. idealism, 123

reality ; Hume’s and Kant’s viewpoints,
122; — of the world, of the I and
thou, 124; — and reason, 163

regularity, bound to simplicity, 191;
statistical —, 199

relations, their propositional schemes
and their combinations, 3, 5; —
always based on properties?, 4, 131

relativity ; principle of —, 238; — and
group of automorphisms, 75-77;
— of motion, 96; postulate of general
—, 88; general theory of —, 107;
general — and gravitation, 106;
special theory of —, 102, 104

resonance, in quantum mechanics, 272
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RIEMANN, B., 43, 67, 85, 86, 103, 105
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sensations as signs, 119
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formation, 12; two steps of set con-
cept, 48; finite and infinite —, 47,
set theory, 46 et seq., 230 et seq.;
sets and classes, 231

sex, 249, 250

shape, 9

Saaw, G. B., 300

signature, 82; spatial, temporal, topo-
logical —, 107

signs of communication, 56

similar, 8, 73; similarity, 9, 79; similar-
ity and congruence, 79-80; mechani-
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simple and complicated, 191; — and
composite, 147; simplicity of the
basic laws of nature, 147, 191; — as

gigillum veri,

ability, 156
simultaneity, 101
singular propositions, 7
DE SITTER, 109, 206
SmoLucHOwsKI, 204
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some, see existence
SoMMERFELD, 185

155; — and prob-

space, 96; continuity of —, 40; the
essence of —, 130; subjective nature
of —, 112; — as pure non-empirical

intuition or as form of our intuition,
130, 132, 135; as medium of contact
and as order of all possible positions,
96, 97, 131; as principium individua-
tionis, 131; as substance, 179; aprio-
ristic features of —, 135; mathe-
matical and physical—, 134; space
of intuition, 135; absolute —, 95, 99;

relativity of —, 89; psychological
origin of —, 125; one space or distinct
sense spaces?, 129; empty —, see

under empty; affine, Euclidean, etc.,
spaces, see under geometry

space-time, 95 et seq.; splitting of the
world into space and time, according
to Newton, 95; according to Einstein,
116

spatial field of vision, monocular, 125;
binocular, 128; — signature, 107

special relativity; principle of —, 100;
theory of —, 102, 104
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SpeMann, H., 283

spin, 267

SpiNoza, 131, 177

spontaneous generation, 215, 299
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state, individual and effective —, 239;
complete —, 245; quantum —. 257;
wave —, 256

static universe, 109

statistical independence, 196; — ther-
modynamics, 199, 250

STENZEL, 63

STEVIN, 154

structure, 25; — of aggregates, 247;
— of mathematics, 219 et seq., sym-
bolic structures as the core of objec-
tivity, 237; hierarchy of structures,
272; discontinuous and combinatorial
structures, 275

struggle for survival, 296

Stumer, 113, 129, 131

subject and object, 115; subjective-
absolute vs. objective-relative, 116;
subjectivity of sense qualities, 110;
— of space and time, 112, 113

substance, 174, 177; roots of the con-
cept of —, 180; substantial forms,
178

SwirT, 24, 224

switching-over, 249

syllogism, 15, 58

SYLVESTER, J. J., 273

symbolic construction, 113; — mathe-
matics, 54; — structures as the core
of objectivity, 237

symbols, 64, 75; their role as repre-
sentatives of the transcendental, 66;
their hollowness, 284; numerical —,
35; — and experience, 114

symmetry; the principle of —, 160;
— and equiprobability, 197; — of
crystals, 290-292

syngamy, 241

synthetic (and analytic) judgments, 64;
synthetic knowledge a priori, 133;
— principles, 146

teleological concepts, 211

temporal signature, 107

term (in spectroscopy), 267

tertium non datur, see law of excluded
middle

theoretical construction, 61; role of its
principles, 134

theory: formation of theories, 151 et
seq.; theory as a connected whole,
152; — of games, 237; atomic,
probability, etc., theory, see under:
atomic, probability, etc.

thermodynamical equilibrium, 199, 250;
see also statistical thermodynamics
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its measurement, 103; subjective —,
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104, 108; relative dwelling —, 201;
irreversibility of —, 203 et seq.;
see also space-time
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topology, 74, 89-91
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idealism, 122
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tree, 248
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types, 232
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method, 214
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valence, 268 et seq
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