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Preface

As a mathematician, I conceived the idea to write about the scientific part of
navigation long before GPS became available to the public. From the outset, it was
meant to be invariant with regard to the fast-changing technology available to
navigators. It was also meant to be a manual that would make the navigator less
dependent on the availability of other ephemerides. However, I did not want to turn
the clock back by ignoring the state of developments in the fields of calculator and
PC technology. Even the most casual observer must admit that we have achieved a
level in our general education that renders anyone who does not know how to
operate a personal computer illiterate. Today, the average student aged twelve or
above should be able to handle the algebraic symbolic language as employed in all
advances calculators without even understanding the underlying mathematics of the
formulae used in navigation. I also wanted to draw a clear dividing line between the
art and science of navigation (based on clear definitions, the important concept of
stating the underlying assumptions, and the rigorous applications thereof) and the
laws of physics as they apply to navigation.

I also wanted to show that the approximate methods used in celestial navigation,
which are based on the original methods of Capt. Sumner and St. Hilair, are merely
special cases of a general mathematical method that consists in approximating the
two transcendental equations—the fundamental equations of navigation—by two
linear equations.

A similar statement can be made with regard to the Lunar/Distance method for
finding the approximation to the time at sea. This method is also an approximation
to the problem of solving the Fundamental Equation with respect to the parameter
of time. Therefore, it is also no longer necessary to look for the elusive error
analysis of the Line of Position (LOP) method. Not knowing the error or the
realistic upper bound for it (as a function of distance and azimuth from the true
position) has always been a shortcoming for this method.

From a mathematical point of view, the distinction between Celestial Navigation
and Astro Navigation is very clear. Celestial Navigation is an approximate method
requiring an estimated position. Astro Navigation is an exact method not requiring
an estimated position. Furthermore, in Celestial Navigation it is necessary to select
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the Celestial Objects very carefully to, one, avoid improper spacing and, two,
choosing them too close to the zenith of the observer. In addition, the initial guess
or Dead Reckoning Position (DRP or DR) needs to be sufficiently close to the true
position. Therefore, in Celestial Navigation, all of the azimuths of the assumed
triangles have to be sufficiently close to the true azimuths.

On the other hand, this does not apply to Astro Navigation (AN). There are very
few cases where the methods of AN fail to work, as, for instance, in cases where the
observed bodies are too close together or in such pathological cases where the given
parameters are erroneous. (Those cases are referred to in future chapters as
“Ill-Conditioned”.)

Basically, this book is about anything pertaining to navigation that can be
quantitatively expressed and ultimately computed. This book also does not rely on
the use of any special calculator or PC. Nor does it depend on any other algorithms
than the generally accepted mathematical ones. In theory, this amounts to saying
that in the event where no calculator is available, a navigator can solve his posi-
tioning problem by using the provided formulae and a copy of the old, standby
Logarithmic Tables.

I wanted to provide the reader with several independent methods for determining
a position and other relevant data. I have also provided more than one method to
give the navigator several alternatives for doing so. This also applies to choosing a
suitable formula for calculating refraction and dip, which are considered by some to
be the most limiting factors to accuracy in Celestial Navigation.

In addition to the above objectives, I have addressed several problems unique to
navigation such as the problem of navigating without a sextant or even a clock.
These problems have been addressed analytically and not just for emergency
purposes but also to examine their underlying principles. All of the final formulae
presented here are governed by a self-imposed rule for simplicity and compre-
hensibility and can be evaluated on any scientific calculator without the user even
understanding their mathematical derivations. I would also like to stress that this
book is not an exercise in spherical trigonometry (although it employs some basic
spherical trigonometry equations sparingly).

In the first part of this book the Earth is assumed to be a sphere. Only in the
section that deals with parallaxes is the Earth assumed to be a Spheroid of
Revolution. The first chapter deals with the concept of Terrestrial Navigation and
provides the rigorous formulae needed for Rhumb Line and Great Circle naviga-
tion. The chapter also covers the basics of the underlying mathematical projections
on which navigational charts are based. In particular, it provides error analysis for
approximating Mercator Plotting Sheets by the Non-Mercator Plotting Sheets that
are sold commercially or are self-made. Furthermore, it also provides an analytic
estimate for approximating a small area of the surface of the Earth by a plane
Euclidian surface.

For centuries navigators have been using the Line of Position (LOP) method to
avoid numerous complex mathematics and trigonometric calculations. In this book,
I use the “Orientation Schematic” that enables a navigator to apply the exact
formulae for determining his or her position at sea or in the air. In this context,
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the number of required trigonometric calculations in the Exact Method does not
exceed the number of the same calculations required by the LOP method.

In addition to the derivations of the exact formulae, I have included other
independent methods and, at least, one iterative method for determining position. In
addition to the exact methods, I have covered approximate methods and the least
square method of error analysis as applied to the non-exact formulae of navigation.
However, it should be noted that this method becomes meaningless in cases where
the data used is sufficiently erroneous.

In a separate and independent section of the first part of this book, I have devoted
space to the error analysis of navigational data, specifically to the analysis of
random errors, thereby providing navigators with a method for assessing their own
proficiency with respect to measuring sextant altitudes simultaneously with the
corresponding watch-time.

I have also attempted to dispel the notion that the Lunar Distance method is the
only practical method for a sailor to determine time and therefore longitude at sea.
I have provided the reader with an approximate iterative method for calculating
time that is based solely on altitude and azimuth observations.

If the reader uses the first part of this book alone, he will have to depend fully on
the availability of a current Nautical Almanac (NA). However, the second part of
this book provides the reader with an option that replaces the NA.

Very little knowledge of astronomy is required to understand and use the first
part of this book as a navigation manual and to use the provided formulae, the
reader merely has to be familiar the trigonometric functions. Spherical trigono-
metric formulae have been kept to a bare minimum.

However, the second part of this book employs the basics of Positional
Astronomy. It covers all the relevant topics as related to navigation and develops
the formulae for precession, nutation, equation of the center, the equation of the
equinox, the equation of time, the equation of the vertical, parallaxes, aberration
and proper motion.

As I said, the main objective of this book is to provide the navigator with a
comprehensive set of formulae that solely involve polynomials and trigonometric
series that can be evaluated on any scientific calculator. With the help of those
formulae, some additional data on star positions, and data on the perturbation of the
Kepler motion of the Moon and planets, the navigator will no longer have to depend
on the current NA. In cases where additional data is not available, he or she can still
determine their position by relying on the data for the Sun and selective stars
(provided herein). However, in the later cases, they will not be able to use the Moon
and the planets for navigation.

Since the development of suitable formulae for an ephemeris was based on the
motion of the Earth, Moon, and several planets about the Sun, or, more precisely,
about their common center of masses, it was necessary to treat the Earth as a giant
gyro that moves under the influence of the gravitational forces of the aforemen-
tioned bodies and describes a nearly elliptical orbit about the Sun. Therefore, in
terms of Astro-Dynamics, we are dealing with a multi-body problem of a rigid body
that can only be solved by means of employing approximations.
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In terms of the underlying mathematics, we require the application of orthonor-
mal transformations to the rigid coordinate system of the gyro Earth that, in turn,
rotates about an inert system of coordinates that move along the orbit Sun–Earth.
The problem of actually solving the equations that govern the motion of gyro Earth
under the influence of said gravitational forces can be done only by employing
approximations. Therefore, all formulae and data pertaining to the motion of the
moon and the planets are approximations.

Of course, astronomers have been able to determine and predict the position of
heavenly bodies without the use of explicit astro-mechanics a long time before
Newton developed the concept of modern mechanics. However, the development of
viable ephemerides that depend primarily on observations constitutes a tremendous
task that requires years of effort on the part of many astronomers.

Sparrows Point, USA K.A. Zischka
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Introduction

The diversity of the phenomena of nature is so great, and the treasures hidden in the
heavens so rich, precisely in order that the human mind shall never be lacking in fresh
nourishment.

Johannes Kepler (German Astronomer, 1571–1630) [33]

This book is based on the premise that the Earth, as viewed by a navigator, can be
approximated by a sphere. A more accurate description would result if one adopts
the concept of the Earth as a Geoid. However, for astronomical and navigation
purposes it suffices to consider the planet to be a Spheroid of Revolution with its
minor axis coincident with the North/South axis of the Celestial Sphere.

For the navigator, treating the Earth as a sphere has two great advantages: the
first is that it conforms to the concept of the Celestial Sphere; and the second is that
the corresponding geometry is fairly simple. (Spherical trigonometry is easier than
Elliptical Geometry.)

The first part of this book treats the Earth as a sphere with the single exception
of the derivation of formula for the parallax of the Moon (Sect. 3.3), where we have
to take the oblateness of the Earth into consideration to distinguish between the
astronomical and geocentric altitudes.

The role which accurate charts play in navigation cannot be overemphasized.
Without accurate charts, the celestial coordinates become meaningless. Therefore, it
is imperative that the navigator has a basic knowledge of Cartography (and, if
possible, Geodesy). The making of accurate charts is based on mathematical pro-
jections. Because of that, the most relevant projections used in making nautical and
aeronautical charts, as well as star finders, are discussed in various sections of this
book.

In addition to having accurate charts at hand, the navigator should also be
familiar with the accuracy of the plotting sheets. Plotting sheets that employ a
longitude scale that is constantly proportional to the latitude scale for a wide range
of latitudes (Non-Mercator plotting sheets) introduce an additional error in the
plotting techniques that, by themselves, are based on the false premise that the
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azimuth of the assumed or Dead Reckoning position (DR) is always sufficiently
close to the true azimuth. An analysis of Non-Mercator plotting sheets is provided
in Sect. 1.3.

Because of the ramifications that the use of Non-Mercator plotting sheets have
on the accuracy of the plotting techniques, the first part of this book also addresses
the problems of flattening the Earth locally. For the purpose of navigation, elliptic
or spherical geometry can be approximated by Euclidean geometry in the small.
Practically speaking, this shows the size of an area on the surface of the Earth that
can be approximated by an equal area on the tangent plane and depicted on a sheet
of paper if drawn according to a suitable scale. In this case, great circles become
straight lines and the sum of the angles of a corresponding spherical triangle equate
to a hundred and eighty degrees.

The book also includes an elementary exercise for the interested reader to show
clearly that despite knowing the geometry in the small, one cannot tell for sure what
the geometry in the large—the true shape—might be.

Historically, it has been a long time since Bernard Riemann (1826–1866) con-
ceived of spaces different from the Euclidean ones that result in geometries that, in
the small, can be approximated by what we actually perceive. Another distin-
guished mathematician, Nickolai Lobachevsky (1792–1856) actually proved that in
the infinitesimally small neighborhood of a point on his hyperbolic plane the
trigonometric formulae of Euclidean geometry were also valid. Much later, the
great physicist Albert Einstein (1879–1955) tried to convince us with his General
Theory of Relativity that our real space must have a curvature, i.e., that it cannot be
a Euclidean space.

In the 1830s, Lobachevsky considered the possibility of replacing Euclidean
geometry with his own astronomical space but failed to convince the experts
because of the absence of supporting experimental data since the vast distances
required in his space were of the order of 107 � a (where ‘a’ denotes the length
of the semi-major axis of our solar system). The failure of providing experimental
proof, of course, does not disprove his theory and is very similar in nature to the
failure of proving that the Earth is a sphere by measuring the angles of a triangle on
the surface of the planet and showing that the sum of the three angles is different
from 180o. This experiment had been carried out rigorously by the distinguished
mathematician K.F. Gauss (1777–1855).

As you begin to read this book, you might ask yourself: Why astronavigation
and not Celestial Navigation? Are not they the same thing? The reasons for the
distinction between the two are not based on etymological criteria but on astro-
nomical and mathematical ones.

Astronavigation is an independent navigation system based on the observation of
stars, the Sun (which is also a star), the planets and the Moon. It distinguishes itself
from the concept of Celestial Navigation, as still practiced by the majority of
navigators, by its independence on other navigational systems such as Dead
Reckoning and intelligent guessing. Celestial Navigation as practiced by navigators
around the world is merely a method that improves on an initial approximation
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to the true position of the ship or aircraft. Hence it is always assumed that the
navigator more or less knows his position.

Celestial Navigation has been used all around the world for centuries. This book
does not question its usefulness as an aid to navigation provided the user is familiar
with its limitations. So far, no one has come up with an adequate error analysis.
However, if the navigator already has a sufficiently close approximation to his true
position, Celestial Navigation will provide an improved position provided the
navigator follow certain well-established procedures for the selection of the heav-
enly bodies employed.

Currently, the availability of sophisticated programmable calculators has given
Celestial Navigation a new image. For with such calculators, it is immaterial how
often the user has to apply certain subroutines in their program. It is feasible to
repeat the process of obtaining a “fix” using the LOP method by merely substituting
the previously used DR or assumed position with the so obtained resulting fix and
by pushing one more button, thereby obtaining a successive fix. Once the difference
between the two successive results becomes negligible, the CN navigator has found
his true position—perhaps so, but not necessarily true. In the end, we are back to
experimental mathematics and nothing said above about Celestial Navigation has
really changed. In Sect. 2.3, this book presents an iterative method that covers the
method mentioned above. The criteria used by the proponents of said method
merely constitute a necessary condition for the convergence, but not a sufficient one.

In astronavigation the determinations for a “fix” is obtained independently of the
DR or assumed position. It requires only one more additional parameter in order to
eliminate the ambiguity inherent with the exact solution. This parameter can be
readily obtained by one more astronomical observation as, for instance, by noting
the approximate azimuth of two celestial objects or by using an approximate
latitude.

The observer obtains his position by using exact spherical trigonometric for-
mulae. Any resulting errors due to errors in measuring altitudes, time, and
parameters like refraction, SD and HP, can be evaluated analytically since the
underlying functions are analytical ones. Whenever numerical methods are being
employed their error bounds can be determined.

From a mathematical point of view, this book is based on the question of the
solvability of a system of two transcendental equations, also known as Fundamental
Equations of Navigation (FEN), since each of these two equations represents a
circle of equal altitude on the celestial sphere with the celestial object in its center—
solvability not only with regards to latitude and longitude, but also with regards to
the variable of “time” which enters those equations through the “time dependency”
of all the other parameters. This book also analyzes the problems of the existence,
non-uniqueness, and ill-conditioning of solutions of FEN and also provides
approximate methods for solving it.

A famous physicist once said, “Look at the equation. It tells you everything you
want to know.” This book shows that methods of celestial navigation turn out to be
special cases of the mathematical methods of linearization and iteration. In this
context, astronavigation can provide navigators with their approximate position
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anywhere on the globe without prior knowledge of other approximations. It can also
provide the navigator with the approximate time of observation by using the
Equation of Computed Time.

My motives for writing the second part of this book derive from a long search for
a comprehensible, concise and compact manual on Positional Astronomy which
included the necessary ephemerides for the Sun and stars which were normally at a
navigator’s disposal. By compact, I mean, something that a navigator could carry in
the large cargo pocket of his or her pants. By comprehensive, I mean, something
that would give the navigator the relevant equations at a glance and also enable him
to review the underlying theory should he or she care to do so.

When this idea of designing a manual first came to me, GPS was not available.
Navigators had to rely on bulky tables and almanacs. Today, a wide variety of
electronic devices have freed navigators from the need for such bulky books and
tables. However, as anyone who has spent any time at sea knows, salt water and
electronics are not compatible. At one point or another, some or all of a person’s
electronic devises can and do fail at sea. Part II of this book covers such an
emergency and should make the reader fairly independent of the software as used in
celestial navigation.

But aside from having something to cover an emergency, those of us who are
seriously interested in all aspects of navigation like to have something handy to
review, if not even to learn some of the basics of positional astronomy as part of the
knowledge necessary to understand ephemerides. Accordingly, the objective of the
second part of this book is twofold: namely to provide the reader with a concise and
comprehensible manual on positional astronomy as it applies to astronavigation;
and to furnish him with the concise algorithms for finding the position of the sun
and the 57 navigational stars at any given instant.

All the algorithms used in the second part of this book can be executed on any
simple, inexpensive scientific calculator, thus freeing a navigator from being tied to
a programmable calculator or a PC.

The formulae for the algorithms are either exact ones or approximations to the
exact ones. Therefore, the resulting algorithms vary with respect to their degree of
accuracy leading to the development of three types of ephemerides.

Type 1: Low precision ephemerides for the sun and navigational stars should
yield numerical results ±1′.

Type 2: Intermediate precision ephemerides should provide results with an
accuracy of ±20″.

Type 3: Compressed low precision ephemerides should come fairly close to the
low precision ephemerides.

All the algorithms provided in this book can be executed without knowing the
underlying theory and therefore, this manual can be compressed to a few pages that
will easily fit into a shirt pocket.

Appendix A includes all the data needed for the ephemerides for the 57 navi-
gational stars. It includes RA, d, la, ld, and P. Therefore, the manual holder is not
dependent on the availability of other publications.
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For the reader who is also interested in Astro-Dynamics, a brief section on the
earth as a gyro has been included showing where some of the limitations of a
strictly theoretical approach enter the quantitative analysis of the theory of orbits of
rigid and non-rigid bodies.

I should like to disclaim this as a “complete” treatise on the discipline of
astronavigation. It is, however, more complete than anything I am aware of or have
found on the subject of Celestial Navigation to date.
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Part I
Analytical Approach to Navigation

In which the navigator will find an analytic approach to navigation elevated to the
level of a scientific discipline, eliminating the systematic error prevailing in celestial
navigation with a multitude of practical algorithms for calculating the position of a
craft at sea or in the air.



Chapter 1
Terrestrial Navigation

1.1 On the Design of Conformal-Mercator
and Non-conformal Charts and Plotting Sheets

In order to navigate on a Rhumb-Line, i.e., a curve on the globe that intersects all
the meridians at the same angle C, it is desirable to construct a map/chart that
provides an accurate one to one correspondence between the coordinates of latitude
and longitude on the position on the globe and the corresponding coordinates on the
map. Mathematically, we are seeking the formulae which enable us to compute the
coordinates on the map if the coordinates on the globe are given and conversely if
the coordinates on the map are given to compute the coordinates on the globe. Our
objective, therefore, consists in finding a mapping system that is conformal, i.e.,
that map an infinitesimal triangle on the globe on to a similar triangle on the chart
preserving the angles and proportionality of the sides. In addition, we will also
require that all curves that intersect the meridians at a constant angle get mapped on
to straight lines on the corresponding chart.

It is obvious then that all meridians and circles of equal latitude get mapped as
straight lines that intersect each other at right angles, i.e., that are perpendicular.
Moreover, it is also obvious that such mappings do not preserve such particular
features as distances and areas which will appear distorted on the chart. If we
choose the image of meridians and circles of constant latitude as our grid on the
chart that meet the above requirements, we obtain charts that are generally referred
to as Mercator-Charts, after its inventor. It should also be noted that not every chart
that employs a longitude/latitude grid with uneven spacing is necessarily a
Mercator-Chart. In those cases, a straight line on such a chart or plotting sheet does
not represent a Rhumb-Line on the globe. (Unfortunately, some plotting sheets that
are not conformal are misleadingly called Mercator-Charts.)

In this chapter, we will examine the mathematical relationship between true
Mercator-Charts (or true Mercator plotting sheets) and Non-Mercator plotting
sheets thereby providing the navigator with expressions for the errors introduce by
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replacing a point on the Mercator plotting sheet with the corresponding point on the
Non-Mercator plotting sheet thus allowing the navigator to compute the curve to be
followed on the globe if following a straight line on the plotting sheet and
conversely.

In this section, we must first interpret geometrically what has been said above
and then express it quantitatively, i.e., mathematically. Geometrically speaking,
Mercator conformal charts are based on the projection of the surface of the globe on
to a cylinder of radius equal to the mean radius of the Earth and being tangent to the
globe at a great circle. The center of the projection hereby is always the center of the
Earth. The resulting charts are maps on the plane surface of the unrolled cylinder
and are referred to as Oblique Mercator Projections or charts. At this point, we shall
only consider the most important example in detail as used in navigation, namely
the case where the tangent circle is the equator. Accordingly, the resulting
Mercator-Charts are referred to as the Standard Mercator-Chart.

First, let us consider the common feature of these projections, namely the
concept of conformal mappings.

Figure 1.1.1a depicts a small-infinitesimal rectangular triangle about a point
A * (kA uA) on the globe with one side DX along the circle of constant latitude
uA and one side DY along the adjacent meridian and perpendicular to DX. The
third side connecting these two sides we denote by DD and the angle between this
side and DX by 90° - C°. This infinitesimal triangle gets mapped on the plane
infinitesimal triangle with sides DX, DY, and DD preserving all the angles of the
triangle on the globe (Fig. 1.1.1b).

Of course, for clarity, the actual size of the “infinitesimal” triangles is highly
exaggerated in the above diagrams. At this point in our discussion, we need to
introduce the scale factor n for the actual drawing on paper. We choose a scale
factor n, meaning that one millimeter, 10−3 m, on the chart corresponds to n
Nautical Miles (NM) on the globe. As customary in navigation, we measure

Fig. 1.1.1
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distances on the globe in terms of angular minutes of degree whereby one minute of
circular measure subtends the distance of one nautical mile on the surface of the
Earth.

It should be clear by now that the conformity of the mappings being used already
assures the invariance of angles in those projections. However, the requirement that
the Rhumb-Lines or Loxodromes get mapped as straight lines on the chart has not
yet been imposed on the more general conformal mappings.

The actual mathematical requirements for the conformal mappings depicted in
Fig. 1.1.1a, b are fairly simple and can be stated as follows:

1. a. DX ¼ aDX = cosu � Dk
b. DY = aDY ¼ Du

where “a” denotes the so called conformal scaling factor (not to be confused with
the constant scaling factor n). In general, a can be a function of k or u or both.
Depending on the choice of a, we obtain one or the other type of conformal
mappings.

In particular, if we choose the equator as the tangent circle we must require that
DX = n−1 � Dk, resulting in:

2. a ¼ n � cosu
This choice for the conformal scaling factor also assures that any Rhumb-Line

on the globe gets mapped as a straight line on the corresponding chart.
Choice #2, corresponding to the true Mercator-Chart, results in the mapping:

3. a. X� XA ¼ n�1 � ðk� kAÞ

b. Y� YA ¼ n�1 � 1=sin 10 � RuB
uA

secu � du.

As the integral in (3b) can be evaluated by means of elementary calculus, it is
appropriate to define a Rhumb-Line function as:

4. RðuÞ ¼ 1= sin 10 �
Zu
o

secu du ¼ 1= sin 10 � ln tanðp
4
þ u

2
Þ

h i
¼ 1= sin 10 � ln tanð45� þ u

2
Þ

h i

Again by using calculus, we can find the inverse R−1 (z) of the Rhumb-Line
function as:

5. R�1 zð Þ ¼ 2 tan�1ðesin 10 � zÞ � p
4

h i
¼ ur in radianð Þ

By employing the definition of the Rhumb-Line function, the formulae in
(3) may be rewritten as follows:

6. a. X� XA ¼ n�1 � ðk� kAÞ
b. Y� YA ¼ n�1½RðuÞ � RðuAÞ�
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This mapping so defined not only maps curves, as for instance Loxodromes on
to a flat sheet of paper (chart), but also maps entire regions of the globe on to flat
surfaces. The calculations involved are simple and can even be solved by using
logarithmic tables if necessary.

Formulae (6) enables us by using straight forward calculations to find the
coordinate on the Mercator-Chart if the coordinates for k and u on the globe are
given. (The assumption here is that kA, uA, and n are prescribed.) In the cases
where x and y on the chart are given, you can find the coordinates on the globe by
employing the inverse to R(u), formula (5), to obtain:

7. a. k� kA ¼ n X� XAð Þ
b. u ¼ R�1½n � Y� YAð ÞþRðuAÞ�
At this point, we have mathematically established the desired mapping

(Mercator-Chart) as a means of depicting an area of the globe by a section of a flat
map so that directions are preserved and the Rhumb-Lines on the globe are mapped
on to straight lines on the chart. We have also shown that this is not possible by
employing geometric concepts only. You have to use analytical ones.

Later we will devise approximations for simplifying the underlying calculations
which will lead to simplified mappings with constant mapping factors and sim-
plified geometric interpretations. In order to design a linear mapping system that
approaches sufficiently close to the Mercator-Chart, we are going to have to take
another look at formula (3) The right hand side of that equation consists of an
integral which we may express for any fixed value of u, denoted by uB, by means
of the intermediate theorem of integral calculus.

By choosing the value of u = uB we have identified this value with the latitude
of our endpoint B * (kB uB)—see Fig. 1.1.1a, b.

The application of the intermediate theorem of integral calculus yields:

YB � YA ¼ n�1 � 1=sin10 �
ZuB
uA

secu � du ¼ n�1 � secu � ðuB � uAÞ; uA �u�uB

The value u is referred to as the mean-value of the above integral. From the
definition of the above mean-value, we conclude that u is given by:

8. secu ¼ RðuBÞ � RðuAÞ
uB � uA

¼
1= sin 10 � RuB

uA
secu du

uB � uA

Up to this point, everything has been mathematically exact. But this merely
leaves us with the formulae for the images at the endpoints. However, formula
(3) suggests that by applying the mean-value theorem, we may use the linear
approximation:

9. a. ~X � XA ¼ n�1 � ðk� kAÞ
b. ~Y � YA ¼ n�1 � secw � ðu� uAÞ; uA �w�uB

instead. (The value w is yet to be determined according to additional requirements.)
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Similarly we may also employ the linear mapping defined by:

10. a. ~X � XA ¼ n�1 � cosw � ðk� kAÞ
b. ~Y � YA ¼ n�1 � ðu� uAÞ
We have already seen what happens if we choose w = u, the mean-value. In this

case the two end points are mapped exactly where the corresponding points on the
Mercator-Chart are located. However, for any other values of k and u the images do
not coincide with the images on the Mercator-Chart. Of course, the use of such
linear approximations can only be justified if we can find bounds or estimates for
the errors which we may have introduced in our calculations for finding the true
values on the Mercator-Charts. (Sect. 1.3 addresses this problem in greater detail
when we deal with the approximations of Loxodromes.)

In the next section, we will derive the equation of the Loxodromes and show
how to navigate along one by computation.

1.2 Rhumb-Line or Loxodrome Navigation

Since the Rhumb-Line, or any other curve on the globe, constitutes a subset of our
general mapping domain, we have to specify in formulae the subset of values of k
and u, (Sect. 1.1 #1, the equation of the curve on the globe) in order to find the
corresponding image on the Mercator-Chart or plotting sheet. This amounts to
finding the representation of u = u(k) of the Loxodrome on the globe or, in other
words, being able to assign for each value of the longitude k the corresponding
value of u of the latitude.

Recalling that the Loxodrome is mathematically defined by the requirement that
the angle C this curve forms with each meridian remains constant, we can deduce
from Sect. 1.1 #1 that:

1.
dY
dX

¼ dy
dx

¼ du
cosu dk

¼ cot c

Integrating the last expression we find that: 1
sin 10 �

RuB
uA

secu du ¼ cot C � ðk� kAÞ
and then by employing the definition of the Rhumb-Line function (Sect. 1.1 #4) we
obtain the “Equation” of the Rhumb-Line or Loxodrome as:

2. RðuÞ � RðuAÞ ¼ cot C � ðk� kAÞ:
Although Eq. 2 is all we require for the mapping itself, it is still necessary to find

the distance traveled on the Loxodrome between points A * (kAuA) and
B * (kBuB) on the globe and/or the Mercator-Chart. Furthermore, the additional
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formulae provided herein will make it possible to find the coordinates of
B * (kBuB) if the course and distance D are given without employing the inverse
R (u) in (2).

With regard to the distances, it is necessary to distinguish between the actual
distance D on the globe measured in Nautical Miles (or minutes of a degree) and the
distance D between the image points of the Mercator-Chart. The distance D on the
globe between A and B along the Loxodrome of angle-C can easily be found by
referring again to Fig. 1.1.1a of Sect. 1.1. We can readily deduce that in the original
triangle, the relation DY/D D = cos C holds and hence D D = sec C � cos DY = sec
C � Du

Integration of this relation yields the distance D as:

3. uB � uA ¼ D � cos C Note that the distance so defined is expressed inminutesð
of a degree ¼ 1NM:Þ

On the other hand, if we look at the corresponding triangle DX, DY, DD, and C

on the Mercator-Chart (Fig. 1.1.1b, Sect. 1.1), we find that:
DY
DD

¼ cos C holds, and

therefore

DD ¼ sec C � DY ¼ n�1 � sec C � secu � Du
Integration yields: D = n−1 � sec C � [R (uB) − R (uA)] or

4. uB � uA ¼ n � D � cos C � cosu, where u is defined by Sect. 1.1 #8.

It follows then from (3) and (4) that:

5. D ¼ n � D � cosu:
At this point in our investigations it is advantageous to introduce another dis-

tance used in terrestrial navigation, namely the distance strictly traveled east or west
when following a Loxodrome. This distance is usually referred to as the
“DEPARTURE”, denoted by “Dep.” Mathematically speaking, departure is defined
by the use of relation (1a). Then by integration of this relation we find that:

XB � XA ¼ 1
sin 11 �

RkB
kA

cosu � dk ¼ Dep:

We can reduce this expression even further. From (1) we can deduce that:

du = cot C � cos u � dk. Therefore:
uB � uA ¼ cot C � 1

sin 10 �
RkB
kA

cosu � dk ¼ cot C � Dep; or

6. Dep: ¼ tan C � ðuB � uAÞ:
We can further simplify this equation if we apply the mean-value theorem to the

integral that defines the departure. Specifically, we have:
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7. Dep ¼ 1
sin 10 �

RkB
kA

cosu � dk ¼ cos �u � ðkB � kAÞ; where “�u” denotes another

mean-value. However, this new mean-value turns out to be our original
mean-value u, defined by (Sect. 1.1 #8.). For, on the Loxodrome, according to
(2) we have:

cot C � (kB − kA) = R (kB) − R (kA) = sec u (uB − uA), and according to (6):
cos �u � (kB − kA) = tan C � (uB − uA). Eliminating kB − kA, we deduce that:
secu ¼ sec �u and hence:

8. �u ¼ u; as was to be shown.

Employing (8) in relation to (7) we find the simplified expression:

9. Dep ¼ cosu � ðkB � kAÞ:
And finally by substituting (8) into (6) we obtain:

10. Dep ¼ D � sin C:
Of course we will not require all ten expressions for navigation. Indeed, we will

only need five expressions for exact navigation and as little as three for the
approximate Rhumb-Line navigation.

The necessary algorithm for Loxodrome navigation can be stated as follows:

11. a. Dep ¼ D � sin C:
b. uB � uA ¼ D � cos C:
c. Dep ¼ cosu � ðkB � kAÞ
d. cosu ¼ ðuB � uAÞ=ðRðuBÞ � RðuAÞÞ
e. RðuÞ ¼ 1

sin 10 � ln½tanð45þ
u
2
Þ�inmin:�

Next we find the corresponding values X and Y on the Mercator-Chart. According
to (6) we have:

X� XA ¼ n�1 � ðk� kAÞ
Y� YA ¼ n�1 � ½RðuÞ � RðuAÞ� ¼ n�1 � cot Cðk� kAÞ:

The last expression is given by (2) Therefore we deduce that:

12. Y� YA ¼ cot C � X� XAð Þ the equation of the straight line on the
Mercator-Chart.

Again we deduce that D = n−1 � D � sec u (which has already been shown—see
#5.

Up to this point in our analysis, all the mathematical expressions are exact. The
Rhumb-Line navigation defined by (11) above, is exact. However, because of
Eq. 11e, the practical calculations prove somewhat difficult for a navigator whose
calculator has died and has only tables at his disposal. Equations 11d. and 11e. can
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be rendered superfluous by means of a Mid-Latitude (Middle Latitude) approxi-
mation in lieu of the mean-latitude u. Hence, by defining a latitude u by:

13. w ¼ uA þuB

2
; where it is assumed that w ffi u:

The algorithm defined by 11 then reduces to:

14. a. Dep ¼ D � sin C
b. ~uB � uA ¼ D � cos C
c. Dep ¼ coswð~kB � kAÞ
d. tan C ¼ Dep

uB � uA

The geometric interpretation is so simple that it almost defies further explana-
tions. In particular, it gives rise to one of the most simple and most accurate plotting
sheets a navigator can use for plotting relatively short distances. It also allows him
to solve the Mid-Latitude problem by simply using a compass, protractor and a
straight-edge ruler, one that preferably has a millimeter scale on it (see Fig. 1.2.1).

The resulting errors at the end of point B can readily be evaluated by employing
the formulae of (11) and (14) above. In particular we find that:

~uB ¼ uB andDuB ¼ 0; andDkB ¼ D � sin C secu� sec
uA þuBð Þ

2

� �
:

In the next section, we will see how the actual mapping from the plotting sheet
on to the globe and from there on to the Mercator-Chart can be depicted. I will also
furnish the reader with some error estimates for whenever linear approximations or
plotting sheets are being used.

2
BA ϕ+ϕ

Note:  It is not 

recommended to 

employ this type 

of plotting sheet 

for large distances.

Fig. 1.2.1
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1.3 Approximations of Loxodromes by Straight Lines
on the Plotting Sheet

The objective in devising plotting sheets is always to map the meridians and circles
of equal latitude in the vicinity of a point A with coordinates k and u (representing
longitude and latitude respectively) on to a flat sheet of paper with a rectangular
system of coordinates. This graticule consists of straight and perpendicular lines
(see Fig. 1.3.1a).

Furthermore, it is always assumed that any straight line on such a plotting sheet
represents a Loxodrome so closely that said line may actually represent a Line of
Position (LOP). If that is the case, then, two such non-parallel lines will intersect
and determine or “fix” the position of the vessel.

In practice, the navigator chooses one set of coordinates with a scale repre-
senting one minute of a degree of latitude (one Nautical Mile) on the globe. Having
done so, the remaining coordinate axis representing the longitude will have to use a
different scale.

Fig. 1.3.1 a ðX;YÞ � PLOT—mapping. b ðk;uÞ � PLOT—mapping. c (X, Y)—mercator chart
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In this section, we will investigate the error resulting from the use of such
plotting sheets. We will also show the actual position of the vessel on the globe
when its position is fixed on a plotting sheet. In other words, if the navigator moves
his or her pencil along a straight line on the plotting sheet and then reads off the
latitude and longitude, we will be able to show the corresponding position on the
globe or the Mercator-Chart.

In order to show this in detail, we will have to use three plotting sheets. Firstly,
we will map our original plotting sheet (see Fig. 1.3.1a) with the straight line �L on
to an intermediate sheet that relates the longitude and latitude on the globe, but
depicts it by using a rectangular coordinate system (see Fig. 1.3.1b). Secondly, we
will then map the image L′ of �L together with the curve representing the Loxodrome
on the coordinate system (k, u) on to the Mercator-Chart (see Fig. 1.3.1c).

Mathematically, all of this amounts to using the two mappings defined by:

1. X� XA ¼ cos w � ðk� kAÞ; Y � YA ¼ u� uA; anduA �w�uB

2. X� XA ¼ n�1 � ðk� kAÞ; Y � YA ¼ n�1 � RðuÞ � RðuAÞ½ �
The mapping defined by (1) of our plotting sheet (3a.) maps �L on to L′, and

(2) maps L′ and the Rhumb-Line RL′ on to L and RL. respectively. Since the
equation of �Lon ð�X; �YÞis :
3. �L : �Y� �YA ¼ cot C � ð�X� �XAÞ. Its image L′ on (k, u) has the equation:
4. L0 : u� uA ¼ cot C � cosw � ðk� kAÞ, and the equation for the Rhumb-Line

RL′ is according to (2) of Sect. 1.2:
5. RðuÞ � RðuAÞ ¼ cot C � ðk� kAÞ:

Next, the mapping defined by (2) maps L′, given by (4), on the curve L on the
Mercator-Chart and is given by:

6. L : X� XA ¼ n�1 � ðk� kAÞ
Y� YA ¼ n�1 � R uA þ cot C � cosw � ðk� kAÞ½ � � RðuAÞf g

Similarly, the Rhumb-Line RL′ is mapped on to the straight line RL, given by:

7. RL : X� XA ¼ n�1 � ðk� kAÞ
Y� YA ¼ n�1 � cot C � ðk� kAÞ

Hence, tracing a point �B on the plotting sheet (see Fig. 1.3.1) its image B on the
Mercator-Chart moves along the curve L relative to the Rhumb-Line. Although the
relations (6) and (7) enable us to trace the error in approximating the Rhumb-Line
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by a straight line �L on the plotting sheet as a function of the longitude k, we still
have not solved the problem stated at the beginning of this section. To solve that
problem explicitly, we proceed as follows.

Firstly, let us fix a point �B on our plotting sheet that is D Nautical Miles or
minutes of a degree away from point A and lines on the line �L (see Fig. 1.3.1a).
Then we conclude that:

�XB � �XA ¼ D � sin C and �YB � �YA ¼ D � cos C: Substituting these expressions
into (7) yields:
8. u0

B � uA ¼ D � cos C
9. k0B � kA ¼ D � sin C

Next we specify a point B′ on the RL′ that is also D minutes of a degree away
from A. According to formula (3) of Sect. 1.2, the latitude of this point also satisfies
the relation uB − uA = D � cos C. Hence we may conclude that:

10. uB ¼ u0
B; i:e:;DuB ¼ 0:

By using this result in Eq. 5. we find that:

11. kB � kA ¼ tan C � ½Rðu0
BÞ � RðuAÞ� ¼ D � sin C � cosu�1:

Therefore the coordinates kB, uB of point B′ on the Rhumb-Line that correspond
to the point B on the Mercator-Chart have also been found. It follows that the error
in longitude D kB at B′ is given by:

12. DkB ¼ k0B � kB ¼ D � sin C � ðsecw� secuÞ:
In cases where we specify w as follows, we obtain the following types of plotting

sheets:

13. a. w ¼ u; the exact; i:e: theMercator plotting sheet results:

b. w ¼ uA þuB

2
; theMid�Latitude plotting sheet results:

c. w ¼ uA; themost widely used commercial plotting sheet results

Similarly, to the derivation of (10) and (12), we also derive from (6) and (7) the
expressions for the errors DXB and DYB. For we deduce readily for the values of
XB and YB on the curve L that:

14. XB � XA ¼ n�1 � D � sin C � secw
YB � YA ¼ n�1 � D � cos C � secu:

For the values X�R
B andY

�R
B on the Rhumb-Line, we find that:

15. XR
B � XR

A ¼ n�1 � D � sin C � secu
YR

B � YR
A ¼ n�1 � D � cos C � secu
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It follows then from (14) and (15) that:

16. DXB ¼ XB � XR
B ¼ n�1 � D � sin C � ð secw� secuÞ

DYB ¼ YB � YR
B ¼ 0

:

Admittedly, the errors due to the use of commercial or homemade plotting sheets
are relatively small in comparison to all the other errors inherent in Celestial
Navigation. But they are definitely a limiting factor in the accuracy of that method.

Furthermore, if navigators require a higher degree of accuracy in terrestrial
navigation, they would have to take the ellipticity of the Earth into account and
distinguish between both geographic and geocentric coordinates. The latter implies
that we will have to adjust the Rhumb-Line function (4) of Sect. 1.2. In that case, if
“e” denotes the ellipticity defined by:

e ¼ a� b
a

ffi 1
291

where “a” denotes the semi-major axis and “b” the semi-minor

axis of the Earth, then the modified Rhumb-Line function is given by:

~RðuÞ ¼ 1
sin 10 � ðln½tanð45þ u

2Þ� � e � sinuÞ ½8�

In the next section, we will consider some numerical examples and I will also
elaborate on what is referred to as “Flattening the Earth” mathematically. I will also
present the missing derivation of the Transverse Mercator Projection.

1.4 Applications and Numerical Examples

In terrestrial navigation, the two most frequently encountered problems in
Rhumb-Line navigation are:

A. Given the coordinates kA, uA of departure A of a voyage, the course C to be
followed, and the distance D to be traveled along the Loxodrome C—find the
coordinates kB, uB of the destination. And…

B. Given the coordinates kA, uA of a departure A, and the coordinates kB, uB of
the point of destination B—find the course C, and the distance D along the
Loxodrome to be followed.

Navigators have two options1 for solving these problems:

(i) They can use formula (11) of Sect. 1.2. to find the exact solution. Or…
(ii) They can choose an approximate method as defined by the relations (14) of

Sect. 1.2. with a specific value for w (see also Sect. 1.3 #13.).

1Not counting the option of using GPS.
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In the case that they choose (ii), they may either use an approximate plotting
sheet, compass, protractor, and straight edge, or they can use a trigonometric table
or calculator to solve the relations Sect. 1.2 #14. In either case, they can then
employ the formulae provided for the ensuing error of Sect. 1.3.

Next, let’s consider some numerical examples that will illustrate the use of our
formulae.

Example #1 This first example corresponds with problem A above and pertains to a
flight I made in a single engine float plane over Lake Huron to Georgian Bay. With
the following data provided: Way-Point A with kA = −81° 25′ W, and uA = 45°
25′ N, and C = 40 T, and D = 38 N.M. compute the kB and uB of Way-Point B.

Solution:

Using formula 11b. Section 1.2 yields the following—

uB ¼ 45�:416666þ 380 � cos 40 ¼ 45�:901828147

Next calculate R(uB), and R(uA) by employing 11e. Section 1.2 and
1

sin 10
¼ 3437:749237:

This results in: RðuAÞ ¼ 1
sin 10

� ln½tanð45þ 22:70833Þ� ¼ 3065:425668; and

RðuBÞ ¼
1

sin 10
� ln tan 45þ 22:95091407ð Þ½ � ¼ 3107:075933: Hence—

RðuBÞ � RðuAÞ ¼ 41:65026625 ¼ 0�:694171104; and
uB � uA ¼ 0�:48576214:

Formula 11a. Section 1.2 yields: Dep. = 38′ � sin 40 = 24′.422592917, and
expression 11d. Section 1.2 yields: cos u = 0.699772919.

Finally, the application of formula 11c. Section 1.2 produces:

kB ¼ �81�:41666þ 240:422592977 � 1:429035009 ¼ �80�:83498699 ¼
¼ 80� 500W:

Suppose I used a commercial plotting sheet with w = uA. In this case Formula
(14), Sect. 1.2 yields the same value for u and Dep. as above. However, in this
case, according to Formula 11c. Section 1.2, the approximation of kB now turns out
to be different, namely:
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~kB ¼ �81�:41666þ 24:422592917 � sec 45:416666 ¼
¼ �80�:83678168:

Hence the errors are: DkB = −0′.108 and DuB = 0
(Note: that because of W = uA, the displacement of B is to the left and not to the
right as shown in Fig. 1.3.1 where it was assumed that W ˃ uA.)

Example #2 On one trip to Newfoundland, I flew over the Gulf of Saint Lawrence and
used the following two way-points: A * −62° 12′W, 49°39′N and B * −55°49′W,
50°20′N. I chose to calculate the distanceD and course C by employing Formulae 11,
Sect. 1.2.

Solution:

Calculate kB − kA = 6°23′ = 6°.38333 and uB − uA = 0°41′ = 0°.68333
Calculate R(u) by using Formula 11e. Section 1.2, i.e.,

RðuAÞ ¼
1

sin 10
� ln tan 45� þ 24�:825ð Þ½ � ¼ 3441:923282 and

RðuBÞ ¼
1

sin 10
� ln tan 45� þ 25�:16666ð Þ½ � ¼ 3505:698252, hence

RðuBÞ � RðuAÞ ¼ 630:77496974 ¼ 1�:06291:

By using the formula 11d. Section 1.2, we find that: cos u = 0.64288545.

Next, we calculate the departure dep. by employing 11c. Section 1.2 and obtain:

Dep: ¼ 0:642885445 � 6:3833 � 60 ¼ 246:224997NM

We can now calculate C by using formulae 11a. and 11b. Section 1.2 deducing that:

tan C ¼ 246:224997
41

¼ 6:005487733; or explicitly;

C ¼ 80�:54616818 ¼ 80�320:77

Finally by substituting this value in 11b. Section 1.2, we find that:

D ¼ 410

cos 80:54616818
¼ 249:6152022NM

In the case that the navigator used a plotting sheet with W = uA, i.e., formula (14).
Section 1.2, instead, the answer would have been:

Deep: ¼ cos 49:65 � 6:38333 � 60 ¼ 247:9752853, and…

eC ¼ 80:6116999; andD ¼ 410

cos 80:6116999
¼ 251:341768NM
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(Note that in the above example the difference in latitudes uB and uA is less than
one degree which accounts for the relative small error in eC and D. However, in
general, the errors are much more pronounced and suggest that such plotting sheets
should be used for relatively small distances—less than 60 NM. Furthermore, in the
above situation, I chose to follow the Loxodrome since it only deviated insignifi-
cantly from the Great Circle route.)

In the next sectionwewill learn how to follow aGreat-Circle route by computation.
In particular, we will see how a Great-Circle route can be approximated by sections
that, in turn, can be navigated by using Rhumb-Lines without significantly increasing
the total distances. We will also encounter a different type for conformal projection,
i.e., charts on which great circles appear as slightly deformed straight lines. Since the
scientific part of cartography consists in devising suitable projections, and hence
charts, this subject should be of interest to any serious navigator. Remember, the first
accurate charts for seafaring were devised by the Captains of ocean-going vessels,
Captains like F. Magellan, Cook, and Vancouver, to name a few. [14]

In this section, I have also referred to the publication entitled “Flattening the
Earth” in which its author has quoted the formulae for the Transverse Mercator
Projection, but has not provided its derivation. In passing from Sects. 1.4 to 1.5, I
will give this mathematical derivation and also explain what the actual flattening of
the Earth entails geometrically. [39]

In most references to this subject, the expression “flattening of the Earth” merely
means projecting the surface of the Earth on a flat sheet of paper. This, of course,
can be done in many different ways. However, for the mathematician, this can only
mean approximating a small area of the surface of the Earth by a similar area on a
tangent plane since it is geometrically impossible to flatten a piece of the surface of
a sphere. Therefore, from the geometrical point of view, the question which arises
is: what should the size of the area be so that the laws of Spherical Geometry can be
approximated by the laws of Euclidean Geometry?

This question is more relevant than you, at first, might think. We don’t have to
go back very far in history to show that men used to believe that the Earth was flat
and not a geoid despite the observations and teachings of men like Archimedes. (In
fact a Flat Earth Society still exists, today.) Similarly, people still refuse to accept
that we really do not know the ‘real’ geometry of our universe. The discoveries of
scientists like Riemann, Einstein and Lobachevsky all point to a concept of ‘cur-
vature’. Admittedly, for the distances generally considered by astronomers, the
concept of Euclidean Space suffices as a good approximation. (However, for
anyone trying to explain the origin of the universe, it might first be necessary to
explain the configuration of the space.)

In order to understand the concept of approximating the Spherical Geometry by
the Euclidean Geometry, let us consider a small spherical triangle on the surface of
the Earth with sides of about five to ten Nautical Miles long. The application of the
COS-TH of Spherical Trigonometry yields:

cos x ¼ cos y � cos zþ sin y � sin z � cosX;
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where “x”, “y”, and “z” denote the sides of said triangle in minutes of a degree and
“X” denotes the enclosed angle in degrees.

By converting the minutes in the radians and expressing the trigonometric
functions in terms of their Taylor-Series expansion we obtain the relationship:

1� x2

2
sin2 10 ffi ð1� z2

2
sin2 10Þ � ð1� y2

2
sin2 10Þ þ y � z � cosX � sin2 10;

where we have neglected all higher than second order terms.
By truncating again, higher than second order terms, we obtain the simple relation:

x2 = y2 + z2 − 2 � y � z � cos X, where x, y, z are expressed in Nautical Miles
and X in degrees.

Similarly, by invoking the SIN-TH of Spherical Trigonometry we find that:

sin X
sin x

¼ sinY
sin y

¼ sin Z
sin z

We deduce:

sin X
x

¼ sinY
y

¼ sin Z
z

The first equation above is the Cosine Theorem (COS-TH.) and the last the set of
equations which constitute the Sine Theorem (SIN-TH.) of Euclidean Geometry.

By noting that the maximum error in the above approximations is of the order of:

x2

2
� sin210 ¼ 102

2 � 10�8 ffi 10�6

Therefore, we can conclude that for distances of less than 10 NM the error would be
in the order of linear millimeters only. No measurable differences in those
geometries can be detected by optical or mechanical means. What about using Laser
techniques? On the whole, it would not be possible to verify that the sum of the
three angles must satisfy the inequality: X + Y + Z ˃ 180°. (This is one of the
reasons that the great mathematician G.F. Gauss could not prove mathematically
that the Earth is a geoid. Nor could Lobachevsky prove that his Non-Euclidean
Geometry represents our true space that must have a curvature.)

Before concluding Sect. 1.4, let’s take a look at the mathematical derivation for
the Transverse Mercator Projection.

For certain applications, such as world maps and other special maps depicting
large north-south sections of the globe, it is desirable to have charts that are based
on a conformal cylindrical projection that do not have the same distortions along the
latitude scale that the standard Mercator-Chart has. One of these projections is
based on the cylindrical projection that utilized a meridian as a tangent circle
instead of the equator (see Fig. 1.4.1a, b). This can readily be accomplished by a
rotation of the cylinder or, mathematically speaking, by the use of another suitable
coordinate system. However, everything said and expressed in mathematical terms
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Fig. 1.4.1

about the standard Mercator Projection remains valid for the Transversal Mercator
Projection if expressed in those new coordinates k1 and u1, i.e., the Eqs. 1. of
Sect. 1.1. remain invariant. Therefore, we have again:

DX ¼ �a0 � Dx0 ¼ cosu0 � Dk0
DY = a � Dy′ = Du′, and also
a1 ¼ n � cosu0:

Hence, again we have:

x0 � x0A ¼ �n�1ðk0 � k0AÞ
y0 � y0A ¼ n�1½Rðu0Þ � Rðu0

AÞ� ¼ n�1 � 1
sin 10

� ln½tanð45� þ u0

2
Þ= tanð45� þ u0

A

2
Þ�

By employing the trigonometric identity:

tan2ð45þ b
2
Þ ¼ 1þ sin b

1 � sin b
, and the fact that 1nxn = n�1nx, we deduce that:

x0 � x0A ¼ �n�1ðk0 � k0AÞ;

y0 � y0A ¼ n�1 � 1
sin 10

� 1
2
� ln 1þ sinu0

1� sinu0 =
1þ sinu0

A

1� sinu0
A

� �

1.4 Applications and Numerical Examples 19



By identifying the new coordinates k1, u1 in relation to our standard coordinates
k, u we are able to deduce their mathematical relationship-Transformation by
merely employing the SIN-TH. to the spherical triangles M’NP and MEP and by
applying COS-TH. also to triangle MEP. Accordingly we have:

sin k
sinu1 ¼

1
cosu

or sin u1 = sin k � cos u and

sin k1

sinu
¼ 1

cosu1 and cos u = sin k � sin u1 + cos k � cos u1 � cos k1.

Substituting in the corresponding expressions yields:

tan k1 ¼ sec k � tanu
Explicitly, we have found the Transverse Mercator Projection as:

x� xA ¼ y0 � y0A ¼ n�1 � 1
sin 10

� 1
2
� ln ð1þ sin k � cosu

1� sin k � cosuÞ=ð
1þ sin kA � cosuA

1� sin kA � cosuA
Þ

� �
;

y� yA ¼ � x0 � x0A
� � ¼ n�1 � tan�1ðsec k � tanuÞ � n�1 � tan�1ðsec kA � tanuAÞ:

Now, let’s take a look at the Great Circle Route and how to compute the aspects
of following the shortest distance route between two distinct points on the globe.

1.5 Gnomonic or Great-Circle Navigation

For large distance navigation, it is important to choose the route from A to B so as
to minimize the actual distance traveled. As we all know, the shortest distance
between two points on a sphere is provided by a great circle that passes through
those points. In reality, such a great circle is the intersection of the sphere by a plane
passing through those two points and the center of the sphere.

Since any curve on our sphere can be described by a function representing one of
the coordinates, say the latitude u, in terms of the other coordinate, here the lon-
gitude k, we can obtain a representation like: u = f(k); kA � k � kB; k = f−1 (u).

For example, in the case of the Rhumb-Line, we derived the equation of the
Loxodrome (see formula 2 in Sect. 1.2). Again, the departure point A has the two
coordinates, longitude kA and latitude uA. The destination point B has the two coor-
dinates kB and uB. Then, the problems associated with great-circle navigation are:

1. Find the shortest distance D between A and B.
2. Calculate the initial course C at A.
3. Find the kM at which the maximum latitude occurs.
4. Calculate the maximum latitude for all kA � k � kB.
5. Find the latitude u for any given value k, satisfying kA � k � kB.
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Please note that tasks #3 and #4 are very important because the navigator has to
be sure that the great-circle route does not endanger the vessel in the vicinity of
regions of ice.

Once a formula for u = f(k), the equation of the great-circle route, has been
found, the navigator can pick any point along this route by specifying k and then
calculating for u, thereby establishing way-points along this route, which, in turn,
are navigated by means of Rhumb-Line navigation. To physically chart this, we
could use a chart that depicts any great-circle as a straight line. But remember, such
charts are no longer based on conformal mapping and entail meridians that are no
longer parallel. Such charts are referred to as GNOMONIC charts and are based on
azimuthal projections of the points on the sphere from the center of the sphere on a
tangent plane to the sphere at a fixed points, k0 and u0. (Gnomonic charts are
commercially available, but for navigators who wishes to make their own plotting
sheets or maps, the formulae for the necessary projections are provided without
further proofs at the end of Sect. 1.6).

Besides the Gnomonic charts, a navigator also has access to other types of
conformal charts which depict a great-circle by curves which are approximately
straight lines. Such charts are known as Lambert Conformal Conic Projection Charts
and are widely used by Aviators. These projections are made by projecting part of
the sphere on a cone that intersects the sphere at two distinct circles of equal latitude.
Since this projection is also conformal, distortions are minimal. The Rhumb-Lines
appear as curves and great-circles are almost straight lines. The aviation navigator
also uses flight computers and plotters suitable for position plotting based on linear
approximations. Because of the versatility of Lambert Charts, the underlying
mathematics of this type of projection is even more difficult than the derivation of the
mathematical formulae of the Mercator Projection. (All the relevant mathematical
formulae are provided in Sect. 1.6 without further proof.) [55], [2], [8], [16]

The current objective is to provide straight forward formulae which can be
evaluated on any scientific calculator. Like the pocket calculator which is inex-
pensive and fits neatly into a shirt pocket, these formulae also do not occupy much
space.

Let’s go back to our task of deriving formulae for the solutions of the five
problems listed above. First of all, let us depict a Great-Circle course on a
sphere-globe.

In order to derive the required formulae it is necessary to employ some of the
standard formulae of Spherical Trigonometry. (The formulae are listed in an
Appendix to the first part of this book. However, for those not interested in the
underlying mathematics, evaluating them on the calculator will suffice.)

First we apply the COS-TH. to the spherical triangle defined by N, (k1, u1), and
(k2, u2) to find the distance D as:
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1. cosD ¼ sinu1 � sinu2 þ cosu1 � cosu2 � cosðk2 � k1Þ:
Similarly, we find that:

sinu2 ¼ sinu1 � cosDþ cosu1 � sin D � cos C:
By solving cos C we discover:

2. cos C ¼ sinu2 � sinu1 � cosD
cosu1 � sin D

: Hence we have found the shortest distance D

between A and B, and have calculated the initial course C at A.

Applying the COS-TH. to the triangle defined by (k0, 0), (k1, 0) and (k1, u1), we
find:

(i) cos (k1 − k0) = cos u1 � cos d + sin u1 � sin d � cos C, and also:
(ii) cos d = cos u1 � cos (k1 − k0), from which it follows that:

cosðk1 � k0Þ
cos d

¼ 1
cosu1

; and also
cosðk1 � k0Þ

cos d
¼ cosu1 þ sinu1 � tan d � cos C:

Hence: cos u1 + sin u1 � tan d � cos C =
1

cosu1
; therefore we find that:

sinu1 ¼ cosu1 � tan d � cos C; or
3. tan d ¼ tanu1 � sec C:
Note that the distance d serves only as an auxiliary quantity. We also conclude from
(ii) that:

4. cosðk1 � k0Þ ¼ cos d � secu1; i.e. the equation for finding k0 and, therefore,
kM, the longitude at which the maximum of the latitude occurs.

The application of the SIN-TH. then yields:
sin a
sin u1j j ¼

sin 90�

sin d
; and hence the formula for a:

5. sin a ¼ sin u1j j
sin d

:

All that remains is to derive the actual “Equation of the Great-Circle Route”,
u = f(k). Now, let’s introduce another auxiliary variable ‘, representing the length
of the great-circle arc extending from k0 to k. The application of the COS-TH. to
the spherical triangle N, (k0, 0), (k, u) yields:

cos ‘ = cos 90° � cos (90° − u) + sin 90° � sin (90° − u) � cos (k − k0), or in
short:

(iii) cos ‘ = cos u � cos (k − k0), and
(iv) cos u = cos ‘ � cos (k − k0) + sin ‘ � sin (|k − k0|) � cos a.
Combining (ii) and (iii) yields: cos u � sin2 (|k − k0|) = sin ‘ � sin (|k − k0|) �

cos a, and hence:
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(v) cos uj j ¼ sin ‘ � cos a
sin k� k0j jð Þ :

Next we apply the SIN-TH. to the same triangle to obtain:
sin 90�

sin ‘
¼ sin a

sin uj j :
This, then, yields:

(vi) sin ‘ ¼ sin uj j
sin a

: By combining (v) and (vi) we obtain:

cot uj j ¼ cot a � 1
sin k� k0j jð Þ ; the desired equation u = f (k). The later can be

written as:
6. tan uj j ¼ tan a � sinð k� k0j jÞ; the Equation of Great-Circle navigation.

(Note that u = ± ׀u׀ , depending on the signs ofu1 and u2 and the location of k.
2)

With the help of relation (6), we can establish WAY-POINTS along our
great-circle route in order to navigate from way-point to way-point employing
Rhumb-Line navigation. Equation 6 also confirms what we can readily deduce

Fig. 1.5.1

2u ¼
uj j

if u1;u2 [ 0 8k 2 ½k1; k2�
if u1\0;u2 [ 0 8k 2 ½k0; k2�
if u1 [ 0;u2\0 8k 2 ½k1; k0�

8<
:

� uj j
if u1;u2\0 8k 2 ½k1; k2�
if u1\0;u2 [ 0 8k 2 ½k1; k0�
if u1 [ 0;u2\0 8k 2 ½k0; k2�

8<
:

8>>>>>><
>>>>>>:

Also note: u < 0 for all latitudes south, and positive for all latitudes north and k < 0 for all
longitudes west, and positive for all longitudes east.
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from Fig. 1.5.1, namely—the maximum of the latitude uM occurs either at k1, k2 or
at kM = k0 ± 90°.

The maximum value of u attained on the interval k0 � k � k2 is either u1, u2

or uM = a. Analytically, these results are verified by differentiating (6) that yields:
1

cos2 u
� du
dk

= ± cos (k − k0) � tan a. Hence the relative extremum occurs at

kM − k0 = ± 90°, i.e., kM = k0 ± 90°. Substituting in (6) yields: tan uM = tan a,
i.e. uM = a. Therefore, we have solved all relevant problems (1–5) of great-circle
navigation. Next, let’s take a look at a practical example—a trip from Baja
California (Mexico) to Honolulu (Hawaii).

1.6 Numerical Examples and More Chart Projections

In this section, let’s look at an actual journey from the west coast of Baja California,
Mexico to Honolulu, Hawaii.

The coordinates of the point of departure A * (k1, u1) are:

k1 ¼ �110�400:659 ¼ �110�:67765 andu1 ¼ 23�:450:970 ¼ 23�:76616:

The coordinates of the destination B * (k2, u2) are given as:

k2 ¼ �155�040:980 ¼ �155�:083 andu2 ¼ 19�500:808 ¼ 19�:8468

First, let’s look at the problems of determining the actual distance D; the initial
course C to be steered; and the maximum latitude to be reached, together with its
longitude k0 − 90°.

The application of formula (1) Section 1.5, yields:

cosD ¼ sin 23:76616 � sin 19:8468þ cos 23:76616 � cos 19:8468 � cos�44:40535 ¼
0:751812073; hence;

D ¼ cos�1 0:751812073 ¼ 41�:252410 ¼ 24750:1446; i:e:
D ¼ 2475:1446NauticalMiles:

Next, evaluate formula (2), Sect. 1.5, to find the course C as:

cos C ¼ sin 19:8468� sin 23:76616 � cos 41:252410
cos 23:76616 � sin 41:252410 ¼ 0:060521631, hence,

C ¼ � cos�10:060521631� 360�
� �� � ¼ � 86�:53024562� 360�ð Þ½ � ¼ 273�:4697544; i:e:

C ¼ 273�280:2
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Our auxiliary variable d is to be found by applying formula (3) Sect. 1.5, to
obtain:

tan d ¼ tan 23:76616
cos 86:53024562

¼ 7:275865248; hence;

d ¼ tan�17:275865248 ¼ 82�:17425821 ¼ 4930:4555NM

The longitude k0 is readily found by applying formula (4) Sect. 1.5, resulting in:

cos (k1 − k0) =
cos 82:17425821
cos 23:76616

= 0.148777317, and hence:

k1 � k0 ¼ cos�1 0:148777317 ¼ �81�:44392306; i:e:

k0 ¼ �29�:233726694 and kM ¼ �119�23372694:

Next, the application of formula (5) Section 1.5, yields:

sin a =
sin 23:76616

sin 82:1742582
= 0.406793395, and therefore:

a = sin−10.406793395 = 24°.00355942, i.e. uM = 24°

It follows then that: tan a = 0.445303125.
Finally, formula (6) Section 1.5, yields the equation for the intermediate points as:

tanu ¼ 0:445363125 � sinðk0 � kÞ:

Secondly we want to establish way-points along the great-circle route. Here, the
objective is to obtain the coordinates k, u along the route subject to the condition
that the distance between any two successive way-points does not exceed 300 NM.
Therefore, let’s define a grid along the equator defined by: ki = k1 − (i − 1)5°,
1 � i � 9. Hence, k0 − ki = 81°.44392306 + (i − 1)5°, 1 � i � 10 and then
compute the corresponding values ui = u(ki) by employing Eq. 6. Sect. 1.5.

All the relevant values of these calculations are listed as follows:

i ki tan ui ui

1 −110.67765 0.440347223 23.76616

2 −115.67765 0.444443725 23.96255024

3 −120.67765 0.445161726 23.9967980

4 −125.67765 0.442489777 23.86890024

5 −130.67765 0.436450214 23.57887314

6 −135.67765 0.427089002 23.12679508
(continued)
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(continued)

i ki tan ui ui

7 −140.67765 0.41.4477384 22.512901

8 −145.67765 0.398711343 21.73773069

9 −150.67765 0.379910868 20.80232838

10 −155.083 0.360945109 19.8467999

As has been mentioned in Sect. 1.5, the avid navigators who like to construct
their own “exact” plotting sheets or charts can employ the following mathematical
projection formulae for the GNOMONIC and LAMBERT CONFORMAL CONIC
charts. These formulae are stated without proofs which have been left to the reader
to verify. [1], [2], [8], [14], [16], [32], [39], [40]

1. Gnomonic Projection—Non-Conformal Projection.

x ¼ c � sinðk� kspÞ cosu
cos a

y ¼ c � ½cosusp sinu� sinusp cosu cosðk� kspÞ
cos a

�

cos a = sin usp � sin u + cos usp � cos u � cos (k − ksp), where “c” denotes the scale
factor of the chart and ksp, usp are the spherical coordinates of the center of
projection and “a” denotes the angular distance of the point (k, u) on the sphere
from the center of projection.

Example: Choose (ksp, usp) = (0, 0), then: x = c � tan k, and y ¼ c � tanu
cos k

The corresponding formulae for the Lambert Conformal Conic Projections are a
little more complicated and more difficult to derive. Therefore, no attempt has been
made to derive them here. It will suffice to merely state them as follows:

2. Lambert Conformal Conic Projections— [2], [14], [39], [40]

x ¼ p � sin½nðk� k0Þ�;
y ¼ p0 � p � cos½nðk� k0Þ�

with n ¼ lnðcosu1 � cosu2Þ
ln tanð45þ u2

2
Þ � cotð45þ u1

2
Þ

h i
p ¼ F � cotn 45þ u

2

� 	
p0 ¼ F � cotn 45þ u0

2

� 	
; and

F ¼
cosu1 � tann 45þ u1

2

� 	
n
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…where k0 and u0 are the coordinates of the point of reference; where u1 and u2 are
the coordinates of the two standard parallels; and where k and u are the spherical
coordinates of the point P * (k, u) to be projected on the chart Q * (X, Y).

For the purpose of numerical evaluations, the following useful data is hereby
included:

sin 10 ¼ 1
3438

;

1 NM = 1.852 km,
1 km = 3280.83999 ft = 0.5399568 NM
1 knot = 1.68780986 ft/s. = 0.514444 m/s.
1.9438449 knots = 3.6 km/h

International Spheroid: RM ¼ 2aþ b
3

= 3440.193 NM = Mean Radius

f ¼ a� b
a

¼ 1
297

¼ Ellipticity, and

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f � f2

p
¼ 0:081991889 ¼ Exc.

Any treatise on terrestrial navigation would not be complete without solving the
very important problem of determining a vessel’s position at sea (or air) by the use
of land or sea marks whose distances and/or angles relative to magnetic north (or a
celestial object) can be measured. This measurement gives rise to the concept of
Lines of Position (LOP). In the next chapter we will investigate Lines of Position
and the definition of land and sea marks that will include time dependent (moving)
objects such as substellar points of celestial bodies.
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Chapter 2
Astro-navigation

2.1 Lines of Position, Position Fix, Navigational
Triangle and Fix by Computation

If it were possible to determine the velocity of a vessel relative to the surface of the
Earth, we would know its position at any instant by using the formulae of the
previous section in all cases with a v constant. However, we seldom have accurate
values for v available mainly because we can only estimate wind and current
velocities to establish a valid drift angle.1 This is particularly true of sailing vessels
and float planes that travel at low speeds and present great lateral resistance. It
should not surprise the reader that the actual error incurred in
DEAD-RECKONING can be of the order of 25% (or even higher) of the distance
traveled in 24 h of sailing. Because of this error, it is imperative that a navigator
checks the actual position of the vessel at least once every 24 h and correct the
course accordingly. [24]

In what follows, it is assumed that the navigator has access to a straight edge, a
compass, a protractor, and a local chart since the plotting sheets will not reveal land
masses and other obstacles. Of course, a pocket calculator and a chronometer are
always indispensable. Moreover, it is assumed that the navigational aids are within
line of sight. This would most likely occur if the vessel were moving along a coast
line or an interior lake close to shore.

The actual procedure for obtaining a terrestrial fix consists in establishing two or
more lines of position (LOPs) which are simply obtained by noting the angle
between the north direction of the magnetic compass and the line of sight towards
the navigational aid, as for instance, a tower, lighthouse or buoy that can be
identified on a chart. This angle will be the AZIMUTH of the navigational aid at the
actual position of the vessel. This azimuth is then transferred to the chart and the

1Except in the case of the INERTIA NAVIGATION SYSTEMS. See appendix at the end of this
section.
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resulting LOP is then drawn at this angle relative to the magnetic meridian through
the position of the aid on the chart. Similarly, a second LOP is established
simultaneously. The case of establishing a fix based on LOPs taken at different
times is easily accomplished by advancing the first LOP parallel to itself in
accordance with the velocity v of the vessel and the elapsed time. It is obvious that
the two LOPs will always intersect at a distinct point Z providing that their azi-
muths are distinct.

Figure 2.1.1 depicts the procedure outlined above:
ON A TANGENT PLANE AT Z constituting an approximation only.
Here we can apply the plane Euclidean Geometry with the following properties:

(i) Parallels cross at infinity,
(ii) The sum of the angles in a triangle is always 180°,
(iii) The shortest distance between two points is the line segment of the straight

line passing through the two points.

(Note that the north pole is actually located at infinity. Also note that all dis-
tances in Fig. 2.1.1 are linear distances.) [2, 8]

Next let’s look at the true picture on the globe. Here the corresponding points N,
O2, and O1 form a spherical triangle with two sides, co-latitude of O1 and O2, and
hour angle t are known. Hence we can calculate the angular distance d between the
two points, O1 * (k1, u1) and O2 * (k2, u2). Besides the triangle NÔ2O1, we also
have another triangle, namely, O2ẐO1 (see Fig. 2.1.3iv). Furthermore, we also have
two navigational triangles NÔ2Z and NẐO (see Fig. 2.1.3ii, iii).

Fig. 2.1.1
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Since the task of fixing the position of our vessel actually amounts to finding the
coordinates (k, u) of our zenith Z, we must establish the elements in spherical
triangles that determine these coordinates in the actual calculations.

ON THE ACTUAL SPHERE where we use Spherical-Geometry
(Non-EUCLIDEAN Geometry) with the following properties:

(i) Great Circles always cross at two distinct points,
(ii) The sum of the angles in a spherical triangle is always greater than 180°,
(iii) The shortest distance between two points is the length of the arc of the

great-circle that passes through those points.

Because of the differences in the two geometries it is no surprise that we have to
consider another approach to the solution of the approximation defined by
Fig. 2.1.1, namely, instead of merely measuring the azimuths A1 and A2 in
Fig. 2.1.1, we must also introduce the linear distances and then use the angular
distances d, d1, and d2 in order to solve the exact problem depicted by Figs. 2.1.2
and 2.1.3.2

By looking at Fig. 2.1.3i, we readily see that with u1, u2, k1, and k2 given we
can calculate Dd and a1. Next we deduce from Fig. 2.1.3iv that with Dd1 and Dd2
given we can then calculate a2 and therefore, compute u and k. The actual formulae
used are the COS-TH. and the SIN-TH. of spherical trigonometry.

Fig. 2.1.2

2In this chapter I merely want to state qualitatively the exact solution to a terrestrial fix by
employing the angular distances outlined above.

2.1 Lines of Position, Position Fix, Navigational Triangle … 31



The explicit formulae for finding u and k of Z and all other relevant formulae
will be deduced in the next chapter. The only differences will be that the naviga-
tional aids will be replaced by the substellar points of the heavenly aids (stars,
planets, sun and moon) and that the coordinates of u1,2, k1,2 of the substellar points
depend on the precise time at which the angular distances of these points are
measured. The next chapter will also take the movement of the vessel into account.
Basically, we have made the transition from the Euclidean Geometry to the Elliptic
Geometry and thereby laid the foundation of exact navigation.

In order to understand the significance of the most recent developments in
navigation, let’s take a moment and reflect on the historical mile-stones of the
achievements of navigators and astronomers. This may give us a better under-
standing of what future developments may have in store.

It was certainly a Quantum-Leap in the making of men to accept the shape of the
Earth as what it actually is—a GEOID—and for most practical applications a
SPHEROID. Remember, it took men more than sixteen centuries, from Archimedes
to Columbus’ times3 to fully integrate the true shape of the Earth into the concept of
navigation. Perhaps now is the time to ask the men of vision how much longer it
will take them to readily accept that the physical Universe = Space + Energy itself

Fig. 2.1.3

3According to Joshua Slocum, there was at least one world leader in the 19th Century who still
believed that the Earth was flat.
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requires the adoption of the concept of another Non-Euclidean Space as conceived a
long time ago by some mathematicians and subsequently employed by Albert
Einstein in his treatise of The General Theory of Relativity.

As for mathematicians, it should be pointed out that Riemann had developed the
necessary calculus for a Non-Euclidean Geometry (also used subsequently by Albert
Einstein). The Russian mathematician Lobachevski had also shown earlier that the
formulae of Euclidean Geometry constituted an approximation to his Hyperbolic
Geometry in an infinitesimally small neighborhood of a point on the hyperbolic sur-
face. Therefore, we can only conjecture that approximating the true space by Euclidean
Space is very similar to approximating the spheroid-Earth by its tangent planes.

Unfortunately, the actual distances involved are of the order of 106 AU, and
therefore a physical proof of the Non-Euclidean Geometry of our space can still not
be rendered by experimental means currently available. The argument most fre-
quently used by astronomers and astrophysicists is why bother looking for the
actual configuration of space if the Euclidean Space constitutes a sufficiently close
approximation to reality. The argument against this is simply why are you trying to
prove the BIG-BANG theory if you still don’t know which type of space was
created at the beginning of our universe. The other logically correct argument or
opting for the true space is: “If the proponents of the BIG-BANG theory assume
that at the beginning there was only one singularity containing all the energy of the
universe, the argument against it is that a singularity can only exist if a space is in
existence, or if the space, itself, was a singularity at the beginning of the universe.
The arguments rest on the abstract philosophical concept of a point that has no
physical dimensions whatever. Hence, no physical proof of this theory may exist.”

Conclusions

In the foregoing sections, I have chosen to use the analogy of approximating the
Non-Euclidean Geometry, i.e., the Elliptic and Spherical Geometry by the
Euclidean Geometry thereby employing the tangent plane on the sphere in order to
arrive at the basic equations for exact navigation. This approach also shows that
there is, from a mathematical point of view, a difference in the geometry between
approximate terrestrial and celestial navigation.

In the sections to come, we will explore some of the practical applications and
approximations which were made in order to enable the mariners and navigators for
the past to arrive at numerical results for the position of their vessels. It should be
noted that a majority of these men were ill prepared for the mathematical task they
encountered in navigation.

Things have drastically changed. Today, children learn to use computers. Across
the world, people use programs they don’t have to understand on computers for all
kinds of things. For instance, some elementary school students have been taught to
execute a simple program on their calculators involving trigonometric and loga-
rithmic expressions without these students actually having the knowledge of
trigonometry or logarithms. Most of these same students even know how to use a
GPS. Therefore, why write a book on the Science of Navigation when children,
today, already have access to such a navigational tool? The answer is simple—what
are those children or any adult going to do if that GPS goes dark?
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Appendix

A more sophisticated system of terrestrial navigation had been put to use about
sixty years ago by the U.S. Navy and by its Russian counterpart. Used chiefly on
board submarines, it basically consisted of two components: electric gyroscopes
and an analogue computer. The gyroscopes measure the forces acting on the vessel.
The analogue computer integrated the system of differential equations of motion
whenever the vessel was in motion. Therefore, based on the input (the initial
position and the initial velocity), the analogue computer provided the position and
velocity at any given later time.

Such navigational systems were also referred to as Inertia Platforms and were
characteristically heavy and bulky given the state of technology a half century ago.
With the passing of time, the advent of microprocessors and sensor chips, such
systems are evolving into something small enough to be carried aboard private
vessels. It is only a matter of time before these platforms are marketed to owners of
pleasure crafts.

Although the inertia navigational systems were developed long before GPS
became available, they have not become obsolete. On the contrary, they actually
constitute another independent terrestrial navigation system with the tremendous
advantage of being independent of a land or air based system of navigation.

With all the terrorist activity reported in today’s headlines, it should be obvious to
all the belligerent nations of the world how utterly vulnerable any kind of GPS system
really is. Methods for the shooting down of artificial satellites have been perfected to
the point that virtually anyone with a modicum of training can push a red button and
bring them down. Anyone interested in computing the orbits of Celestial Objects or
intercepting Artificial Celestial Objects need only apply the basics of Celestial
Mechanics to determine the critical parameters of their orbits. [54, 56]

2.2 Celestial Sphere, Equatorial and Horizon System
of Coordinates, Navigational Triangle and the Ecliptic
Coordinate System

In the previous chapter we used LONGITUDE and LATITUDE for the coordinates
of a point on our sphere without explicitly defining the underlying coordinate
system. Aside from the actual shape of the Earth, we also employed the physical
reference system of its axis of rotation which passes through the center of the Earth
and exits the sphere at the two points referred to as the North and South poles,
respectively. (Those two points are not to be confused with the magnetic poles.)
Then, the underlying coordinate system is based on the great-circle defined by the
intersection of the plane which passes through the center of the Earth and which is
perpendicular to the axis of rotation. This great-circle is called the EQUATOR and
is assigned the latitude zero.
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If we then pass a plane parallel to the equatorial plane through a given point, we
obtain a small circle of equal latitude. By assigning the angular distance of this
circle from the equator as latitude, we have defined u of said point. The angular
distances between two circles of constant latitude are measured along any
great-circle which passes through the north and south poles and is called a
MERIDIAN.

Next, let us define longitude zero as the longitude corresponding to the point of
intersection of the meridian that passes through GREENWICH, England with the
equator. The longitude of any point on the sphere (Earth) is then defined by
measuring the angular distance of the point of intersection of the meridian that
passes through said point with the equator from the Greenwich meridian and is
assigned negative values for all points (ǀkǀ � 180°) lying West (left) of the
Greenwich meridian and positive values for all other points lying East of said
meridian. In addition, we also assign negative values for u for points lying South of
the equator (see Fig. 2.2.1).

Now, let’s define SUBSTELLAR points (SP) and their coordinates on the sphere.
For the sake of simplicity, let’s assume that the observer is located at one of the poles.
He or she, then, will see all heavenly bodies of the semi-sphere above them. If they
connects those objects, like the stars, planets, Moon and Sun by means of imaginary
lines to the center of the Earth, those straight lines will intersect the surface of the
Earth at well-defined points at any instant. We shall refer to those well defined points
on the surface of the Earth as Substellar Points (SP). Since these points lie on the
surface of the globe, it is only logical to use the same system of coordinates that we
use to locate any point on the Earth, except that we will use different names for these
coordinates. Longitude will be called Greenwich Hour Angle, and Latitude will be

Fig. 2.2.1
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called Declination. Accordingly, we will also use different symbols and denote the
declination by “d” and the Greenwich Hour Angle by “GHA”.

It should be clearly understood that these coordinates are defined at the instant of
observation and, therefore, depend on the rate of rotation of the Earth.

Because the distances of the stars are so great (light years) in comparison to the
diameter of the Earth (the same is also partly true for the planets, the Sun, and less
true for the Moon), we may actually assume in the above description that the
observer is located at the center of the Earth, carrying with him his tangent plane. In
the next chapter I will introduce corrections as in the cases of the Moon, Sun, and
all the navigational planets because their distances from the center of the Earth are
finite and not infinite as with the stars. However, for the moment, we will assume
that all celestial objects are at infinite distances away from the center of the Earth.
Therefore, linear distances will not enter the calculations explicitly in astronavi-
gation and only angular will be considered here. Because of this, we may also
picture the substellar points as interstellar points on a fictitious sphere of arbitrary
radius, henceforth referred to as the CELESTIAL SPHERE (see Fig. 2.2.1).

By extending the plane of the terrestrial equator to intersect with this sphere, we
obtain that great-circle on the celestial sphere referred to as the CELESTIAL
EQUATOR. If we also extend the axis of rotation of the Earth to intersect with the
celestial sphere, we obtain the CELESTIAL POLES—north and south, respectively.

Moreover, the observer will also notice that all COs observed will rotate at a
fixed rate relative to the observer’s position and except for the Sun, Moon, and
planets, those COs will not sufficiently alter their relative position to each other.
Therefore, the observer may conceive that all the stars are located fixed on the
Celestial Sphere which, in turn, rotates about the extended axis of the Earth.

This model implies that the coordinates of the stars remain quasi-fixed4 if we
merely refer their longitude to a “fixed” point5 on the Celestial Equator. This
particular point is the position of a fictitious star called ARIES (♈) corresponding
to the vernal equinox.

Depending onwhether the hour angle of the star is measured westward or eastward
relative to Aries, we refer to it as SIDEREAL HOUR ANGLE (SHA) or RIGHT
ASCENSION (RA). For now, we will refer to the celestial coordinates of a CO as
DECLINATION and SIDEREAL HOUR ANGLE. It follows then, that the coordi-
nates of any substellar point can be expressed in terms of its declination, the GHA of
Aries, and its SHA. The latter alsomakes it possible to determine longitude in terms of
exact time measurements at the instant of observation. [2, 16, 19]

In the previous chapter, we employed the concept of the Navigational Triangle
without reference to the celestial sphere. Now, it’s time to elaborate on this fun-
damental tool of astronavigation and apply it to the transformation of coordinate
systems.

4The fact that the stars change their position on the Celestial Sphere will be explained and
incorporated in the actual calculations in a later chapter.
5This fixed point, called Aries, is also a variable point as will be explained later.
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Let’s recall that the zenith of the observer on the Earth is the intersection of the
straight line passing through the position of the observer and the center of the Earth
with the celestial sphere. This allows us to define the Navigational Triangle cor-
responding to the observer’s position Z, the North Pole of the celestial sphere, and
the position SP of the celestial object on the celestial sphere as the spherical triangle
ZP̂SP spanned by these points—see Fig. 2.2.2.

Since an observer at Z will orientate him or herself with reference to their natural
horizon, i.e., relative to the tangent plane at Z to the sphere, and since the distance R
(the radius of the Earth) is immaterial for the above reasons, we shall adopt a new
coordinate system based on the concept of the horizon plane. The intersection of
this horizon plane with the local meridian circle is depicted in Fig. 2.2.3 and the
mathematical definition therefore is:

The Horizon Plane is the plane that passes through the center of the Earth and is orthogonal
to the line drawn through the center of this sphere and the zenith.

We now proceed to redraw the navigational triangle with reference to the
horizon plane and call the resulting system of coordinates the Horizon System with
the two important coordinates of azimuth angle AZ and the altitude a = 90° − z (see
Fig. 2.2.4).

Zn ¼ AZ if SP is East
360� � AZ if West

t ¼ LHA if SP is West
360� � LHA if East

��
Since all observations are carried out on the platform referred to as horizon and

all ephemeral data is provided with reference to the equatorial system of coordi-
nates, it is imperative to know how the coordinates of one system can be calculated
once the coordinate of the other system are known.

Fig. 2.2.2
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Here we shall derive the corresponding equations by employing the fundamental
equations of spherical trigonometry (FE) to our navigational triangle:

FE: (i) COS-TH: cos b ¼ cos a � cos cþ sin a � sin c � cos B:
(ii) SIN-TH: sin a � sin B ¼ sin b � sin A:
(iii) ANALOGUE FORMULAE:

Fig. 2.2.4

Fig. 2.2.3
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sin a � cos C ¼ cos c � sin b� sin c � cos b � cos A

sin a � cos B ¼ cos b � sin c� sin b � cos c � cos A

(see Sect. 4.2) [7, 41, 42]
First let us consider the problem of calculating the azimuth Zn and altitude a when

the declination d, local hour angle t, and the latitude of u of the observer are known.
Solution:

Application of the COS-TH. to Fig. 2.2.5b yields:

(1) (i) sin a ¼ sinu � sin dþ cosu � cos d � cos t
Application of the SIN-TH. yields:

(ii) cos a � sin AZ ¼ cos d � sin t
Application of ANALOGUE FORMULA yields:

(iii) cos a � cos AZ ¼ sin d � cosu� cos d � sinu � cos t
Here we have also used z = 90° − a, �d ¼ 90� � d, and �u ¼ 90� � u.

Furthermore, we have used Az = Zn if Zn � 180�, and Az = 360° − Zn if Zn � 180�.
Now, let’s consider the problem of finding the declination d and the local hour

angle t when Zn, a, and u are given.
Solution:
Application of the COS-TH. yields:

(2) (i) sin d ¼ sinu � sin aþ cosu � cos a � cosAz

Application of the SIN-TH. yields:

(ii) cos d � sin t ¼ cos a � sinAZ

Application of the ANALOGUE FORMULA yields:
(iii) cos d � cos t ¼ sin a � cosu� cos a � sinu � cosAz:

In addition to those two coordinate systems, we still require a third one (the
Ecliptic Coordinate System) in order to deal with the celestial mechanics of position
astronomy. Therefore we need to introduce the pole K of the ecliptic as the
intersection of the straight line that passes through the center of the sun and is
perpendicular to the ecliptic with the celestial sphere (see Fig. 2.2.6a).

Fig. 2.2.5
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The ecliptic coordinates k and b are then defined as follows:

(i) Ecliptic Longitude k = length of arc on the ecliptic between the point of Aries
♈ and the intersection of the great-circle that passes through K and SP with
the ecliptic.

(ii) Ecliptic Latitude b = length of arc on the great-circle that passes through K
and SP between SP and the intersection of this great-circle with the ecliptic.

By identifying the elements of the triangle KP̂SP (see Fig. 2.2.6b), we may
apply the FE of spherical trigonometry to this triangle to obtain the equations for k
and b for given values of RA and d.

e = Obliquity of Ecliptic
a1 ¼ 90� � k
a2 ¼ 90� þRA

Fig. 2.2.6a

Fig. 2.2.6b
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(3) (i) sin b ¼ sin d � cos e� cos d � sin e � sin RA
(ii) cos b � cos k ¼ cos d � cos RA
(iii) cos b � sin k ¼ sin d � sin eþ cos d � cos e � sin RA

By applying the FE of spherical trigonometry once more to the triangle above,
but by starting with a different side of it, we find the formulae for calculating the
RA, and d for given values of k and b as follows:

(4) (i) sin d ¼ cos e � sinbþ sin e � cos b � sin k
(ii) cos d � cos RA ¼ cos b � cos k
(iii) cos d � sin RA ¼ � sin b � sin eþ cos b � cos e � sin k

At this point, readers will probably ask themselves why we need three equations
for only two unknowns? The equations under consideration are transcendental ones.
In all these cases, we obtain more than one possible solution as the example of a
simple quadratic equation which has two solutions, in general, demonstrates.
Therefore, in order to eliminate the ambiguity in such transcendental equations, we
will need more equations than unknowns and, perhaps, some other additional
information.

In Chap. 4 we will take a closer look at the problem of the branches of the
multi-valued functions sin−1x, cos−1x, and tan−1x. However, here, we need to state
the results for the most frequently encountered multi-valued functions, sin−1x,
cos−1x, without elaborating on their derivations.

In accordance with the results of Chap. 4, the branches of said functions as
follows:

(5) (i) First Branches

sin�1 x ¼ sin�1 xj j; if 0� x� 1

� sin�1 xj j; if � 1� x� 0

(

cos�1 x ¼ cos�1 xj j; if 0� x� 1

90� þ sin�1 xj j; if � 1� x� 0

�
(ii) Second Branches

sin�1 x ¼ 90� þ cos�1 xj j; if 0� x� 1

� 90� þ cos�1 xj jð Þ; if � 1� x� 0

�
cos�1 x ¼ � cos�1 xj j; if 0� x� 1

� 90� þ sin�1 xj j� �
; if � 1� x� 0

(

(Note: The functions sin−1ǀxǀ and cos−1ǀxǀ as provided on calculators are referred
to as the Main Branches of said functions.)
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2.3 Conclusions and Numerical Examples

In the previous section, I laid down the foundations for solving the actual task of
determining the position of an observer by computation. In this sections I shall
address the problems associated with the ambiguities inherent in solving the tran-
scendental equations related to the navigational triangle.

Lets us consider two typical examples to demonstrate the problem of eliminating
the ambiguities in the computations by means of employing all three equations in
1, 2 (Sect. 2.2), and by using the branches of the multi-valued trigonometric
functions sin−1x and cos−1x.

Example 1 Given the latitude u = 38°, zenith distance z = 70°, and the true
azimuth

Zn = 60°. Find the declination d and local hour angle (LHA).

Solution:

Application of formula 2(i), Sect. 2.2 yields:

sin d ¼ sin 38 � sin 20þ cos 38 � cos 20 � cos 60
¼ 0:210568626þ 0:370243945 ¼ 0:580812571. . .hence

d ¼ sin�1 0:580812571 ¼ 35�:50771487. . .
and since 0 < d < 90° no ambiguity occurs.
Next by applying formula 2(ii) we find that:

sin t ¼ cos 20 � sin 60
cos 35:50771487

¼ 0:999705617 and therefore in accordance with for-

mulae (5) we find that:

t ¼ 88�:6097124
90� þ 1:390287598 ¼ 91�:3902876

�
Here we encounter an ambiguity. Therefore, we apply formula 2(iii) to obtain:

cos t ¼ sin 20 � cos 38� cos 20 � sin 38 � cos 60ð Þ
cos 35:50771487

¼ �0:024262674. . . hence

t ¼ cos�1 �0:024262674ð Þ:
By employing formulae (5), we find that:

t ¼ 90� þ 1:390285248 ¼ 91:39028525
�91�:39028525

�
But since t > 0, it follows that: t = 91°.39028525
Therefore LHA = 268°.609714 because the CO lies to the East of the observer.
(Note this example relates directly to the identification of stars.)
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Next, suppose the declination of a CO is known and the latitude of the observer
is also known. We would now like to find the CO’s position in the local sky at an
instant when its local hour angle is prescribed. (This problem is directly related to
the situation where the navigator is preparing to take sextant sights.)

The following example explains how the formulae of Sect. 2.2 are applied in
order to solve the above problem.

Example 2 Here are the givens—declination d = 35°.50771487; latitude u = 38°;
and the local hour angle LHA = 268°.6097148. The problem is now to find the
altitude a and the azimuth Zn of this CO in the local sky.

Solution:

First recall that the t = 360° − LHA = 91°039028525.
Then by applying formula 1(i), Sect. 2.2, we find that:
sin a ¼ sin 38 � sin 35:50771487þ cos 38 � cos 35:50771487 � cos 91:39028525

¼ 0:342020142; and hence. . .

a ¼ sin�1 0:342020142 ffi 20�

Again, we do not have an ambiguity since 0 < a < 90°.
Next we apply formula 1(ii) to find Az by…

sin Az ¼ cos 35:50771487 � sin 91:39028525ð Þ
cos 20

¼ 0:866025413 and therefore

Az ¼ 60�

120�

�
in accordance with formulae (5).

Here again, we encounter an ambiguity and therefore proceed to use formula 1(iii)
thereby finding:

cosAz ¼ sin 35:50771487 � cos 38� cos 35:50771487 � sin 38 � cos 91:39028525ð Þ
cos 20

¼ 0:499999. . . ¼ 0:5 and therefore…

Az = cos−1 0.5 and in accordance with formulae (5) we find that …

Az ¼ 60�

�60�

�
Therefore, we conclude that Zn = Az = 60°.

In the next section we shall solve the exact navigational task of determining the
position of the observer by observing the altitude of two or more distinct celestial
objects simultaneously or at distinct instants, or by observing the altitude of one of
the COs at distinct instants. I will provide the necessary formulae for determining
the position of the observer when altitude and azimuth are known. Furthermore, we
shall also solve the problem associated with the movement of the vessel between
the taking of the sights at distinct instants.

Of key importance for the navigator is that the formulae provided in the sub-
sequent section do not assume that the observer has prior knowledge of an assumed
or an approximate position and therefore, the formulae are the only means of
determining the position without dead reckoning. Later, I will also derive methods
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of determining approximate positions when an estimate of the true position is
available.

It should be clearly understood that the latter is quite different from the problem
of determining the exact position by two observations. Although it is highly
improbable that the navigator has lost orientation completely, the need for another,
independent navigational system still exists.

It should be stressed that ambiguity in calculations of the aforementioned type
can be easily resolved by the method of quadrant orientation as explained in detail
in the next section. Therefore, it is imperative that the users of the formulae pro-
vided herein are familiar with the underlying definition of azimuth and make the
necessary adjustments in all relevant formulae in case they use a different definition
for azimuth.

Finally, I will make an attempt to throw some more light on the limitations of the
standard approximation method (Sumner’s Method), since no error analysis seems
to exist.

2.4 The Use of the Exact Equations6 for Finding
the Position at Sea or Air by Employing Two or More
Altitude Measurements Together
with the Corresponding Measurements of Time

In the previous sections, I have clearly made the distinction between finding an
observer’s position without prior knowledge of an approximate position and the
problem of merely improving on a given or assumed position. However, the real
importance of finding one’s position without the knowledge of an approximate
position lies in obtaining another independent system of navigation. So far, we have
only addressed the independent navigational system based on Dead Reckoning, like
Rhumb-Line and great-circle navigation.

From the mathematical point of view, the problem of finding the exact solution
consists in finding the two points of intersection of the two circles of equal altitude
on the celestial sphere and then eliminating one point as impossible by means of the
orientation of the observer relative to the celestial object (see Fig. 2.4.1).

Although there is always more than one method for solving a given problem, I
am going to use here the method based on splicing two navigational triangles
together (see Fig. 2.4.2).

Another method consists in using the two equations for constant zenith distances
and then solving those transcendental equations for their common points of inter-
section. (We will examine this approach when discussing some approximate
methods in the next section.)

6Note that the Exact Equation does not necessarily mean exact physical solution—See appendix
in this section.
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By referring to Fig. 2.4.1, we encounter the two spherical triangles PŜ1Z and
PŜ2Z already spliced together. By having spliced these two triangles together, we
have created two more triangles, namely, PŜ1S2 and S1ẐS2 (see Fig. 2.4.3).

As will be shown shortly, the solutionsu and t1 will depend on the configuration and
certain combinations of the two auxiliary angles, a1 and a2. Therefore, it will be
imperative to employ the orientation of the observerZ relative to the two celestial objects
S1 and S2. (Note—S1 can be the same object but viewed at a different instant than S2.)

To simplify matters, we will always assume (without loss of generality) that S1 is
always situated to the left of S2, i.e., GHA (S1) > GHA (S2).

Then referring to the four quadrants I to IV (see Fig. 2.4.4), we can set up our
orientation scheme (see Figs. 2.4.5a–2.4.7d).

Accordingly, there are 16 − 4 = 12 relevant combinations possible. We have
eliminated four combinations by the requirement GHA (S1) � GHA (S2).
However, in the actual calculations we will only have to distinguish between the
two combinations:

Fig. 2.4.1

Fig. 2.4.2
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a ¼ a1 þ a2, and a ¼ a1 � a2. [26]

Later, I shall provide a simple box diagram for finding a by simply referring to the
relative positions of S1 and S2 in the respective quadrant. Since the observer has to
orientate him or herself with respect to True North, we shall again adopt the concept
of the true azimuth Zn, measured clockwise from N ! E ! S ! W ! N, i.e., we
define

(1) Zn ¼
AZ if AZ is East

360� � AZ if AZ is West

(
. Next let us carry out a detailed case study of

those twelve cases under consideration:

(Note that Fig. 2.4.5a–d. depict the cases where the observer, when facing north, is
viewing S1 to the left (west) and S2 to the right (east). Similarly, Fig. 2.4.6a–d.
depict the cases where the observer is viewing S1 and S2 to his left (west); and
Fig. 2.4.7a–d. the cases where S1 and S2 are seen to his right (east)—always
recalling that GHA (S1) � GHA (S2).

(It should also be noted that a, the crucial variable in our calculations, is actually
the PARALLACTIC Angle a in our navigational triangle PŜZ (see Fig. 2.4.2 of this
section). The angles a1 and a2 are only auxiliary parameters as is the variable (d).

With reference to our quadrant oriented diagram (see Fig. 2.4.4), we can now
schematically summarize the results depicted by Figs. 2.4.5a–2.4.7d as follows:

Fig. 2.4.3

Fig. 2.4.4
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S1 IV III II I S2
IV a1 + a2 a1 + a2 XXXXXXX XXXXXXX IV

III a1 − a2 a1 − a2 XXXXXXX XXXXXXX III

II a1 − a2 a1 − a2 a2 − a1 a2 − a1 II

I a1 + a2 a1 + a2 a2 − a1 a2 − a1 I

(Note that the combinations (IV,I), (IV,II), (III, I), and (III, II) do not appear
because the conditions that GHA S1 (T1) > GHA S2 (T1), if not—see appendix of
this section.7)

In order to calculate the longitude k of the observer, we require the hour angle t—
see Fig. 2.4.2. It can easily be shown that, independent of the relative position of the
observer with reference to the Greenwich Meridian, the longitude is given by:

S1 ϵ NW (IV),  S2 ϵ NE (I) S1 ϵ SW (III),  S2 ϵ SE (II)

1nZ ≥ 270°,   2nZ ≤ 90° ≤ 1nZ ≤ 270°,   90° ≤ 2nZ ≤  180°
α = α1 + α2 α = α1 - α2 

S1 ϵ NW (IV),  S2 ϵ SE (II)       S1 ϵ SW (III),  S2 ϵ NE (I)

1nZ ≥ 270°,  90° < 2nZ ≤ 180° 1nZ ≤ 270°,   2nZ ≤  90°
α = α1 - α2 α = α1 + α2 

180° < 

180°

(a) (b)

(c) (d)

Fig. 2.4.5

7In all cases T1 6¼ T2, Figs. 2.4.5a–2.4.7d depict the position of S1 at T1 and S2 at T2.
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(2) k ¼ t1 � GHAðS1Þ if S1 is West of the observer
�t1 þGHAðS1Þ if S1 is East of the observer

�
We still need the angle subtended by S1 and S2 at the pole P, namely DS defined

by:

(3) DS ¼ GHA S1 � GHA S2, valid in general.

In all cases where the altitudes a1 and a2 are measured simultaneously we simply
have:

(4) DS ¼ SHA S1ð Þ � SHA S2ð Þ, valid if S1 and S2 are stars.

Since it is not always possible or practical to measure the required altitudes at the
same instant, we require Eq. (3). In cases where GHA S1 is measured at time T1 and
GHA S2 at time T2 < T1, we like to reduce our calculations to the common time T1

without employing approximations that are only valid for very short differences in
time, like 4 min or less.

              S1 ϵ NW (IV),  S2 ϵ SW (III)                                   S1 ϵ NW (IV),  S2 ϵ NW (IV)               

1nZ ≥ 270°,  2nZ ≥ 180°                                          1nZ ≥ 270°,   2nZ > 270° 

α = α1 - α2 α = α1 + α2

              S1 ϵ SW (III),  S2 ϵ NW (IV)                                     S1 ϵ SW (III),  S2 ϵ SW (III)   
            180° < 1nZ < 270°,  2nZ ≥ 270°                    180° ≤ 1nZ < 270°,  2nZ < 270° 

α = α1 + α2 α = α1 - α2 

(a) (b)

(c) (d)

Fig. 2.4.6
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It should be clear that we measure the time with our UTC chronometer. The
corresponding time difference in Sidereal hours is therefore given by:

(5) DTs = (T1 − T2) � 1.002737962. Therefore and in general, we have:
(6) DS = SHA S1 (T1) − SHA S2 (T2) + (T1 − T2) � 1.002737962 � 15°.

However, in some applications, the use of a common time that is based on an
averaging process of successive altitude measurements often eliminates the need for
the use of two distinct time observations.

Next, we still have to consider the important case where the observer (vessel or
airplane) is moving between the two sights. In this particular situation, we will have
to calculate the new position Z′ of the observer and therefore calculate the new
zenith distance z′2. However, all the other calculations remain the same once z2 is
replaced by z′2.

The computation of z′2 is based on the additional triangle Figs. 2.4.8 and 2.4.9,
respectively, and requires the knowledge of direction (course) C and distance
traveled, as well as the azimuth Zn of S2, as observed at the time T2 when z2 is being
measured.

                S1 ϵ SE (II),  S2 ϵ NE (I)                            S1 ϵ SE (II),  S2 ϵ SE (II)                      

1nZ ≤ 180°, 2nZ ≤ 180°                             1nZ > 90°,   2nZ ≥ 90°
α = α2 - α1 α = α2 - α1 

                S1 ϵ NE (I),  S2 ϵ SE (II)                                  S1 ϵ NE (I),  S2 ϵ NE (I)                      

1nZ ≤ 90°,  2nZ ≥ 180° 1nZ ≤ 90°,   2nZ ≤ 90°

α = α2 - α1 α = α2 - α1 

(a) (b)

(c) (d)

Fig. 2.4.7
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Note that �d1 is determined at T1 and �d2 at T2, T1 > T2; also z1 is measured at T1 and
z2 at T2. Furthermore, Zn2 is also measured at T2. Therefore, the necessary parameters
used are z1 and z′2. Since Zn2 − C is known and vDT is also known, z′2 can be
computed easily by employing the COS-TH. of spherical trigonometry and obtaining:

(7) cos z02 ¼ cos vDT=60 � cos z2 þ sin vDT=60 � sin z2 � cos Zn2 � Cð Þ, or
a02 ¼ sin�1 cos vDT=60 � sin a2 þ sin vDT=60 � cos a2 � cos Zn2 � Cð Þð Þ;
since z = 90° − a.
It should be obvious that the proportions of the triangle Z~S2Z0 are highly

exaggerated for reasons of clarity, for in real dimensions the arc extending from Z
to Z′ is relatively small in comparison to z2 and, therefore, also very small in
comparison to z′2. Because of this, Fig. 2.4.9 suggests an approximation, namely
the spherical triangle.

ZÔ
0
Z0’ by the plane triangle ZÔ

0
Z 0 with angles c, 90° and b given by:

c ¼ Zn2 � Cð Þ � 90� and b ¼ 180� � Zn2 � Cð Þ—see Fig. 2.4.10 where
�Dz2 ffi Dz2, for sufficiently values of vDT.
The application of the SIN-TH. of plane trigonometry yields:
sin c=Dz2 ¼ 1=vDT or

Fig. 2.4.8

v v knots 
T = T1 - T2 hours 

C = Course degrees 

2nZ = Azimuth of S2 degrees. 

Fig. 2.4.9
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Dz2 ¼ vDT sin c ¼ � cosðZn2 � CÞ � vDT, since sin c ¼ � cos Zn2 � Cð Þ, hence:

(8) a02 ffi a2 þ cos Zn2 � Cð Þ � vDT=60:
We now return to the task of finding the latitude u and the longitude k as defined

by the spherical triangles PŜ1Z and PẐ S2 (see Fig. 2.4.2). As has already been
pointed out, the solution of this problem is based on the calculation of the paral-
lactic angle a, depicted in Fig. 2.4.2. In particular, we first calculate the interstellar
distance d by employing:

cos d ¼ sin d1 � sin d2 þ cos d1 � cos d2 � cosDS, where DS is given by ex-
pression (6). Hence:

(9) d = cos−1 (sin d1 � sin d2 + cos d1 � cos d2 � cos DS),8 0 � d � 180°.

Next we calculate by employing again the COS-TH. to obtain:

(10) a1 ¼ cos�1 sin d2 � sin d1 � cos d
cos d1 � sin d

� �
with cos d1 � sin d 6¼ 0, and

0 � a1 � 180°.

Similarly we obtain a2 by applying the COS-TH. to the triangle S1ẐS2 (see
Fig. 2.4.3) as:

(11) a2 ¼ cos�1 sin a02 � cos d � sin a1
cos a1 � sin d

� �
¼ cos�1 Xa, 0� a1\90�,

0� a2 � 180�, and a02 (given by formula (8)).

By employing the combinations provided by the box-diagram (see Fig. 5), we find:

(12) a ¼
a1 þ a2 ifðIV; IVÞ; ðIV; IÞ; ðIII; IVÞ; ðIII; IÞ; ðS1; S2Þ
a1 � a2 ifðIV; IIIÞ; ðIV; IIÞ; ðIII; IIIÞ; ðIII; IIÞ
a2 � a if(II; II); ðII; IÞ; ðI; IIÞ; ðI; IÞ

8<:
(Note that we actually only have to consider the first two cases in (12), i.e., only
a = a1 ± a2 since the third one does not give rise to a different value for cos a.)

Fig. 2.4.10

8To eliminate any ambiguity one must apply formulae (5) Sect. 2.2. rigorously which, in turn,
makes it necessary to determine the sign and absolute value of he argument of cos−1 X to assure
that ǀXǀ � 1. (See appendix this section.) In addition, it is also necessary that the selected results
meet all the criteria of the quadrant orientation diagram. The latter eliminates all the guess work.
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Again the application of the COS-TH. to the navigational triangle PŜ1Z
(see Fig. 2.4.2) yields:

(13) u ¼ 90� � cos�1ðsin d1 � sin a1 þ cos d1 � cos a1 � cos aÞ ¼ 90� � cos�1 Xu,
with �90�\u\90�

Finally, we calculate t1 by employing the SIN-TH. and obtain:

sin t1 ¼ cos a1 � sin a
cosu

, −90° < u < 90°, and hence:

(14)

t1 ¼ sin�1 cos a1 � sina
cosu

� �
¼ cos�1 sin a1 � sin d1 � sinu

cos d1 cosu

� �
¼ cos�1 Xk,

with 0 � t1 � 180°, and by employing formula (2) we find k.
It should be noted that this procedure for determining the exact solution for the

fundamental navigation problem involves only five trigonometric expressions,
namely, (9)–(14) and does not require the plotting of any LOPs. It also involves the
same number of trigonometric expressions that have to be evaluated if the navigator
chooses to use the approximation of Celestial Navigation based on DR and/or
assumed position as well as on the use of other plotting techniques.

Of course, the exact solution of the physical problem provided by the afore-
mentioned formulae is contingent upon the lack of errors in the data used. In
general, all data provided by physical instruments such as sextants, chronometers,
barometers and thermometers, is bound to be erroneous to some degree. There may
also be personal errors and/or errors that have entered into the ephemeral data.
These errors will become obvious once the navigator employs data from obser-
vations of more than two celestial objects. However, irrespective of the magnitude
of those errors (which enter ALL approximate methods of celestial navigation), the
exact method presented here will always be superior to any non-exact method.

Regarding the mathematical procedures for minimizing the error in the evalu-
ation of multi-body observations, please refer to Sect. 3.5.

Now, let’s turn our attention to another method for calculating the exact solution
to the physical problem. This method is based on finding the intersection of two
circles of equal altitude by an iterative process.

Look again at Figs. 2.4.1 and 2.4.2 and evaluate the altitudes of the two triangles
of equal altitude. The application of the COS-TH. readily yields:

(16) (a) sin a1 ¼ sin d1 � sinuþ cos d1 � cosu � cosðkþGHA S1Þ
(b) sin a2 ¼ sin d2 � sinuþ cos d2 � cosu � cosðkþGHA S2Þ

These two equations, (16a) and (16b), constitute a transcendental system of
equations for the latitude u and the longitude k and can be solved by numerical
methods as outlined in the appendix of this chapter. Actually we can eliminate the
unknown k and obtain a single equation for u representing the root of a nonlinear
equation. In particular from (16a) we deduce under the assumption that cos d1;2 �
cosu 6¼ 0 that: [44]
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(17) k = −GHA (S1) ± cos−1 (sin a1�sin d1� sin u
cos d1� cosu ) =

−GHA (S2) ± cos−1 (sin a2 � sin d2� sinu
cos d2� cosu ), where the plus sign stands if the object S1

or S2 lies West of the observer and the minus sign holds if the object is East of the
observer.

If we define:

(18) f (u) = ± cos−1 (sin a1 � sin d1� sinu
cos d1� cosu ) − (GHA (S1) - GHA (S2)) −

[ ±cos−1 (sin a2 � sin d2� sinu
cos d21� cosu )], then the latitude u is merely a root of the equation

f(u) = 0 and can be found by employing a convergent iterative method (as found in
a subsequent chapter). [18]

Another very important aspect of solving the system (16) is that it suggests an
approximation which will turn out to be very similar to and perhaps superior to
Sumner’s two lines of position method.

Let us once more interpret Eq. (17) by defining a function of g(u) by the first
right hand expression, and another function h(u) by the second right hand side
expression so that (17) reads as follows:

(19) k = g(u) = h(u).

Then the equations k ¼ gðuÞ and k ¼ hðuÞ are two functional equations each
representing a circle of equal altitude about S1 and S2, respectively. Now, if we plot
the graphs of these two functions in the vicinity of the root of
fðuÞ ¼ gðuÞ � hðuÞ ¼ 0, these graphs represent the arcs of the two circles of equal
altitude in the vicinity of the points of intersection of these circles. It follows then
that if u1 lies sufficiently close to the actual solution of fðuÞ ¼ 0, we may expand
g(u) and h(u) in a Taylor series about u1, and by neglecting terms of higher than
first order derivatives, obtain the two linear equations:

gðuÞ ffi gðu1Þþ g0ðuÞ � u� u1ð Þþ � � �
hðuÞ ffi hðu1Þþ h0ðuÞ � u� u1ð Þþ � � �

However, because of the complexity in evaluating the derivatives of g(u) and
h(u), we choose to approximate these derivatives by difference quotians and arrive
at the two linear equations:

(20)
kð1Þ ¼ gðu1Þþ

gðu2Þ � gðu1Þ
u2 � u1

� u� u1ð Þ : Lð1Þ

kð2Þ ¼ hðu1Þþ
hðu2Þ � hðu1Þ

u2 � u1
� u� u1ð Þ : Lð2Þ

The additional value of u2 used in formulae (20) represents another initial
approximation to u and is supposed to be very close to u1. Then the intersection of
L(1) and L(2) defined by (20) constitutes another (and hopefully better) approxi-
mation to u than u1 and u2. Like in the case of other approximations, the

2.4 The Use of the Exact Equations for Finding … 53



intersection of the two lines of position does not, in general, lie on any of the two
circles of equal altitude and is not an exact solution.

In an upcoming section, I will specifically discuss approximate methods and will
show how the Eq. (20) can be used to generate a sequence {u1} of successive
approximations that will converge to the solution of u of Eq. (18) provided that u1

and u2 satisfy certain conditions. [18]
In the next section I shall apply the results of this section to some concrete

solutions for which I will provide numerical solutions together with some con-
clusions. In addition, I will also restate all the necessary formulae in logical
sequence.

Appendix One

Limitations
On the limitations of the applications of formulae (9)–(14)

The problem associated with the numerical evaluations of the aforementioned
expressions basically consists in avoiding critical numerical values for the param-
eters for which a numerical solution cannot be found by means of using a specific
calculator or computer—ILL CONDITIONED CASES.

In particular, the expressions cos�1 Xa, cos�1 Xu, and cos�1 Xk require that the
arguments of the multi-valued function cos�1 X are all bounded away from one, i.e.,
that Xj j\1, since for all Xj j[ 1, cos�1 X does not exist.

Should any of those arguments equate to a number greater than one, you may
conclude that your input data, as for instance, altitude, latitude or any of the
ephemeral data is erroneous.

Mathematically speaking, in the case of Xj j[ 1 this translates into saying,
“There does not exist a spherical triangle with sides a, b, c and angle A as pre-
scribed.” To make this statement very clear, consider a spherical triangle with sides
a, b, c and angle A opposite to a. Then the COS-TH. states:

cos a ¼ cos b � cos cþ sin b � sin c � cosA. . .

and it holds for any spherical triangle. However if we interpret the above equation
as an abstract algebraic equation, then for some arbitrarily chosen sets of values a,
b, c, it may not be possible to find a value for A that satisfies the equation. In order
to prove this obvious statement it suffices to merely provide on example for which
the above equation does not have a solution for A.

Example a = 75°, b = 15°, c = 45°. By substituting these values into the above
formula, we find that: cosA ¼ �2:317837252 which does not have a solution.
Therefore, in all cases where navigators use data that results in an absolute value of
the argument |X| of cos�1 X that is greater than one, they know that they are trying
to apply the laws of spherical trigonometry to something that is not a spherical
triangle.
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Appendix Two

Error Analysis
Since the exact formulae of Astro Navigation (9)–(14) are analytic expressions

based on analytic functions, a quantitative error analysis can be provided.9 The
latter is not available for plotting techniques still used by many navigators therefore
those techniques must be classified as non-analytic methods.

As has been pointed out already, the criteria for all the above formulae are that
the absolute values of the arguments of cos�1 X must be less than one, if not, the
introduced values of the parameters are “blunders”. It therefore appears that the key
to the successful numerical evaluation are exactly these quantities: Xa;Xu;Xk.

By considering the geometry of the triangles depicted in Figs. 2.4.5a–d. it is
clear that only sets of celestial objects (S1, S2) should be considered that satisfy the
following criteria:

(i) The azimuths should be bounded away from 180° and 360° and that they
should show a clear cut separation. This also applies to the case where S1,
and S2 are the same object and observe at distinct times.

(ii) The altitudes a1 and a2 should be bounded away from 90°.
(iii) The declination d1 and d2 should also be bounded away from 90°.
(iv) The latitude of the observer must also be bounded away from ±90°.

Whenever (i)–(iv) are satisfied, we can expect to obtain variable results by
applying formulae (9)–(14) to obtain a “fix”. However, these criteria still do not
provide quantitative ones or any other quantitative assessment of the error. In order
to obtain analytic results and quantitative criteria, we must consider the changes of
the multi-valued function cos�1 X i.e., its derivative for all values of Xj j\1 in all
the relevant formulae (11), (13) and (14).

(Note that we don’t have to invoke formula (10) since according to our
hypothesis the ephemeral data is correct.)

Recalling from calculus that d
dx cos

�1 u ¼ 1ffiffiffiffiffiffiffiffiffi
1�u2

p � dudx, we can readily see that all

errors introduced by Da1 and Da2, i.e., by errors in the altitude, have a common

amplification factor 1� X2
� ��1=2

. In particular, we deduce that:

for Xa ¼ Xa a1;a2
� �

: DEa ffi Da2 ¼ � 1� X2
a

� ��1=2�gradXa � ~Da, where ~Da ¼
Da1;Da2ð Þ and gradXa ¼ dXa

da1
� dXa
da2

� 	
.

Similarly, we find that:

DEu ffi Du ¼ � 1� X2
u

� 	�1=2
�gradXu �~Da, with ~Da ¼ Da1;Da2ð Þ, and

DEk ffi Dk ¼ � 1� X2
k

� ��1=2�gradXk � ~Du, with ~Du ¼ Da1;Duð Þ

9This analysis is explicitly provided in Sect. 2.6.
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It follows then that the coefficient of amplifications of DEa is 1� X2
a

� ��1=2
, the

coefficient of amplification in DEa is 1� X2
a

� ��1=2� 1� X2
u

� 	�1=2
, and the coeffi-

cient of amplification of DEk is 1� X2
a

� ��1=2� 1� X2
u

� 	�1=2
�ð1� X2

kÞ�1=2

Therefore, the critical values in our computations are these coefficients of ampli-
fication, all of them to be bound away from ∞. Therefore, in order to minimize the
resulting errors, we must assure that all Xj j � 1.

Recalling that by definition—see formula (11)—

Xaj j ¼ sin a0
2 � sin a1� cosdð Þ
cos a0

1� sin d





 



 ¼ cos a2j j so that the condition |Xa| � 1 implies that

a2 	 0,10 and a2 � 180°, and therefore that the West-East orientation of S1–S2
should be such that Z, the observer’s position, does not lie on the great-circle
connecting S1 and S2.

According to formula (13) we have—
Xu



 

 ¼ sin d1 � sin a1 þ cos d1 � cos a1 � cos aj j ¼ sinuj j, hence Xu



 

� 1
implies that u � 90°, i.e. that high latitude observations should be avoided, if
possible.

Looking at formula (14), we deduce—

Xkj j ¼ sin a1 � sin d1� sinuð Þ
cos d1� cosu




 


 ¼ cos t1j j which implies that t1 should sat-

isfy 0 � t1 � 180�, i.e., very small and large local hour angles should be
avoided.

Although we could have deduced some of the more obvious results merely by
knowing the behavior of the multi-valued function cos�1 X in the vicinity of the
point Xj j ¼ 1, we would not have been able to readily see that in the case of the
error in u, the product of the two amplification factors enters the magnitude of the
resulting error, and in the case of Dk, the product of all three amplification factors
enters the magnitude of the resulting error.

In conclusion, the recommended procedure for the application of the exact
formulae (9)–(14) should be to select the COs in compliance with the criteria
established in this part of the appendix. Furthermore, it is always necessary to check
the magnitude of all three values of X to make sure that Xj j\1 is indeed satisfied. If
not, the user of these formulae will probably have “blunder” in his or her data. It is
also imperative that the correct branch for cos�1 X is to be selected, thereby
eliminating the remaining ambiguities (see formulae (5), Sect. 2.2).

10In all cases where GHA S1(T1) < GHA S2(T2), the parallactic angle a becomes the angle at S2.
By considering again all twelve relevant cases, we can again set up a box-diagram denoted by (S1,
S2) = (S2, S1), and thereby reducing those cases to the previous ones. Example: (II, III) = (III, II).
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Appendix Three

Analytic Derivation of Formula (8)
The correction for the observed altitude (as a result of the motion of the vessel as

given in this section) can be derived analytically from the exact equation:

sin H0
0 ¼ sin H0 � cosDt � v=60þ cosH0 � sinDt � v=60 � cosðC� ZnÞ;

by assuming that the quantities of Dt � v=60, and DH0 ¼ H0
0 � H0, are sufficiently

small relative to all the other components in those equations.
For by approximating sinDH0 by DH0 � sin l0, and cosDH0 by 1; sinDt � v=60

by Dt � v=60 � sin l0; and cosDt � v=60 by 1, the above equation can be reduced to:
sin H0

0 ¼ sin H0 þDt � v=60 � cosH0 � cosðC� ZnÞ � sin l0:
Similarly we deduce that:
sin H0

0 ¼ sinðH0 þDH0Þ ¼ sin H0 þ cosH0 � DH0 � sin l0, and therefore:
DH0 ¼ Dt � v=60 � cosðC� ZnÞ, as was to be shown.
IN ORDER FOR THE READER TO USE THIS BOOK AS A MANUAL,

AN ALGORITHM SPECIFICALLY FOR THIS SECTION HAS BEEN
INCLUDED.

ALGORITHM A

FOR CALCULATING THE EXACT POSITION WHEN TWO ALTITUDE
MEASUREMENTS ARE AVAILABLE—EITHER TWO DISTINCT COs
OR ONE AT DISTINCT TIMES.

Definitions:

SHA(S1): Sidereal Hour Angle of S1
SHA(S2): Sidereal Hour Angle of S2
T1 : UTC of observation of S1
T2 : UTC of observation of S2
d1: Declination of S1
d2: Declination of S2
d: Interstellar distance between S1 and S2

Zn: Azimuth of S2 at T2

C: Course of vessel
v: Speed of vessel
a1: True altitude of S1 at T1 � T2

a2: True altitude of S2 at T2

a′2: Corrected altitude of a2
u: Latitude of vessel at T1

k: Longitude of vessel at T1

1. Select two COs or only one at distinct instants in accordance with the criteria
and recommendations of Sect. 2.4. Note: S1 always lies to the West of S2.

2. Calculate:
(i) DS ¼ SHAðS1Þ � SHAðS2ÞþDT � 1:002737962 � 15�; DT ¼ T1 � T2

=
(Note that SHA (S1) � SHA (S2).)
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3. Calculate:
(ii) Xd ¼ sin d1 � sin d2 þ cos d1 � cos d2 � cosDS:
=
If Xdj j � 1, proceed to step 4. If Xdj j[ 1—STOP—Remove blunder.

4. Calculate:
(iii) d ¼ cos�1 Xd, 0� d� 180� by employing

(iii′) cos�1 X ¼ cos�1 Xj j if 0�X� 1
90� þ sin�1 Xj j if � 1�X� 0

�
or

cos�1 X ¼ � cos�1 Xj j if 0�X� l
�ð90� þ sin�1 Xj jÞ if � l�X� 0

�
=
Recall that cos�1 Xj j and sin�1 Xj j are the main branches that you have in your
calculator.

5. Calculate:

(iv) Xa1 ¼ sin d2�sin d1� cos d
cos d1� cos d

=
and check whether or not Xa1j j � 1 If yes, go to step 6. If not—STOP.

6. Calculate:
(v) a1 ¼ cos�1 Xa1, 0� a1 � 180� by employing formulae (iii′). Go to step 7.
=

7. Calculate:

(vi) a02 ¼
sin�1ðcos v � DT=60 � sin a2 þ sin vDT=60 � cos a2 � cosðZn � CÞÞ
a2 þ cosðZn � CÞvDT=60;DT ¼ T1 � T2:

(
or

=
(Note that the second expression is merely an approximation of the first. Also

note that expression (vi) is evaluated by employing the formula:

(vi′) sin�1 X ¼ sin�1 Xj j; if 0�X� 1

� sin�1 Xj j; if � 1�X� 0

(
or

sin�1 X ¼ 90� þ cos�1 Xj j; if 0�X� 1

� ð90� þ cos�1 Xj jÞ; if � 1�X� 0

(
=

8. Calculate:

(vii) Xa2 ¼ sin a0
2 � cos d � sin a1

cos a1� sin d . If Xa2j j � 1 proceed to step 9. If not—STOP.

=

9. Calculate:

(viii) a2 ¼ cos�1 Xa2 ; 0� a2 � 180� and proceed to step 10.
=
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10. Calculate:

(ix) a ¼
a1 þ a2if(IV; IV); ðIV; IÞ; ðIII; IVÞ; ðIII; IÞ

a1 � a2if(IV; III); ðIV; IIÞ; ðIII; IIIÞ; ðIII; IIÞ
a2 � a1if(II; II); ðII; IÞ; ðI; IIÞ; ðI; IÞ

8><>:
=
(Note that, for instance, (IV, I) means that S1 lies in quadrant IV and S1 lies in

quadrant I. “Zn” denotes that zenith of the observer.)

11. Calculate:

(x) Xu ¼ sin d1 � sin a1 þ cos d1 � cos a1 � cos a
If Xu



 

\1 proceed to step 12. If not—STOP—Remove blunder.
=

12. Calculate:

(xi) u0 ¼ 90� � cos�1 Xu;�90� �u� 90�

=

13. Calculate:

(xii) Xk ¼ sin a1�sin d1� sinu0
cos d1� cosu0 . If |Xk| � 1 then go to step 14. If not—STOP.

=

14. Calculate:

(xiii) t1 ¼ cos�1 Xk; 0� t1 � 180� by employing formulae (iii′) Go to step 15.
=

15. Calculate:

(xiv) k0 ¼ t1 � GHAðS1Þ; if S1 lies West of the observer
�ðt1 þGHAðS1ÞÞ; if S1 lies East of the observer

�

2.5 Conclusions and Numerical Examples

In the previous section, the navigator has been provided with all the relevant
formulae for finding the exact solution to the most important problem of astron-
avigation provided, of course, that the input data for those equations is exact.
However, “exact” data is seldom possible. Nevertheless, the exact formulae will
always give you superior results than any of those provided by “approximate”
methods. The errors introduced into the exact formulae will simply reflect the errors
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committed by the observer, errors in the auxiliary formulae and data, as well as
possible instrument errors and, perhaps, even errors in the ephemeral data.

By employing more than two celestial objects, the navigator is able to obtain
several solutions which can then be reduced by using the formulae of the Least
Mean Square Approximation to a most probable position. The derivations of these
individual solutions from the mean value can tell the navigator whether the data
used was adequate or not.

Aside from providing the necessary exact solution, the two equations, a and b of
Sect. 2.4 (16), independently solve the same problem which subsequently reduces
the problem of solving the system of transcendental equations to the simpler
problem of finding the roots of a single nonlinear equation (18).

Later, we will see how the iterative approximations obtained by employing the
“Regula Falsi” will graphically constitute the method of finding an approximate
solution by plotting two lines and determining their intersection. As opposed to
other methods based on the knowledge of an approximate position, this method will
actually converge to the exact solution provided that the two initial values for u
satisfy a simple condition.

It should be stressed here that there are only five trigonometric expressions in
Algorithm A for the exact solution as compared to six trigonometric expressions
required in the approximate LOP or Sumner’s Method—namely three trigono-
metric formulae for each CO in addition to the problem of plotting the LOPs
involved. [26, 27, 43]

Because of formulae (7) and (8), it is also necessary that the navigator measures
or computes the azimuth of S2 at T2. Although azimuth measurements are usually
difficult to perform on a moving vessel, it suffices here to use the same degree of
accuracy as in determining the course C since only the difference Zn − C enters the
calculations. Hopefully, the mutual errors will cancel themselves out. However, in
light of other applications, such as in identifying stars and planets and finding
latitude and longitude if altitude and azimuth are known, it is good practice to
measure or, at least, estimate the azimuth every time altitudes are observed.11

Let us now consider representatives of the most relevant cases of applications as
encountered in practical navigation:

The first kind of problems are encountered whenever the observer is stationary
and observes two or more celestial objects. In this case, the times of the observa-
tions may be simultaneous; less than five minutes apart; more than five minutes
apart; or, perhaps, hours apart.

The second kind of problems arise every time the navigator takes sights of one
CO, for instance the sun or the moon or the planets, but at distinct instants that are
hours apart.

The third kind of problems relate to a moving observer who observes two or
more COs at distinct times T1 and T2 more than just a few minutes apart while the

11See Sect. 2.6 for an explicit error analysis.
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vessel moves with a known velocity relative to the azimuth of the CO first
observed.

The four numerical examples considered here are typical representations of the
real problems encountered in navigation:

Example 1 Stationary observer with two stars observed at different times.12

Star S1: MARKAB.
Time of observation T1 = 4h 33m 16s UTC
Date: 11/20/08
SHA S1 = 13° 41′.7
d1 = 15° 15′.4 N
True Altitude a1 = 49° 14′.6
Star S2: FOMALHAUT
Time of observation T2 = 3h 17m 38s UTC
Date: 11/20/08
SHA S2 = 15° 27′.6
d2 = 29° 34′.6
True Altitude a2 = 31° 26′.1
The observer takes note that S1 and S2 both lie in quadrant (III), hence
(S1, S2) = (III, III).

Problem: Determine the unknown position of the observer Z = (k, u) at T1.
Solution: Step 2. DS = 17°.19517 by formula (1) of Algorithm A

Step 4. d = 47°.80470729 by formulae (2) and (3) of Algorithm A
Step 6. a1 = 159°.6937682 by formulae (4) and (5) of Algorithm A
Step 9. a2 = 88°.48872802 by formulae (7) and (8) of Algorithm A
Step 10. a = 71°.20004018 by formula (9) of Algorithm A
Step 12. u = 23°.718955 = 23° 43′.14 N by formulae (10) and (11) of

Algorithm A
Step 13. t1 = 42°.4587362 by formulae (12) and (13) of Algorithm A
Step 13′. GHA (S1) = GHA ♈ + SHA S1 = 141°.58333
Step 14. k = −99°.12462002 = 99°07′.47 W

Example 2

Observer stationary. Sun is observed at two distinct times. On 03/23/08 the Sun S2

 is observed at T2 = 19h 22m 42s UTC, and a true altitude a2 = 67° 34′.12 is
determined. The GHA (S2) and declination taken from the Nautical Almanac are
GHA (S2) = 109°08′ and d2 = 1°.4066 N.
On the same day, but at T1 = 21h 35m 16s UTC the sun 
 is again observed and
a1 = 52° 11′.01 is found. The GHA (S1) and declination also taken from the
Nautical Almanac are GHA (S1) = 142° 13′.70 and d1 = 1° 26′.60 N.

12Note that whenever SHA S1 < SHA S2, it is possible that GHA S1(T1) > GHA S2(T2)—check.
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The observer also observes that S2 lies in quadrant (II) and S1 in quadrant (III),
hence (S1, S2) = (III, II).

Problem: Find the position of Z ¼ ðk;uÞ of the observer at T1.

Solution: Step 2. DS = 33°.14833 by formula (1) of Algorithm A
Step 4. d = 33°.13780313 by formulae (2) and (3) of Algorithm A
Step 6. a1 = 89°.63762935 by formulae (4) and (5) of Algorithm A
Step 9. a2 = 38°.35325032 by formulae (7) and (8) of Algorithm A
Step 10. a = 51°.28437903 by formula (9) of Algorithm A
Step 12. u ¼ 23�:78241057 ¼ 23�460:94N by formulae (10) and (11) of

Algorithm A
Step 13. t1 ¼ 31�:52017 by formulae (12) and (13) of Algorithm A
Step 14. k ¼ �110�:70816 ¼ 110�420:5Wby formula (14) of AlgorithmA

Example 3 Observer moves between taking sights.

On 03/24/08 the navigator observes ARCTURUS (S2) at T2 = 7h 35m 16s UTC,
and determines the true altitude at a2 = 61° 18′.72. In addition the navigator
determines the azimuth Zn2 ¼ 94�, and course C = 277°. The approximate speed of
the yacht is v = 9.6 knots. According to the Nautical Almanac, the sidereal hour
angle and declination of ARCTURUS on this date are SHA (S2) = 145° 59′.0 and
d2 = 19° 08′.1. The Greenwich hour angle for Aries at T2 is GHA (♈) = 295°58′.1.
It has also been noted that S2 lies in quadrant (II).
On the same day, but at T1 = 10h0m20s UTC, the navigator observes DENEBOLA
(S1) and determines a1 = 49° 17′.36. The sidereal hour angle and declination are
also taken from the NA and are SHA (S1) = 182° 37′.3 and d1 = 14° 31′.41 N.
Furthermore, GHA (♈) = 332°28′.1 and S1 lies in quadrant (III). Hence (S1,
S2) = (III, II).

Problem: Find the position of Z′ = (k′, u′) of the yacht at T1.

Solution: Step 2. DS ¼ 73�00:3 by formula (1) of Algorithm A
Step 7′ DT ¼ T1 � T2 ¼ 2h:417777; v � DT=60 ¼ 0:386832 NM
Step 7 a02 ¼ 60�:92569232 by formula (6) of Algorithm A
Step 4. d ¼ 69�:54217967 by formulae (2) and (3) of Algorithm A
Step 6. a1 ¼ 74�:6466407 by formulae (4) and (5) of Algorithm A
Step 9. a2 ¼ 4�:696181632 by formulae (7) and (8) of Algorithm A
Step 10. a ¼ 69�:950459 by formula (9) of Algorithm A
Step 12. u0 ¼ 23�:98853014 ¼ 23�590:31N by formulae (10) and (11) of

Algorithm A.
Step 13. t1 ¼ 42�:11623535 by formulae (12) and (13) of Algorithm A
Step 14. k0 ¼ �112�:8404247 ¼ 112�500:43 W by formula (14) of
Algorithm A.
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Example 4 Date: 11/16/08

Time: T1 ¼ T2 ¼ 02h00m00sUTC:
Stars Observed:
S1: PEACOCK—SHA (S1) = 53°24′.7, d1 = −56° 42′.6, a1 = 44°
42′.6.
S2: ARCHENAR—SHA (S2) = 335° 28′.6, d2 = −57° 11′.5, a2 = 62°
59′.9.
GHA(♈)¼ 85�310:3. It has also been noted that S1 lies in quadrant
(III) and S2 lies in quadrant (II). Hence (S1, S2) = (III, II).

Problem: Find the position of the observer.

Solution: By following steps (1) through (14) we obtain the following results:
DS ¼ 77�:935
d ¼ 40�:1171
a1 ¼ 124�:6819
a2 ¼ 85�:1122
a ¼ a1 � a2 ¼ 39�:5687since ðS1; S2Þ ¼ ðIII; IIÞ.
Xu ¼ �0:287380549
u ¼ �16�:7011981
Xk ¼ 0:881255162
t1 ¼ 28�:20585451 and
k ¼ �110�:6274785, hence,
u ¼ 16�420:07 S and k ¼ 110�370:65W

In the next section we shall consider still another method for finding the exact
solution to the fundamental problem of astronavigation.

2.6 An Exact Method Based on Cartesian Coordinates
and Vector Representations

In the previous section we solved the exact navigational problem by solving a
system of two transcendental equations (Sect. 2.4, (16)) by using equations of
spherical trigonometry. Therefore, in order to avoid the problem of solving such
equations by this approach, we must employ a different tactic that is not based on
these formulae. Since this is indeed possible, the reader must wonder why I chose to
introduce iterative methods for solving transcendental equations when simpler
mathematical methods were available? The answer is simple. I wanted to show that
Sumner’s Method of celestial navigation was just an approximate method for
solving these transcendental equations.

In the appendix to Sect. 2.4, I introduced a brief introduction to vectors. In the
subsequent chapter, I showed that the fundamental equations of spherical
trigonometry could easily be derived by using elements of vector algebra.

2.5 Conclusions and Numerical Examples 63



Therefore, it should be obvious to deduce that vectors could also be used to directly
solve the exact fundamental problem of navigation thereby avoiding the use of
transcendental equations.

Going one step further, permitting the introduction of matrices, the navigator can
also solve the more general problem offinding an approximate position by observing
more than two celestial objects or one CO at more than two distinct instants.

The reader will discover that the exact method of calculating the position of the
observer based on vectors will prove itself superior to any approximate method because
it clearly shows when NO numerical solution for a given set of parameters can be
obtained. It also provides a straight forward error analysis for all exact methods. Such an
error analysis is still not available for the two LOP method of celestial navigation.

Ardent users of celestial navigation frequently argue that exact methods are not
superior to approximate methods because all exact methods, when applied to
erroneous data, yield only approximations to the true solution anyway. However,
this line of argument does not stand up to scrutiny since it does not take into
consideration that ALL solutions provided by approximate methods are subject to
the same errors as far as the input parameters are concerned. In addition, they are
erroneous by virtue of being only approximations to the true solution in the
mathematical sense.

The exact analytical methods always permit an analytic assessment of the error
introduced by inaccurate parameters and show when a numerical solution for a
given set of parameters does not exist. Approximate methods do not exhibit these
features and therefore must be considered to be of second rank.

Let us recall the vector representation~x of a point P in the Euclidean space E3 in
terms of its Cartesian coordinates x, y, z, namely:

~x ¼
x
y
z

0@ 1A with its length—NORM ~xj j ¼ x2 þ y2 þ z2ð Þ1=2 Also let us

recall the definition of the INNER PRODUCT of two vectors ~x1 �~x2 ¼
x1x2 þ y1y2 þ z1z2 where x1, y1, z1 are the components of~x1 and x2, y2, z2 are the
components of ~x2.

As can be shown easily (see Sect. 2.4), we then also have the expression:
~x1 �~x2 ¼ ~x1k k � ~x2k k � cos a, where a is the angle subtended by the vectors~x1;~x2—
see Fig. 2.6.1.

By definition we have chosen the representation of all the vectors under con-
sideration relative to the Cartesian Coordinate system (see Fig. 2.6.2). Here we
have made use of the three unit vectors~e1;~e2;~e3 which span the coordinate system

Fig. 2.6.1
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and are mutually perpendicular, i.e., ~e1k k ¼ ~e2k k ¼ ~e3k k ¼ 1 and
~e1 �~e2 ¼~e1 �~e3 ¼~e2 �~e3 ¼ 0

We also have the representation:

~e1 ¼
1

0

0

0B@
1CA~e2 ¼

0

1

0

0B@
1CA~e3 ¼

0

0

1

0B@
1CA In order to relate the Cartesian

Coordinates (x, y, z) to the polar coordinates, as used in astronomy and navigation,
we let~e1, i.e., the x-axis lie on the meridian plane passing through Greenwich and
we let the z-axis point toward the celestial north pole. Finally, for the sake of
convenience in the calculations, we measure the angle which ~x, together with its
projection onto the (x, y) plane, forms and the angle t which this projection forms
with the vector~e1, measured in the positive sense of the clock. Then this angle can
be identified as the Greenwich Hour Angle (GHA). The angle that x subtends with
its projection on to the (x, y) plane can now be identified as the declination of the
celestial object.

In the cases where~x represents the position vector of the observer, those angles
become the negative longitude and latitude, respectively.

Since all the points under consideration lie on the terrestrial sphere, we may
assume that all the corresponding vectors are unit vectors. As the common unit, we
use the length of the radius of the standard terrestrial sphere, so that 1 min of degree
corresponds to one Nautical Mile in length. We then have the following repre-
sentation of the position vector ~x of the observer:

(1) ~xk ¼
xk
yk
zk

0B@
1CA ¼

cos dk � cos GHAðSkÞ
� cos dk � sin GHAðSkÞ

sin dk

0B@
1CA; k ¼ 1. . .n:

~x ¼
x

y

z

0B@
1CA cosu � cos kj j

� cosu � sin kj j
sinu

0B@
1CA

Fig. 2.6.2
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Since the zenith distance of a celestial object is the acute angle subtended by the
position vector ~x and the position vector ~xk of the substellar point of Sk, we
conclude that:
~xk �~x ¼ cos 90� � H0;k

� � ¼ sin H0;k; k ¼ 1. . .n. Here “H0,k” denotes the true alti-
tude of Sk. By invoking the definition of the Inner Product, we conclude that

(2a) xkxþ ykyþ zkz ¼ sin H0;k; k ¼ 1. . .n, and also
(2b) x2 þ y2 þ z2 ¼ 1
Here, (2a) represents n-linear equations for three unknowns x, y, z, and (2b) is

the quadratic equation that assures that the computed position vector ~x lies on the
terrestrial sphere and not in the air or on the ocean.

Next let us consider the case which, in theory, always has a solution, i.e., the
case where n = 2. Here we have only the two observation values, HO,1, and HO,2 to
consider. According to the Eqs. (2a) and (2b), we have two linear and one quadratic
equation for the three unknowns, x, y, z available, provided that:

(2′) GHAðS1Þ 6¼ GHA S2ð Þ
GHA S2ð Þ � 180�

�
The problem defined by (2) always has a numerical solution, except in such

cases where all or some of the parameters are ICPs (Incompatible Parameters—also
see numerical example (3).

In order to solve the Eqs (2) explicitly, we first eliminate the term of zkz from
(2a) to obtain:

(2c) x1 � xþ y1 � y ¼ sin H0;1 � z1 � z
x2 � xþ y2 � y ¼ sin H0;2 � z2 � z
x2 þ y2 þ z2 ¼ 1

Next we define the quantity:
(3) D = x1 � y2 − x2 � y1, that actually turns out to be the determinant of the linear
system above for the components x and y in terms of z. It follows then that D 6¼ O,
for

D = O implies that x1
y2

¼ x2
y1
:

Substituting the corresponding values for the Cartesian coordinates according to
Eq. (1) into this equation, we conclude that:
tan GHA (S1) = tan GHA (S2), which implies that GHA (S1) = GHA (S2), or GHA
(S1) = GHA (S2) ± 180°, a contradiction to our hypotheses.

Therefore, it should be understood that the vanishing of the determinant D
implies that the two celestial objects S1 and S2 lie on the same hour circle, and
conversely, if the two objects lie on the same hour circle, it follows that D = 0, and
the above system (2c) does not have a solution.

Almost equally important is the case when D is different from, but very close to
zero. In all those cases, when the hour angles of S1 and S2 are close to each other—
just a few degrees or less apart—the result will be that D is close to zero, and we
then refer to the matrix corresponding to D to be ILL CONDITIONED. Whenever
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that occurs, the above method must fail for numerical reasons and it would be
necessary to employ computers of extremely high accuracy to obtain an acceptable
result. But even this approach may fail.

We also will encounter the same difficulties arising from ill conditioned matrices
when we deal with the Least-Square Approximations of the cases where n > 2.

The limitations arising from numerical computations are unavoidable and not
only because of round-off errors, but also due to the representation of all rational
and irrational numbers by a finite number of digits as employed in all computers.

At this point in our analysis, the reader may recall the limitations of the LOP
method as used in celestial navigation. Although there is no real error analysis
available for said method, it is very obvious that this method must fail whenever the
computed azimuths of the two COs are equal or almost equal, and also when the
computed azimuths differ markedly from the true azimuths.

Next, let us define the quantities:
h1 ¼ sin H0;1

(4) h2 = sin H0,2, then the unique solution of (2c) is given by:

x ¼ h1y2 � h2y1
D

þ z2y1 � z1y2
D

� z and y ¼ h2x1 � h1x2
D

þ z1x2 � z2x1
D

� z
If we now define the expression:

(5) a1 ¼ h1y2 � h2y1
D

; a2 ¼ h2x1 � h1x2
D

; b1 ¼ z2y1 � z1y2
D

; b2 ¼ z1x2 � z2x1
D

;

we may conclude that:
(6) x ¼ a1 þ b1z; and y ¼ a2 þ b2z:
Then in order to satisfy the third equation of (2c) we must have:

a21 + a22 � 1
� �þ 2 a1b1 þ a2b2ð Þz + b21 þ b22 þ 1

� �
z2 ¼ 0:

Again, let us define:

(7) A ¼ 2 a1b1 þa2b2ð Þ
b2

1 þb
2
2 þ 1

, and B ¼ a2
1 þa2

2�1

b2
1 þb

2
2 þ 1

, and conclude that z must satisfy the

quadratic equation: z2 + Az + B = 0, which, in general has two distinct solutions,
namely:

(8) z1;2 ¼ �A/2� A2 � 4B
� �1=2

2
. Although in theory A2 − 4B � 0, but in praxis it

can happen that the computed value of A2 − 4B < 0, which implies that incorrect
parameters are being used. Those incorrect values may include incorrect values for
H0,1 and H0,2, and, perhaps, GHA(S1) and GHA(S2), as well as round-off errors
which may have accumulated. Therefore, the quantity A2 − 4B serves as a filter for
excluding such blunder. Hence, the proper definition for blunder should be D = 0
and A2 − 4B < 0.

We still must eliminate the ambiguity due to the existence of two solutions given
by (8). This can be accomplished in all cases where (A2 − 4B)1/2 is significantly
different from zero. In the pathological case where z1 = z2 either the double root

z1;2 ¼ A
2 should be used or the solution to the system (2c) should be recomputed

with a different set of parameters. With the exception of the pathological case, we
can now obtain two distinct values for the latitude by evaluating:
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(9) u1,2 = sin−1 z1,2. Then by eliminating the latitude that is obviously wrong,
we have determined the correct value for z and can then compute the corresponding
values for x and y by employing Eq. (6)

Recalling that the underlying premise of our analysis is that GHA(S1) 6¼ GHA
(S2) and also GHAðS1Þ 6¼ GHAðS2Þ � 180�,which means that the two celestial
objects S1 and S2 may not lie on the same hour circle, we also conceive that a
sufficient separation of the 2 h circles, i.e., hour angles, will result, in general, in a
sufficient separation of the two latitudes u1 and u2. Therefore, it will suffice in most
practical situations that navigators need only to have a rough idea13 of their latitude
in order to be able to select the correct value for z. However, in the case when they
are completely unsure of their latitude, they will have to make a rough estimate of
the azimuths of the objects they are observing. It may be quite sufficient to know in
which quadrant these objects can be located.

Finally, the longitude of the navigator’s position is to be found by computing:

(10) k ¼ tan�1 y
x ¼

�tan�1 y
x




 


 þ if 0� y
x\1

�ðtan�1 y
x




 


� 180�Þ �if �1� y
x\0; k� 0:

8<:
This equation for k follows directly from the polar-coordinate representation for

the Cartesian coordinates as given by Eq. (1) and by the formula for the
multi-valued function tan−1x (see Sect. 2.4).

Next let us consider the multi-object problem where navigators have observed n
distinct objects, or only one at distinct instants, or any of the above combinations.
We now assume that n > 2. In all those situations, when the navigators have
programmable calculators at their disposal, they do not have to be concerned about
the amount of the calculations they have to perform and can, therefore, select any
distinct pair of observations from the list of those n observations (2). As the reader
can readily see, it is possible to select n(n − 1)/2 pairs of compatible sets of data
and execute the previous program for n = 2 up to n(n − 1)/2 times thereby gen-
eration the same number of possible positions, namely xk = (kkuk), k = 1… j = 1,
since we will eliminate-filter the incompatible sets of data in this process as
explained above. By taking the Mean-Square-Value of all those possible positions,
we shall arrive at the most probable position.

At this point in our discussion, it is necessary to point out that n distinct celestial
objects should be observed for the purpose of pin-pointing systematic errors, as for
instance, the always dominant error made in determining the atmospheric refraction
R by the use of convenient formulae—(Sect. 3.1). However, it is not recommended
to employ more than one CO for the purpose of assessing the personal errors which
are random errors that should be evaluated by using the methods explained in the
section on error analysis of Chap. 3.

Although the algorithm for finding the position of the observer has been
established by executing formulae (1) through (10), it is still necessary to

13A prudent navigator always knows approximate latitude.
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investigate how an error in observation or the altitudes H0,1 and H0,2 will effect the
position vector ~x. It also may be necessary to determine the effect of errors in
determining the time of observation on the position vector.

In order to derive analytic expressions, we proceed as follows:
Firstly, let the true observation vector ~L be related to the observed observation

vector ~L0 by:
(11) ~L ¼ ~L0 þ~v, where “~v” denotes the error of said vector due to the errors in
measurements of the observed altitudes H0,1 and H0,2. Since we have already solved
the problem for the approximate position vector ~x0, defined by:

A~x0 þ~L0 ¼ 0, subject to ~x0k k ¼ 1, with A ¼ x1y1z1
x2y2z2

� �
; L0

! ¼ � sin H0;1

� sin H0;2

� �
.

We now express the true position ~x in terms of ~x0, and the error ~d as:
(12) ~x ¼~x0 þ~d in order to find ~d.
Since ~x is the exact value, for we have assumed that the matrix A represents the
exact ephemeral data, it must satisfy:

A~xþ~L ¼ 0, with ~xk k ¼ 1, hence ~d must satisfy:

(13) A~dþ~v ¼ 0, and ~d
��� ���2 þ 2~x0 �~d ¼ 0, since by substituting (11) and (12) into

the following equations we obtain:

A ~x0 þ~d
� 	

þ~L0 þ~v ¼ A~x0 þ~L0 þA~dþ~v ¼ A~dþ~v ¼ 0, and also

~xk k2 ¼ ~x0 þ~d
��� ���2¼ xk k2 þ 2~x0 �~dþ dk k2¼ 1. But ~xk k2 ¼ 1. It follows then that:

dk k2 þ 2~x0 �~d ¼ 0:

Therefore, in order to find the error in the position vector, we must first solve the
two linear equations for the two unknowns d1 and d2, i.e., the components of vector
~d, and then again solve the resulting quadratic equation for the third component d3
that is of the form:

d23 þAdd3 þBd ¼ 0, exactly as in the case of finding ~x0.

What remains to be done is to derive an explicit expression for v
! ¼ ~L� L0

!
—see

expression (13′) For this purpose, we define the errors introduced by employing the
approximate values H0,1 and H0,2 in our calculations by:

H1 = H0,1 + D1, and H2 = H0,2 + D2 together with the corresponding error
matrix:

D ¼ D1 0
0 D2

� �
. Here “H1” and “H2” denote the exact altitudes and D1 and D2 the

errors in measured altitudes. Then by definition of ~L we have:
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(13′) ~L ¼ � sin H1

� sin H2

� �
¼ � sin H0;1 þD1

� �
� sin H0;2 þD2

� �� �
¼ � sin H0;1

� sin H0;2

 !
� sin 100 � DL0

!
:

Note that the errors D1 and D2 are measured in seconds of degrees. Henceforth we
have found ~v to be:

(14) v
! ¼ � sin l00 DL0

!
, where L0

! ¼ cos H0;1

cos H0;2

 !
In the derivation of (14) we have assumed that the values D1 and D2 are suffi-

ciently small as to justify the use of the following approximations:

cosD1;2 ffi 1, and sinD1;2 ffi sin 100 � D1;2:

In order to facilitate the error analysis for the case n = 2, we have used the
concept of matrices as used in the second part of this book. However, it should be
understood that this is not absolutely necessary for the understanding and execution
of the error analysis as presented in this section because everything can be done by
long-hand calculations. For example, (13) reads in component form as:

x1d1 þ y1d2 þ z1d3 ¼ �v1
x2d1 þ y2d2 þ z3d3 ¼ �v2, and the second equation of (13) reads:

d21 þ d22 þ d23 þ 2 x0d1 þ y0d2 þ z0d3ð Þ ¼ 0, where the components of x0, y0, and z0
belong to the approximate position of vector ~x0, calculated with ~L0. It is then
obvious that the solution of this non-linear problem employs the same program as
the solution for ~x0.

It should also be understood that the explicit error analysis provided in this
section is valid for any exact solution (see appendix below) of the fundamental
navigational problem of Astro Navigation and, in particular, for the exact solution
provided in Sect. 2.4. Furthermore, the same line of arguments used in the
derivation of the error, as a result of errors in the altitudes, yields the explicit error
as a result of the errors in the chronometers. Note that an error in the chronometer
results in an error of the ephemeral data that enters all calculations.

In one of the next sections, we shall consider the above problem for n > 2 that
does not have a solution in general since the number of equations is always greater
than three—the number of unknowns. Furthermore, the data of observation ~L0 is
not exact in general. However, since the position of the observer is real, we may
look for a numerical approximation to the true solution by utilizing the observation
data that makes up the matrix A or our system, in context with the n + L equations
of conditioning. Obviously, any substitute for the true value obtained by such a
method is merely an approximation and therefore, said methods are classified as
approximate methods. It is left to the navigator to decide whether or not he or she
prefers to use such methods instead of using the exact methods provided in this
book.
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Algorithm B

For calculating the EXACT POSITION of the observer whenever two or more than
two altitude observations are taken, and a crude estimate for the latitude and/or
azimuth are available.

Definitions

Zn : True azimuth of S2
H0,1 : True altitude of S1
H0,2: True altitude of S2
GHA(S1): Greenwich Hour Angle of S1
GHA(S2): Greenwich Hour Angle of S2

C: Course of vessel
d1: Declination of S1
d2: Declination of S2
u: Latitude of observer
k: Longitude of observer
v: Speed of vessel

1. Select two C.O.s, S1 and S2, such that their Greenwich Hour Angles satisfy:

GHAðS1Þ 6¼ GHA (S2Þ
GHA (S2Þ � 180�:

�
Also recall that GHA Sk (Tk) = GHA♈(Tk) + SHA (Sk).

2. Calculate:

(i) x
!
k ¼

xk
yk
zk

0@ 1A ¼
cos dk � cos GHAðSkÞ
� cos dk � sin GHAðSkÞ
sin dk

0@ 1A ; k ¼ 1; 2; . . .

=
3. Compute:

(ii) D ¼ x1y2 � x2y1 6¼ 0, and go to step 4.
=

4. Compute:
iii).
h1 ¼ sin H0;1

=
h2 ¼ sin H0

0;2

=

H0
0;2 ¼ H0;2 þ v � ðT1�T2Þ

60 � cosðZn � CÞ
=
and go to step 5.

5. Compute:
(iv)

a1 ¼ h1y2�h2y1

D
=

a2 ¼ h2x1�h1x2

D
=
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b1 ¼ z2y1�z1y2

D
=
b2 ¼ z1x2�z2x1

D
=
and go to step 6.

6. Compute:
(v)

A ¼ 2ða1b1 þa2b2Þ
b2

1 þb
2
2 þ 1

=

B ¼ a2
1 þa2

2�1

b2
1 þb

2
2 þ 1

=
If A2 − 4B � 0 got to step 7. If not… stop and remove blunder.

7. Compute

(vi) z1;2 ¼ �A
2 � ðA2 � 4BÞ1=2

2
(vi) =

Note the ambiguity-two solutions, which can only be removed by employing an
estimate for the latitude or azimuth. Also check whether or not |z1,2| � 1. If so, go
to step 8. If not… STOP and remove blunder.

8. Compute:
(vii) u1,2 = sin−1z1,2
=
Remove the physical wrong branch to obtain:
u = u1

=

Here we have eliminated z2. Then go to step 9.
9. Compute:

(viii) x ¼ a1 þ b1z
=
y ¼ a2 þ b2z
=
with z ¼ z1
=
Then go to step10.

10. Compute:
(ix) k ¼ tan�1 y

x, by employing the formula (ix′) below…

(ix′) tan�1 x ¼ � tan�1 xj j if 0� x\1
�ðtan�1 xj j � 180�Þ if �1\x� 0

�
. See Sect. 4.2.

=

72 2 Astro-navigation

http://dx.doi.org/10.1007/978-3-319-47994-1_4


Note that tan−1|x| stands for the main branch of tan−1x and is the function your
calculator uses.

sin�1 x ¼ sin�1 xj j; if 0� x ¼ 1
� sin�1 xj j; if � 1� x� 0

�
sin�1 xj j ¼ 90� þ cos�1 xj j; if 0� x ¼ 1

�ð90� þ cos�1 xj jÞ; if � 1� x� 0

�
Appendix

The result of this error analysis can also be used to estimate the error introduced
by employing any approximate method, as for instance, Sumner’s LOP method of

celestial navigation. If one merely replaced ~L0 by L�
0; defined by A~x�0 þ~L

�
0 ¼ 0,

where “~x�0” denotes the position vector obtained by the use of the corresponding
approximation, then the error matrix D has the elements D1,2: H01;2 � H�

01;2 where
H�

01;2 are the components of L�
0, and the H0 are the values measured by the user of

the approximation method.

2.7 Numerical Examples and Conclusions

First, let’s consider an example based on an observation taken from the balcony of a
two-story house in Ciudad Victoria, Tamaulipas, Mexico at two distinct instants.
The measured Dip-Short amounted to 2°58′.4 and the resulting observation data
obtained included:

Bodies observed: Sun (S1 and S2) observed twice.
Date: 02/02/13
Times of observation: T1 ¼ 16h30m00s UTC
T2 ¼ 18h30m00s UTC
True Altitudes: H0;1 ¼ 37�060:
H0;2 ¼ 49�230:
Ephemeral data: d1 ¼ �16�370:5
d2 ¼ �16�360:1
GHAðS1Þ ¼ 64�030:7
GHAðS2Þ ¼ 94�030:6

Latitude NORTH—Find the position of the observer.
Solution:

1. Calculate ~x1;~x2; and ~h by using formulae (1) and (3) of Algorithm B:
x1 ¼ 0:41912011; x2 ¼ �0:06784071; h1 ¼ 0:60320798
y1 ¼ �0:861673606; y2 ¼ �0:95500966; h2 ¼ 0:75908159
z1 ¼ �0:28610648; z2 ¼ �0:28571512:
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2. Calculate D; a1; a2; b1; and b2 by using formulae (2) and (4) of Algorithm B.
D ¼ �0:45909757
a1 ¼ �0:16874024 b1 ¼ 0:05946181; a21 þ a22 � 1 ¼ �0:35981836
a2 ¼ �0:7824787 b2 ¼ �0:30300336; b21 þ b22 þ 1 ¼ 1:0954134:

3. Calculate A;B; andA2 � 4B; by using formula (5) of Algorithm B:
A ¼ 0:41452257 B ¼ �0:32847723 A2 � 4B ¼ 1:485737882; O:K:

4. Calculate z1 and z2 by using formula (6) of Algorithm B:
z1 ¼ 0:402192954; z2 ¼ �0:81671552

5. Calculate u1 andu2 using formulae (7) and (9′) of Algorithm B.
u1 ¼ 23�430 NORTH; andu2 ¼ �54�:76 (Close to Cape Horn.)

6. Calculate x and y using formula (8) of Algorithm B. z ¼ z1
x ¼ �0:14482511 and y ¼ �0:904027934 and yx ¼ 6:24220437:

7. Calculate k\0 by using formulae (9) and (9′) of Algorithm B.
Select proper branch of tan�1x.
k ¼ tan�1 6:24220437j j � 180� ¼ �99�:101439 ¼ 99�060:08WEST

The GPS yields: u ¼ 23�430:057 NORTH and k ¼ 99�070:53 WEST
This example clearly demonstrates the simplicity of this algorithm. It can be

executed by anyone who can operate an inexpensive calculator with the trigono-
metric and inverse trigonometric functions incorporated, provided that the CO’s are
sufficiently separated with respect to their hour angles.

Basically, it can be done by anyone with elemental knowledge of arithmetic and
algebra. It is not even necessary to know much about trigonometric functions
because they can be executed by merely pressing the key with the corresponding
symbol on the keyboard. Nowadays, even kids learn to push the buttons on a
computer without understanding the principles behind them.

However, there is one step in the program that needs to be re-examined very
carefully, namely the selection of the correct branch of the multi-valued function
tan−1x. The navigator should note that solutions obtained by adding or subtracting
180° are also possible (see formula (9)). In those cases where we require that the
correct answer to be negative for a positive value of the principle branch, we must
subtract 180° from this value. Refer quickly to the case above. The principal value
given by the calculator was: tan�1 6:24220437 ¼ 80�:89836057. However, since k
must be negative, we had to subtract 180° from this value to arrive at the correct
answer for the longitude k.

Now, for the sake of comparison, let us consider the example that we previously
executed in Sect. 2.5. Recall that in that chapter, we employed the following set of
data:

S1: 
, T1 ¼ 21h35m16sUTC,
H0;1 ¼ 52�110:01;
d1 ¼ 1�260:6;
GHAðS1Þ ¼ 142�130:7
S2: 
, T2 = 19h 22m 42s UTC,
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H0;2 ¼ 67�340:12;
d2 ¼ 1�240:34;
GHAðS2Þ ¼ 109�040:8

Find the position of the observer.
Solution:

1. Calculate ~x1;~x2, and ~h by using formulae (1) and (3) of Algorithm B:
x1 ¼ �0:790207212 x2 ¼ �0:32689578 h1 ¼ 0:789978475
y1 ¼ �0:612321903 y2 ¼ �0:944778271 h2 ¼ 0:924337499
z1 ¼ 0:025188254 z2 ¼ 0:024548486

2. Calculate D, a1, a2, b1, and b2 by using formulae (2) and (4) of Algorithm B.
D ¼ 0:546470187 O:K
a1 ¼ �0:330049846 a21 ¼ 0:108932901
a2 ¼ �0:864203458 a22 ¼ 0:746847617 a21 + a22 � 1 ¼ �0:144219481
b1 ¼ 0:016040654 b21 ¼ 0:000257302
b2 ¼ 0:020435024 b22 ¼ 0:00041759 b21 + b22 þ 1 ¼ 1:000674892

3. Calculate A, B, and A2 − 4B, by using formula (5) of Algorithm B:
A ¼ �0:045877505 A2 ¼ 0:002104745
B ¼ �0:144122214 A2 � 4B ¼ 0:57859360O:K:

4. Calculate z1 and z2 by using formula (6) of Algorithm B:
z1 ¼ 0:403265454; z2 ¼ �0:35738794

5. Calculate u1 and u2 using formulae (7) and (9′) of Algorithm B.
u1 ¼ 23�:78247715 ¼ 23�460:05NORTH, and u2 ¼ �20�:93

6. Calculate x and y using formula (8) of Algorithm B. z = z1
x ¼ �0:323581204and y ¼ �0:855962718 and y

x ¼ 2:645279479
7. Calculate k < 0 by using formulae (9) and (9′) of Algorithm B.

k ¼ tan�12:645279479� 180�since k\0

Hence k ¼ �110�420:49 ¼ 110�420:49WEST
Finally, let’s consider another example previously explored in Sect. 2.5 that of two
COs (stars) which were observed at distinct instants T1 and T2.
Date 11/20/08—
Latitude NORTH

Star S1: MARKAB.
Time of observation T1 = 4h33m16s UTC
= 4h.55444 UTC
SHA S1 = 13°41′.7 = 13°.695
d1 = 15°15′.4 N
True Altitude H0,1 = 49°14′.6 = 49°.24333
GHA (♈) = 127°.886666, at T = T1

Star S2: FOMALHAUT
Time of observation T2 = 3h17m38s UTC
= 3h.2938 UTC
SHA S2 = 15°27′.1 = 15°.45166
d2 = −29°34′.6 = −29°.57666
True Altitude H0,2 = 31°26′.1 = 31°.435
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Find the position of the observer.
Solution:

1. First we calculate DT = T1 − T2 = 1h.26056 UTC
Next we calculate:
GHA S1(T1) = GHA♈ (T1) + SHA (S1) = 127°.8866 + 13°.695 = 141°.5816,

and
GHA S2ðT2Þ ¼ GHA♈ðT2Þþ SHAðS2Þ

¼ GHA♈ðT1Þþ SHAðS2Þ � DT � 15� � 1:002737962
¼ 127�:88666þ 15�:45166� 18�:96017048 ¼ 124�:3781495:

Hence ... GHA S1(T1) > GHA S2(T2).
2. Calculate ~x1; ~x2 by using formulae (1) of Algorithm B:

x1 ¼ �0:75588169 x2 ¼ �0:491075881

y1 ¼ �0:599498413 y2 ¼ �0:717785296

z1 ¼ 0:263143358 z2 ¼ �0:493587628
3. Calculate by using formula (2) of Algorithm B.

D ¼ 0:248351635
4. Calculate h1 and h2 by using formula (3) of Algorithm B.

h1 ¼ 0:757488989; and h2 ¼ 0:521530939
5. Calculate a1, a2, b1, and b2 by using formula (4) of Algorithm B.

a1 ¼ �0:930364267 a2 ¼ �0:089514668 a21 þ a22 � 1 ¼ �0:126409456
b1 ¼ 1:95199776 b2 ¼ �2:022604789 b21 þ b22 þ 1 ¼ 8:901225388

6. Calculate A, B, and A2 − 4B, by using formula (5) of Algorithm B:
A ¼ �0:367368783 B ¼ �0:014032033 A2 � 4B ¼ 0:1910879554 O:K

7. Calculate z1 and z2 by using formula (6) of Algorithm B:
z1 ¼ 0:402252432; z2 ¼ �0:03488365
Hence z = z1 since Latitude NORTH

8. Calculate u using formulae (7) of Algorithm B.
u ¼ sin�1 z ¼ 23�:7190646 ¼ 23�430:14NORTH; and u2\0, SOUTH of
Equator.

9. Calculate x and y using formula (8) of Algorithm B.
x ¼ �0:14516842 and y ¼ �0:903112363 and 6:221135168 ¼ y

x
10. Calculate k by using formulae (9) and (9′) of Algorithm B.

k ¼ tan�16:221135168� 180� ¼ �99�:13174437 ¼ 99�070:9 WEST

In conclusion, it can be stated that the limitations of the applications of the above
method are all those cases where the determinant D (see expression 2) of the
corresponding matrix are either zero, or worse, nearly zero. Physically speaking,
this means that the alignment of the observed COs does not permit the application
of the above algorithm and/or some of the used date is ICP-blunder.

The concept of ILL-CONDITIONED matrices can be better understood if we
consider a 2  2 matrix of a set of data representing two linear equations belonging
to two LOPs that are almost parallel. Since it is virtually impossible to find the point
of intersection of such lines, we would also not expect to be able to solve this
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problem by calculations since the determinant of the coefficient matrix of the two
equations will be nearly zero depending on the uncertainty of the numerical values.
Therefore, we could call those almost parallel lines ill conditioned and refer to the
corresponding matrix as ill-conditioned also. In those cases where n > 2, we are
actually dealing with almost parallel lines or hyper planes in the n-dimensional
space En.

It can also be stated once more that the exact method based on vector repre-
sentations also enables us to provide an explicit error analysis for any other exact
method and therefore, in particular, for the exact method of Sect. 2.4.

2.8 On Approximate Solutions for Finding the Position
at Sea or Air by Employing Two or More Altitude
Observations

By now it should be clearly understood that an exact method for calculating the
position of an observer by measuring altitudes of celestial objects COs results in the
true position provided that ALL the input data such as altitudes, chronometer time,
and ephemeral data are exact. Since the latter is not always possible, the resulting
calculations will also be subject to those input errors. But these are not errors of
methodology as in the case of all approximate methods. This can readily be seen if
one chooses an exact position for an observer, obtains the ephemeral data such as
GHAs and declinations (at specific instants), and then calculates the corresponding
true altitudes. If one uses these parameters in our formulae of Algorithms A and B,
one should get the exact position of the observer as prescribed before.

On the other hand, all approximate methods will, in general, produce only
erroneous results even if all the input parameters such as altitudes, time and
ephemeral data are correct.

Here I would also like to distinguish between two types of approximate methods,
namely:

(a) Non-convergent approximations.
These comprise methods that will not generate the true solution and will, at
best, produce another approximation for which no exact error analysis is
available. It also compromises convergent methods that actually converge (as
the name implies) but that will not necessarily converge to the exact solution.
For example, the two lines of position method is one of those methods.

(b) Convergent approximations.
These comprise all the methods that produce a sequence of results by applying
the same method-formulae successively, utilizing the result of each previous
iteration and thereby approaching successively the exact solution. Such meth-
ods, if they can be devised, will also provide an error estimate at each step of
iteration.
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It should be noted that strictly from a mathematical point of view, it will suffice
to find only one special case where a given approximate method fails to produce the
exact solution to classify it as a divergent method. This, however, does not imply
that such methods may be considered to be completely useless. Contrarily, such
methods may prove to be useful in some special applications to celestial navigation.

Another important aspect of approximate solutions arises whenever the navi-
gator applies these methods to situations where more than two (n > 2) COs are
observed. In such cases, it is customary to apply the method of “Least Square
Approximation” to arrive at one, single result. It is always assumed that the result so
obtained constitutes a better approximation than any of the initial ones. It is also
often assumed that by repeated application of this process to more samples the exact
solution can be sufficiently closely approximated.

The reality, however, may be quite different. The Least Square method results in
an approximation that has value only if all or the majority of the individual results
are meaningful. In other words, the Least Square Approximation of blunder is…
blunder.

In a previous section, an approximation method had been conceived strictly on
grounds of mathematical arguments. This approximation could then be intrepreted
geometrically, representing the approximate solution as the intersection of two
staraight lines. Therefore, we are now going to look for such approximations which
can be obtained by drawing straight lines and finding their intersections. We begin
again by looking at the circle of equal altitudes of a celestial object, S, and the
position Z of the observer. Let’s concentrate on depicting the resulting navigational
triangle PbSZ (see Fig. 2.8.1) together with a section of the extended arc of the circle
of equal altitude in the neighborhood of Z (see Fig. 2.8.2).

Note that we have extended the arc of the great circle SZ somewhat. If it would
be possible to find the parallactic angle a from one observations of S, the exact
solution of u could be obtained by a simple calculation. But we already know that
this is not possible. Therefore, any type of approximation has to be based on
approximating a adequately. This entails approximating the above triangle PbSZ0 in
such a manner that the resulting angle a′ approximates a sufficiently closely.

Let us suppose that Z′ represents the position of a fictitious vessel whose position
k′, u′ is known. Then as long as Z′ stays on the extended arc spanned by SZ, the

Fig. 2.8.1
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exact solution can be obtained by plotting the arc ZZ′. It should be noted that the
azimuth angle A′z at Z′ varies as Z′ moves along the extended arc of SZ, but the
parallactic angle remains constant. Therefore (and contrary to what some propo-
nents of the two lines of position method believe), it is not the azimuth angle of the
assumed position, but the parallactic angle of said approximation that is responsible
for the accuracy or even failure of said method.

In the case where a′ = a, we can now construct a line L′ perpendicular to the arc
ZZ′. This line is parallel to the tangent line L to the circle of constant altitudes and
passes through the position Z′ of the fictitious vessel. This means that the exact
position of the observer can be obtained by moving the line L′ (the line perpen-
dicular to the arc SZ′) by a distance equal to the arc length of arc ZZ′ parallel to
itself. The intersection of this line with the arc SZ is then the exact position of the
observer, and the distance ZZ′ corresponds to the difference in altitudes measured at
Z and Z′ respectively.

Unfortunately, there is no way to determine the position of the fictitious vessel
such that the resulting parallactic angle a′ coincides with a. Therefore, let us
consider those cases where Z′ (the position of the fictitious vessel) does not lie on
the extended arc SZ (see Fig. 2.8.3 highly exaggerated).

In those cases, the tangent line LI
14 away from I is obtained by computing AZ′

and hence the direction of the arc section Z′I and then by plotting the line per-
pendicular to this section of the arc and also passing at a distance p = z′ − z away
from Z′ this section of the arc. Therefore, the tangent line LI to our circle of equal
latitudes a at I does, in general, bypass the position of the observer and two such
lines obtained by another CO, S′ will not intersect at the position of the observer.
Moreover, it will be very difficult to develop useful error estimates for this type of
approximate methods.

Fig. 2.8.2

14A more realistic interpretation of the situation depicted in Fig. 2.8.3 results if one approximates
all tangents to those circles by loxodromes that then appear as straight lines on the Mecator
plotting sheets or charts.
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It should by now be very obvious that any method based on such a fictitious
vessel with known position will only produce acceptable approximations if the
parallactic angle a′ of the assumed position triangle PbSZ0 is sufficiently close to a.
This implies that this method may produce satisfactory results if, for instance, the
distance ZZ′ is very small in comparison to z. In all those cases where the distance
ZZ′ is of the order of z, i.e., high altitude, and with a bad estimate of the assumed
position, this method may fail to give acceptable results.

In practical navigation, the position Z′ * (k′, u′) of the fictitious vessel is
merely a position close to or equal to the dead-reckoning position of the vessel and
may be as far off as 50 NM in the case of sailing vessels.

The method outlined above is generally referred to as the two lines position
method based on an assumed position and has been around since the times of St.
Hilaires and Thomas Sumner. Obviously, this method has served navigators for
almost 200 years and has given rise to many books and tables to avoid the use of
elementary mathematics and is mainly justified by the need for speedy sight
reductions and by the absence of suitable calculators. I, myself, learned and practiced
air and sea navigation based on the instructions contained in the Air Force Manual
51–40, Vol. 1. However in the age of modern PCs and programmable calculators, the
main reason for adhering to the old plotting method is simply to conform with
traditional seamanship procedures. The use of sophisticated calculators, portable
computers and GPS will forever change traditional navigational methods.

Those traditional methods of celestial navigation will always be a milestone in the
development of modern navigation from a fine art into a science. For many of the users
of traditional navigation methods it will always remain a mystery how one can obtain
the position of a vessel or aircraft and only be off by not much more than a couple of
nautical miles having only used approximations throughout, i.e., approximations for
the altitudes, chronometer time, ephemeral data, improvised plotting sheets and a
mathematical procedure that is erroneous in and of itself. An explanation for this
phenomenon can perhaps be found in the Theory of Probability. [19]

Fig. 2.8.3
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Because of the widespread use of the traditional assumed position method, I am
going to derive all relevant formulae and provide those who want to continue to use the
traditional method with a logarithm for solving their problems on an improvised
plotting sheet or on the backof a high-speed,flight-computer-plotter. (It should benoted
that without employing the plotting technique, the user of this approximate methodwill
soon realize that there is no saving to be had by choosing such a method over the exact
method. On the contrary, by using the above approximate method without plotting the
corresponding LOPs on an improvised plotting sheet, the required calculations exceed
the necessary calculation for solving the exact mathematical problem.)

In particular, if kA and uA are the coordinates of the assumed position, then:
tA ¼ �ðGHAðSÞþ kAÞ; where plusðþ Þif S isWest of the observer

andminusð�Þif S is East of the observer:
Furthermore, the azimuth-angle Az of our navigational triangle satisfies

0 � Az � 180°. Since d, tA and uA are known, Az and the assumed altitude ac
can readily be calculated by employing formulae (1i) and (1ii) of Sect. 2.2.

Explicitly you have:

sin ac ¼ sinuA � sin dþ cosuA � cos d � cos tA, i.e.
(1) ac ¼ sin�1ðsinuA � sin dþ cosuA � cos d � cos tAÞ, and

cos ac � cosAz ¼ sin d � cosuA � cos d � sinuA � cos tA; and hence…

(2) Az ¼ cos�1 sin d� cosuA�cos d� sinuA� cos tA
cos ac

� 	
� 180� resulting in…

(3) Zn ¼ Az if S lies East of observer
360� Az if S liesWest of observer

�
Because you have to apply formulae (1) and (2) twice (two lines of positions for

the two observations of S1 and S2), you have to evaluate a total of four trigono-
metric expressions. If you choose to calculate the intersections of those lines, you
are going to approximate the approximations (1) and (2) once more because you are
going to employ an approximate transformation (see Sect. 1.3). Geometrically
speaking, the tangent lines LOPs lie on the respective tangent plane and therefore,
their intersection does not lie on the terrestrial sphere itself. Furthermore, calcu-
lating the intersection of the two lines of positions requires evaluating two more
trigonometric expressions—see formula (5) of this section.

Also, plotting the lines of position on the same type of plotting sheets results in
additional errors unless the assumed position is very close to the true position—see
Sect. 1.3.

In what follows, we are going to calculate the intersection of the two lines of
positions to convince the “traditionalists” that there is no advantage to be had from
the computational aspect by using an approximate method.

First, let us derive the equation for any given line of positions.
From Fig. 2.8.4 we deduce that the slope of the azimuth line is:
m1 ¼ tan 90� � Znð Þ ¼ cot Zn, and since L is perpendicular to the azimuth line

its slope m1 must satisfy:
m2 �m1 ¼ �1, i.e., m2 ¼ � tan Zn, hence… L is the line passing through (xo, yo)

and having a slope equal to—tan Zn which implies that the equation of L is:
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y ¼ y0 � tan Zn � x� x0ð Þ But we also deduce that x0 ¼ p � sin Zn, and
y0 ¼ p � cos Zn.

Therefore:

(4) L : y ¼ p � cos Zn þ tan Zn � p � sin Zn � xð Þ
Note that in our application p ¼ zc � zn ¼ a� ac, INTERCEPT
In the case of two distinct lines of positions, L and L′, the point of intersection,

i.e., the improved approximate solution of (x′, y′) must satisfy the two equations:
L : y0 ¼ p1 � cos Zn1 þ tan Zn1 � p1 � sin Zn1 � x0ð Þ
L0 : y0 ¼ p2 � cos Zn2 þ tan Zn2 � p2 � sin Zn2 � x0ð Þ Eliminating and reducing

yields:

x0 ¼ p2 � cos Zn1 � p1 � cos Zn2

cos Zn1 � cos Zn2ðtan Zn2 � tan Zn1Þ
;

y0 ¼ pi � sin Zn2 � p2 � sin Zn1

cos Zn1 � cos Zn2ðtan Zn2 � tan Zn1Þ
:

Remember that our coordinate system x, y has been chosen in such a manner that
the origin (O, O) coincides with the coordinates (kA, uA) of our assumed position
and the grid corresponds to our improvised plotting sheet and is given by formula
(1) in Sect. 1.3.
as:
y0 ¼ u0 � uA; x

0 ¼ cosuA � k0 � kAð Þ resulting in the coordinates (k′, u′) of our
improved approximation:

k0 ¼ kA þ p2 � cos Zn1 � p1 � cos Zn2

cosuA � cos Zn1 � cos Zn2ðtan Zn2 � tan Zn1Þ
; and

(5) u0 ¼ uA þ p1 � sin Zn2 � p2 � sin Zn1

cos Zn1 � cos Zn2ðtan Zn2 � tan Zn1Þ
In conclusion, we count six trigonometric calculations as compared to five in the

case of the exact solution. [43]
So far we have assumed that the two lines of positions had been established by

simultaneous observations of S1 and S2. Now suppose S1 is observed at T = T1 and S2

Fig. 2.8.4
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is observed at T = T2 with T1 6¼ T2 but close to T2. By assuming that the azimuths do
not change during the interval of time DT ¼ T1 � T2, we first ask for the changes in
the line L2 that occur in this time span, and secondly, we ask for the change of altitude
in a2 in the same interval of time. According to our assumption, the change in the lines
of position must occur along the line of the azimuth, i.e., in p.

The underlying mathematical problem is equivalent to asking the following
question: “How does one have to changed the observed altitude in a2 in order to
compensate for a small changed, perhaps an error, in time if the above outlined
method is being used?”

In order to solve this problem we adopt the following notations:

T: the exact time of observation in minutes.
~T: the approximate time of observation in minutes.
a: the exact altitude at T.
ac: the computed altitude at T.
~a: the approximate (corrected) altitude at ~T.
~ac: computed altitude at ~T.

Then, because the azimuth does not change, the following equation must hold:

(i) ~a� ~ac ¼ a� ac.

By adopting the previous definition of the intercept p, we have:
p ¼ a� ac, and by defining ~p ¼ a� ~ac; Dp ¼ ~p� p; DT ¼ ~T� T and
Dk ¼ ~k� k, we deduce that:

(ii) Dp ¼ ac � ~ac, and because of (i) we must have—
(iii) ~a ¼ a� Dp

Next, we again adopt the improvised plotting sheet (see Sect. 1.3, formula 1) and
adopt the transformation x ¼ k� kAð Þ � cosuA and y ¼ u� uA—see Fig. 2.8.5—
We conclude that a ¼ �Zn, b ¼ Zn � 270�, i.e., cos b ¼ � sin Zn, and therefore:

Dp ¼ d � cos b ¼ �d � sin Zn, and
d ¼ Dk � cosuA, i.e., Dp ¼ �Dk � sin Zn � cosuA. Therefore we conclude that:
~a ¼ aþDk � sin Zn � cosuA, and since Dk ¼ DT � 150, we find that:

(6) ~a ¼ aþDT � 150 sin Zn � cosuA:

Fig. 2.8.5
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Note that with ~T[T; Zn [ 180�; ~a\aðSETTINGÞ, and if Zn � 180�; it fol-
lows that ~a\aðRISINGÞ

A disadvantage of having derived formula (6) in this manner is that we have failed
to obtain a range for the validity of it. However, by employing some other reasoning
and experience, one should get an estimate for the upper bound for the applicability of
formula (6) in terms of the time span between T and ~T, i.e., in terms of DT. (Based
more on experience than on theory a reasonable upper bound is: jDTj � 4min.)

Another way of arriving at formula (6) is based on the formulae of spherical
trigonometry as used in this and in previous sections of this book. By applying
those formulae to our navigational triangle, we have:

sin a ¼ sinuA � sin dþ cosuA � cos d � cos t, differentiating yields:

cos a � dadt ¼ � cosuA � cos d � sin t; or dadt ¼ � cosuA

cos a
� cos d � sin t

and the application of the SIN-TH. yields:

cos d � sin t ¼ cos a � sin AZ ¼ � cos a � sin Zn. . . hence :
da
dt ¼ � sin Zn � cos uA by noting that t stands for the local hour angle and

therefore dt = ± dT 15′, we deduce that: da ¼ dT � 150 � sin Zn � cosuA, an
infinitesimal expression with its finite equivalent:

(6′) Da ffi DT � 150 � sin Zn � cosuA.

In a similar manner, by permitting both Zn and a to depend upon the local hour
angle t, by differentiating we obtain formula (2ii), and by substituting formula (2iii)
from Sect. 2.2, we get:

dZn ¼ dT � 150 � ðsinuA � cos Zn � cos uA � tan a). Again by replacing the dif-
ferential equation by the finite difference equation, we have:

(7) DZn ¼ DT � 150 � sinuA � cos Zn � cosuA � tan að Þ
Aside from the fact that (6′) and (7) provide approximate values for very small

intervals of time only, those formulae are of very limited value in practical appli-
cations since, in general, Zn is not known, or is approximated by ZAn, the azimuth
of the assumed position triangle. It still remains to be shown how the lines of
positions change if the vessel is underway between the sights taken (see Fig. 2.8.6).

We may deduce that:

Dp ¼ v � DT60 � sin 90� � C � Znð Þð Þ ¼ v � DT60 cos C � Znð Þ, v ¼ ~vj j… hence:

(8) ~p ¼ pþ DT
60 � v � cos C� Znð Þ, where “C” denotes course steered.
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Therefore the movement of the vessel in direction and amount ~v � DT is
accounted for if we merely replace p by ~p as given by (8), i.e., if we move the line of
position L parallel to itself by the segment Dp along ~p.

Next let us consider the problem of multiple sights taken simultaneously or at
distinct instants with the necessary adjustments made for the motion of the vessel
between sights. Here we assume that n sight reductions have been made and for-
mula (1)–(3) of this section have been computed n times, i.e., the values of ai and
Zi
n; i ¼ 1; . . .n, and hence of pi are known. Therefore, the n lines of positions Li

defined by (4) are also determined.
Now we want to find the coordinates k′, u′ of a point Z′ so that its distance on our

improvised plotting sheet from all n lines of positions is such that the sum of the squares
of these distances d2i is a minimum—LEAST SQUARE APPROXIMATION.

In order to do this analytically, we borrow the formula for the distance of a point
x′, y′ from a straight line Li : y ¼ AixþBi from Analytic Geometry. Accordingly,
this distance is given as:

d2i ¼
y0�Aix0�Bið Þ

1þA2
i

. From formula (4) for the line of position we deduce that:

Ai ¼ � tan Zi
n, and Bi ¼ pi

cosZi
n

, with pi ¼ ai � aic, i = 1, … n—and hence

d2i ¼ cos Zi
ny

0 þ sin Zi
nx

0 � pi
� �2

from which we deduce:
dd2

i
dx0 ¼ 2 � sin Zi

n � cos Zi
ny

0 þ 2 sin2 Zi
nx

0 � 2 � pi � sin Zi
n; and

dd2
i

dy0 ¼ 2 � cos2 Zi
n � y0 þ 2 sin Zi

n � cos Zi
n � x0 � 2 � pi � cos Zi

n:

Since we must minimize the sum of the squares of all the distances di, we must
require that:

Fig. 2.8.6
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dP
dx0

¼ d
dx0
Xn

i¼1
d2i ¼

Xn

i¼1

dd2i
dx0

¼ 2 �
Xn

i¼1
sin2 Zi

n � x0 þ 2 �
Xn

i¼1
sin Zi

n � cos Zi
n � y0 � 2 �

Xn

i¼1
pi sin2 Zi

n ¼ 0

and also:

dP
dy0

¼ d
dy0
Xn

i¼1
d2i ¼

Xn

i¼1

dd2i
dy0

¼ 2 �
Xn

i¼1
sin Zi

n cos Z
i
n � x0 þ 2 �

Xn

i¼1
cos2 Zi

n � y0 � 2
Xn

i¼1
�pi cos Zi

n ¼ 0

To simplify the solution of this system of two linear equations, we define the
parameters A, B, C, D, E, and G as follows:

A ¼
Xn

i¼1
cos2 Zi

n;B ¼
Xn

i¼1
sin Zi

n cos Zi
n;C ¼

Xn

i¼1
sin2 Zi

n;D ¼
Xn

i¼1
pi cos Zi

n

E ¼Pn
i¼1 p

i sin Zi
n; andG ¼ AC� B2, and deduce that x′, y′must satisfy the system:

C � x0 þB � y0 ¼ E

B � x0 þA � y0 ¼ D
, and resulting in

x0 ¼ AE�BD
G and y0 ¼ CD�BE

G

Recalling that the underlying transformation of our improvised plotting sheet is:

x ¼ cosuA � ðk� kAÞ; and y ¼ u� uA we find that:

(10) k ¼ kA þ AE� BD
cosu � G andu0 ¼ uA þ CD� BE

G
[31]

Also note that uA stands for the latitude of the assumed position.
For the special case n = 2, we again deduce from (9) and (10) the Eq. (5) of this

section.
One word of caution: if the reader is unfamiliar with the theory of successive

approximations and resorts to reiterating the Eq. (10), i.e., if the reader replaces kA,
uA by k′, u′ and so on, and thereby obtains a sequence iterative approximations
kk;uk; k ¼ 1; . . . for which n + 1 iterations differs from the n-th iteration by only a
minute amount, the reader may be tempted to conclude that this sequence of iter-
ative approximations converges and perhaps converges to the true solution. This,
however, is not true in general and often results in wrong conclusions. Furthermore,
the procedure of reiterating Eq. (10) does not lend itself to the user who has only a
simple calculator at his disposal. In order to use such a procedure, it would be
necessary to have a more sophisticated, programmable calculator available, but
then, why would anyone want to use such an elaborate calculation procedure for
merely finding another approximate solution when a much simpler procedure is
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available for finding the exact solution? The answer to this question can, however,
not rest with the word “tradition”.

After all the attempts which have been made to approximate and further simplify
the underlying procedure to the extent where only tables, compass, straight edges,
triangles, and improvised plotting sheets are being used, it is only fair that we also
present to the reader a modern method that constitutes a true approximation to the
true solution. This implies that by repeated application of this algorithm, these
approximations will converge to the exact solution of Sect. 2.4, Eq. (16), provided
that the initial approximations of u1 and u2 satisfy certain simple conditions.

The reader will recall that the problem of finding the exact position of the vessel
consists in finding the points of intersection of the two circles of equal altitudes, i.e.,
in finding the values of u and k that satisfy the two equations in formula (16)

By adopting the definitions:

(11)

gðuÞ ¼ �GHAðS1Þ � cos�1 sin a1 � sin d1 � sinu
cos d1 � cosu

� �
hðuÞ ¼ �GHAðS2Þ � cos�1 sin a2 � sin d2 � sinu

cos d2 � cosu
� �

fðuÞ ¼ gðuÞ � hðuÞ
Where plus (+) if S is West, and minus (−) if S is East of observer.

As before, we conclude that our problem consists mathematically in solving the
transcendental equation:

(12) f (u) = 0 (See also Sect. 2.4, Eq. 18)

This can be accomplished by employing one or the other type of iterative
methods, based on choosing suitable initial approximations uk; k ¼ 1; . . . m, and
then successively computing additional approximations ul;l�m thereby gener-
ating a sequence {ul} that converges to the true solution u of Eq. (12), i.e.,
u ¼ lim

l!1ul:

Here we shall use a method that employs two initial approximations, u1 and u2

respectively. The reason we are choosing this type is that the underlying problem
consists in finding the intersection of two circles on the celestial sphere defined by:

k ¼ gðuÞ; and k ¼ h ðuÞ; the equivalent equations to Sect. 2.4, expressions
(16) and (17). First, let’s look at a small arc of on of these circles in the
neighborhood of the solution k, u of the two equations—see Fig. 2.8.7a.

It makes perfect sense to use an approximation that uses two initial guesses u1 and
u2 provided that these two values define a chore line that encloses the solution u. If
we then, at each step of our iteration ui choose the result of the previous iteration ui

−1, together with another previous iteration uk; 1� k[ i� 1, so that the chore line
defined by ðki�1;ui�1Þ and ðkk;ukÞ encloses the actual solution, we would intu-
itively conclude that we would get a convergent sequence of good approximations.

On the other hand, by opting for an iterative method that is based merely on one
initial guess u1, we would not readily see that this method converges, although it
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may if u1 is sufficiently close to the solution of u. However, such a method would
entail evaluating the derivative of f (u), i.e., f′(u) at each step of the iteration
process, something we surely would want to avoid. By looking at Fig. 2.8.7b it is
clear that such a method is referred to as a tangent line method.

Let’s now derive the well known numerical method know as the chore line or
“Regular Falsi” method and apply it to our navigational problem. For this we
picture the graph of the function y = f (u) in the vicinity of the root �u : fð�uÞ ¼ 0—
see Fig. 2.8.8.

Then the equation of the secant line is given by:

y�fðu1Þ
u�u1

¼ fðu2Þ�fðu1Þ
u2�u1

, i.e., y ¼ fðu1Þþ fðu2Þ�fðu1Þ
u2�u1

� ðu� u1Þ, and therefore, the

first iterative approximation satisfies y = 0 resulting in:

u3 ¼ u1 � u2�u1ð Þ�fðu1Þ
fðu2Þ�fðu1Þ

¼ u1 þ u1�u2ð Þ�y1
y2�y1

¼ y2
y2�y1

� u1 þ y1
y1�y2

� u2

with yi ¼ f ðu1Þ: i ¼ 1; 2; . . .

From Fig. 2.8.8, we deduce that the conditions proposed for the selection of u1

and u2 are:

u1: Good initial approximation obtained by an independent method for approxi-
mating the latitude. There are many methods available to the navigator—see also
the following section.

Fig. 2.8.7

Fig. 2.8.8
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u2: To be close to u1 but such that f (u1) � f (u2) < 0 is satisfied in all three cases of
Fig. 2.8.8.

Having found u3 by the previous formula, we now calculate u4, and so on,
always checking that the condition fðu1Þ � f ðulÞ\0, for 1� l� i; i� 2.

If we assume that f(u) is convex: 8 : u2 �u�u1, we may conclude that
fðu1Þ � fðuiÞ\0 8 2� i, and the sequence {u1} is monoton increasing,15 i.e.,
uiþ 1 [ui and thereby assuring the convergence to the exact solution, i.e., we have

�u ¼ limi!1 ui:
In this case, the iterations of ui are defined by:

(13) uiþ 1 ¼ yi
yi�y1

� u1 þ y1
y1�yi

� ui; i� 2; yi ¼ fðuiÞ; fðu1Þf ðu2Þ\0; i ¼ 2 and

fðu1ÞfðuiÞ\0 is satisfied automatically.

In cases were f(u) is concave, i.e. 8 : u2 �u�u1, we may conclude that:
fðu2ÞfðuiÞ\0 is satisfied automatically, provided that fðu1Þfðu2Þ\0, and the

iteration formula is: [18, 35]

(14) uiþ 1 ¼ y2
y2�yi

� u1 þ yi
yi�y2

� u2 ; i� 3; yi ¼ f ðuiÞ; if i ¼ 2 use (13) above.

Again we obtain a monoton decreasing sequence, i.e., uiþ 1\ui that is bounded
from below and therefore assuring the convergence to the exact solution �u, i.e.,

�u ¼ lim
i!1

ui:

In all cases where f(u) is neither convex nor concave for u1 �u�u2, we can
obtain a similar formula to (13) and (14). However, since we have assumed that u1

and u2 are sufficiently close to �u our function f(u) will be necessarily either convex
or concave in the vicinity of the root u of (12). Of course we have also made use of
the fact that f(u) is continuous on the interval specified above. Hence it suffices to
use either (13) if fðu1ÞfðuiÞ\0, or (14) whenever fðu2ÞfðuiÞ\0.

We have therefore established the convergence of the iteration method known as
“Regula Falsi” when applied to our navigational problem of finding the roots of f
(u) = 0, provided that fðu1Þfðu2Þ\0:

Next let us discuss an alternative method to the “Regula Falsi” that does away
with checking for convexity or concavity all together. In this method, we utilize the
last two computed points, i.e., ui−1 and ui to generate the next point ui+1 in the
sequence resulting in the iterative formula:

(15) uiþ 1 ¼ yi
yi�yi�1

� ui�1 þ yi�1
yi�1�yi

� ui, i� 2; fðu1Þfðu2Þ\0; yi ¼ fðuiÞ:
This stationary iterative method is called the “Secant Method”.
It can be shown that if u1 and u2 are close to the root �u of (12), and provided

that f′(u) and f″(u), i.e., the first and second derivative of f(u) exist, and also

15And bounded from above.
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f 0ðuÞ� 0 for all u sufficiently close to �u, this method will converge to the solution
�u. In the case of our special function f(u) defined by (11) and (12), these conditions
are satisfied and we can be assured to have another convergent method at hand.

Up to this point, nothing “NEW” has been revealed except for those special
applications of well-known mathematical procedures to navigation. At this point of
our investigations, navigators who are accustomed or compelled to plot and see
LOPs will ask how these methods I’ve devised relate to the method of an assumed
position and to the concept of position lines? Here is the answer.

In Sect. 2.4, the functions g(u) and h(u) are actually the same function F that
also depends on distinct parameters, i.e., gðuÞ ¼ Fðu; a1; d1, GHA(S1)),
hðuÞ ¼ Fðu; a2; d2;GHAðS2ÞÞ, and were approximated by straight lines (See
expression 20) and are restated here as:

(16) L1: k ¼ gðu1Þþ gðu1Þ�gðu2Þ
u2�u1

� u� u1ð Þ, and

L2 : k ¼ hðu1Þþ hðu1Þ�hðu2Þ
u2�u1

� u� u1ð Þ, subject to fðuÞ ¼ gðuÞ � hðuÞ
and fðu1Þfðu2Þ\0:

Recall that u1 has been obtained by another independent procedure and therefore
should be close to the true latitude.

For instance, u1 can be obtained by meridian observation, POLARIS observation,
circumpolar stars, azimuth observations and, if everything else fails, by dead reck-
oning. As I said before, a prudent navigator always keeps a close track on his latitude.

If fðu1Þ\0, then u2 should be close to u1, up to about one degree apart, if
possible, and such that fðu2Þ[ 0. In the case where fðu1Þ[ 0, then we require that

fðu2Þ\0:
A very simple way of obtaining these values for u is to choose a lower and upper

bound for the true solution, i.e., if u1 �u�u2 and u2 � u1 � 10, so that all that is
actually needed is an intelligent approximation to the true latitude of the observer.

It follows then that L1 and L2 defined in this manner may be interpreted as lines
of positions and are, by mathematical character, chord or secant lines. Their
intersection �k and �u is obtained by computing �u from:

gðu1Þþ gðu2Þ�gðu1Þ
u2�u1

� u� u1ð Þ ffi hðu1Þþ hðu2Þ�hðu1Þ
�u2�u1

� �u� u1ð Þ, resulting in:

(17) �u ¼ y2
y2�y1

� u1 þ y1
y1�y2

� u2 ¼ u3, �k ¼ gð�uÞ, yi = f (u1).

Therefore, the intersection for our positions line L1 and L2 of (16) is actually
equal to the first iterative of our iterative method referred to as “Regula Falsi”,
(13) or (14). By replacing the set of values u1, u2 by u1, u3 or u2, u3 in our lines of
positions (16) we obtain a sequence of position lines Li;Liþ 1 whose intersections
correspond exactly to the iterations of the well-known regula falsi and are not
merely position lines of intelligent guesses as in other non-convergent methods.

It should be noted that at each iteration, or for each pair of positions lines defined
by (16) it is only necessary to compute the values yi ¼ fðu1Þ once, which implies
that the same trigonometric function F(u,….) defined by (11) has to be evaluated
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only twice at each step. The only exception is the first iteration that requires the
evaluation of F(u,….) four times. Furthermore, the point of intersection is found by
calculating a simple algebraic formula (13) or (14) as compared to evaluating
formula (5). Also note that kl ¼ gðulÞ ffi hðulÞ, where “l” denotes the index of
the last iteration.

Of course, all those iterative methods require a programmable calculator in case
they are intended for practical applications and not only for theoretical purposes.

2.9 An Approximate Method Based on Matrices
and the Least Square Approximation

In this section let’s consider the case where n > 2, i.e., the case where we have
more than three equations for the three unknown components of the position vector
—more than two celestial objects corresponding to n vectors xk of the substellar
points Sk given by Sect. 2.6, expression (1). The corresponding system of
non-linear equations is then given by Sect. 2.6, expressions (2a) and (2b) which in
matrix notations can be written as:

(1a) A �~xþ~L0 ¼ 0, and
(1b) ~xk k2¼ 1, where “A” denotes the coefficient matrix:

A ¼

x1y1z1
x2y2z2
. . .. . .. . .
. . .. . .. . .
xnynzn

0BBBB@
1CCCCA, and as before ~L0 ¼

� sin H0;1

� sin H0;2

. . .. . .. . .

. . .. . .. . .
� sin H0;n

0BBBB@
1CCCCA

It should be obvious that, in general, such a system as defined by (1) will not
possess a solution unless ~L0 and A are exact which, in praxis, appears to be
impossible. Then, if the mathematical problem defined by (1) does not have a
solution for a given ~L0 and A, what are we looking for? Of course we are looking
for an approximation~y to the true position vector~x that physically exists. In order
to define such an approximation mathematically, we proceed as follows:

First we must approximate the function fð~xÞ ¼ ~xk k2¼ 1 by a linear function
�fð~xÞ ¼~a~xþ b. This appears the most objectionable part of this approximation
method. Although we are already familiar with the problem of approximating a
sphere by its tangent plane (see Sect. 1.1), we still have to determine the point~x0 on
the sphere where we want the tangent plane to touch the sphere. This, in turn,
implies that we require an initial approximation to the position of the observer.

Although the Least-Square Approximation generates numerical values in almost
all cases under consideration, even in such cases where the parameters are blunder,
it remains to be seen what happens if the determinant of the matrix of the normal
equation is nearly zero.
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The actual problem or approximating the function fð~xÞ by a linear function
fLð~xÞ ¼ ~a~xþ b can readily be solved by applying Taylor Series expansion of
functions of several variables to fð~xÞ. By truncating this series after the linear part
we obtain the approximation:

fð~xÞ ¼ fð~x0Þþ @f
@x x� x0ð Þþ @f

@y y� y0ð Þþ @f
@z z� z0ð Þþ � � � hence:

fð~xÞ ¼ x20 þ y20 þ z20 � 1� 2 x20 þ y20 þ z20
� �þ 2 x0xþ y0yþ z0zð Þ or

¼ 2 x0xþ y0yþ z0zð Þ � 1þ x20 þ y20 þ z20
� �þ � � �

and our linear approximation fLð~xÞ ¼ ~a~xþ b ¼ 0 becomes:

(1b) x0xþ y0yþ z0z� 1þx2
0 þy2

0 þz2
0

2 ¼ 0.
By including this linear equation in our linear system (1a), we have succeeded in

replacing the non-linear system (1) by the linear system:

2. AL~xþ~L0;L ¼ 0, where
AL ¼

x1y1z1
x2y2z2
. . .. . .. . .

. . .. . .. . .

xnynzn
x0y0z0

0BBBBBBBB@

1CCCCCCCCA
, and ~L0;L ¼

� sin H0;1

� sin H0;2

. . .. . .. . .

. . .. . .. . .
� sin H0;n

� 1þx2
0 þy2

0 þz2
0

2

0BBBBBB@

1CCCCCCA

Nevertheless, we still have to deal with n + 1 linear equations for the three
unknown x,y,z which do not have a solution in general.

For the moment, let us assume that we have found the exact solution vector ~x.
Substituting it in (2) will result in an equation of the form:

(3) AL~xþ~L0;L ¼~v, where ~v represents the error of the system (2).
However, we actually do not know the exact solution to our problem and

therefore, cannot determine ~v, yet… but we may interpret expression (3) as the
definition of~v. Our approximation for solving (3) consists in computing a vector y
in such a manner that the resulting error v is defined by:

(4) ~v ¼ AL~xþ~L0;L so as to satisfy the Least-Square requirements, namely:
vLk k2¼ Min vk k2¼ Min~vT �~v

The problem of finding vector~vL is relatively easy in theory, providing that the
reader is familiar with the elements of Matrix Algebra.

First, let’s recall the definition of the “Transpose AT of the matrix A”.
Accordingly, the transpose is obtained by merely interchanging rows and columns
of A. Therefore, by taking the transpose of (4) and recalling that the transpose of a
sum is the sum of the transpose, we find that:

(4′)~vT ¼~yTAT
L þ~L

T
0;L. Here, we also have made use of the fact that the transpose

of a product is equal the product of the transpose of the factors but in reverse order.
By recalling the definition of the inner product of vectors, we conclude that:
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~vT �~v ¼ vk k2¼~v �~v ¼ AL~yþ~L0;L
� �2

: By employing the well-known for-
mula for the vector derivative of the inner product, i.e., the expression:

@
@x f

!
ðx!Þ g!ðx!Þ ¼ g0

!
ðx!ÞT � f

!
ðx!Þþ f 0

!
ðx!ÞT � g!ðx!Þ to the case where g

!ðx!Þ ¼ f
!
ðx!Þ.

We find that @
@x jj f

!
ðx!Þjj2 ¼ 2 f 0

!
ðx!ÞT � f

!
ðx!Þ, and hence for ~fð~yÞ ¼

AL~yþ~L0;L that
@
@y vk k2¼ 2 AT

LAL~yþAT
L
~L0;L

� �
which implies that the vector ~yL that minimizes

vTv ¼ vk k2 must satisfy the equation:

(5) AT
LAL yL

! þAT
L L0;L

! ¼ 0. This equation is called the “Normal Equation”
corresponding to the linear system (2)

It can be shown that if the columns of A are linearly independent, the inverse

AT
LAL

� ��1
exist, and therefore:

(6) yL
! ¼ � AT

LAL
� ��1 þAT

L L0;L

!
. Substituting the vector yL

!
into Eq. (4) yields:

(7) vL
! ¼ �AL AT

LAL
� ��1 þAT

L L0;L

! þ L0;L

!
.l

Although the matrix AT
LAL

� ��1
may exist, the method explained herein may still

fail if the matrix AT
LAL is ILL-CONDITIONED, i.e., in all cases where the deter-

minant of this matrix is nearly zero.
Therefore, it is imperative that the navigator selects the set of COs carefully in

order to avoid such ill-conditioned matrices. Also note that the required approxi-
mate position of the observer is actually given by the expression (6), i.e., ~x ffi~yL.

In conclusion, the method of Least Squares based on matrices is by no means a
fool proof method, aside from always being just an approximate method that also
requires a programmable calculator or PC. Furthermore, it still remains to be seen
how we can find a suitable approximation~x0 in the first place since the linearization
of the quadratic equation strongly depends on it. (It is my conviction that by simply
employing an assumed—Dead Reckoning—position for vector ~x0, it may not be
possible to obtain acceptable results.

A much better approach might first be to select a compatible set of two equa-
tions from the n equations and then by solving the corresponding n = 2 problem
with the exact method, the navigator would obtain the desired approximation, i.e.,
the vector ~x0.

[51, 52, 53]
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2.10 Sumner’s Line of Assumed Position Method
as Scientific Method

In this section I would like to examine the mathematical aspects of the “Line of
Assumed Positions Method”—LOPs method—also referred to as Sumner’s Method.
This method has been classified as an empiric method until now because no analytic
assessment of the errors due to various approximations employed has been available.
For instance, the numerical results for the latitude and longitude depend on, among
other things, the choices of the assumed position and on the deviation of the true
azimuth from the calculated azimuth, just to mention a few of the critical parameters.
Nevertheless, this method works well in most practical cases where the navigator
selects the COs prudently and exercises great care in not including significant errors
in the observation data. Therefore, it does not come as a surprise that all major
Navies and Merchant Marines have, at one time or another, adopted this method as
their standard method of applied arts. The fact that said method has served navi-
gators for almost two centuries (since 1837) so well may explain why no serious
efforts have been made to elevate this method to a scientific method.

From the day I started using this method for Air Navigation, it has always
surprised me that I was able to obtain acceptable results despite the fact that the
method itself was erroneous; the plotting sheets were all Non-Mercator sheets; the
plotting instruments were all rather crude in design; and the tables for finding the
calculated altitudes and azimuths lacked accuracy. At the very extreme, I was even
able to plot a “fix” on the high-speed side of my aircraft computer. It also surprised
me how many efforts and futile attempts have been made all over the world to avoid
using elementary mathematics in the process of finding the calculated altitude and
azimuth. Those efforts can only be measured in tons of paper-publications.

Heretofore, I have ignored the question of why this empirical method almost
always work because later on in my navigation experience, I only used the exact
methods of astronavigation. In this book, I have included three exact methods
together with their algorithms and error analysis. None of these methods depend in
any way on a particular calculator or PC and in an emergency such as leaked or
dead batteries, Logarithmic and Trigonometric tables can be used in the place of the
faulty calculators (See Sect. 2.11).

However, with the advent of the availability of sophisticated calculators that cost
less than the afore mentioned tables, things have changed again. It has been brought
to my attention that students of Celestial Navigation use their programmable cal-
culators with a program for the celestial LOP method in place to approximate the true
solution by successively employing the result of one iteration as the new assumed
position for the next iteration. For example, one group of students on the West Coast
of the United States used the coordinates corresponding to a place off the coast of
New England as their first assumed position and, after several iterations, had
determined their approximate position on the West Coast. In 1837, Capt. Thomas
Sumner probably never conceived of a future when computational machines would
turn his empiric method into a mathematical method of successive approximations.
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As a mathematician, I am keenly aware that certain iterative methods for solving
transcendental equations are very powerful and their convergence and rate of con-
vergence can be determined analytically. Therefore, from the mathematical point of
view, it suffices to prove that Sumner’s Method, when applied successively, is
equivalent to solving a well-defined mathematical problem of successive approxi-
mation by either the tangent or secant method as discussed in Sects. 2.6 and 4.1.

The problem of showing the equivalence of these two methods translates into
saying that for a given problem of finding an approximate solution by using
Sumner’s Method, there exists an element in the corresponding sequence of itera-
tions of the method of successive approximations as defined in Sect. 2.8. By repe-
ated application of the LOP method to the points PA corresponding to the points P of
the convergent sequence of iterations, one can obtain the exact solution, i.e., the
exact position of the observer. Therefore, Sumner’s Method, when applied suc-
cessively, has become a real mathematical method. Because of the great importance
of this, a sketch of the proof of the statement of equivalence is given below:

OnThe Equivalence of Sumner’s LOPsMethod and theMethod of Successive
Linear Approximation for Solving the System of Transcendental Equations for
Finding the Exact Solution of our Fundamental Problem of Navitation.

Let S1 denote the substellar point of the first CO and S2 the substellar point of the
second CO. Furthermore, let k = g(u) and k = h(u) be the equations of the circles
C1 and C2 of equal altitudes about S1 and S2 respectively and with g(u) and h(u)
defined by the expressions (17) and (18) of Sect. 2.4.

For now, let us assume that we have found the two latitudes u1 and u2 that are
close to the true latitude u, as for instance, where u1 and u2 are lower and upper
bounds respectively, i.e., u1 � u � u2. Then u1 and k1 = g(u1) define a point
on S1 on the circle C1, and u2 and k2 = h(u2) define another point S2 on C2. By
linearization of g(u) and h(u) about S1 and S2 respectively, we obtain the two
tangent lines L1 and L2 to these circles at these points. In particular, we obtain the
following two linear equations:

L1 : k ¼ gðu1Þþ g0ðu1Þ � ðu� u1Þ
L2 : k ¼ hðu2Þþ h0ðu2Þ � ðu� u2Þ

Next, we erect the perpendicular lines LN
1 and LN

2 through S1 and S2 respectively.
Theses lines will pass through the centers of S1 and S2 of the circles C1 and C2

respectively—(See Fig. 2.10.1) and are analytically given by:

LN
1 : k ¼ gðu1Þ � 1

g0ðu1Þ � ðu� u1Þand
LN
2 : k ¼ hðu2Þ � 1

h0ðu2Þ
� u� u2ð Þ (See Fig. 2.10.1). Here g′(u1) 6¼ 0,

h′(u2) 6¼ 0, and g′(u1) 6¼ h′(u2).

The normals LN
1 and LN

2 to L1 and L2 respectively then intersect at the point
PA: (kA, uA) given by:
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uA ¼ g u1ð Þ � h u2ð Þ
h0 u2ð Þ � g0 u1ð Þ � g

0 u1ð Þh0 u2ð Þþ u1 � h0 u2ð Þ � u2g
0 u1ð Þ

h0 u2ð Þ � g0 u1ð Þ ;

kA ¼ g u1ð Þ � 1
g0 u1ð Þ � uA � u1ð Þ:

On the other hand, the two tangent lines L1 and L2 intersect at a point ~P : ~k; ~u
� 	

that will be closer to ~x : k;uð Þ than the previously defined points because of the
contraction mapping defined by the iterative process. Therefore ~P defines the next
iterative approximation.

The equivalence of said methods implies that the following results hold:

RESULT #1:
For any u1 and u2 sufficiently close to the true latitude u the approximation for the
circles of equal altitudes C1 and C2 by their respective tangent lines L1 and L2

yields a point ~P defined as the point of intersection of these two lines.
The same approximation can also be found by the LOPs or Sumner’s Method

provided that the assumed position PA coincides with PA * (kAuA) as given above.

RESULT #2:
Conversely, for any given assumed position PA the azimuths or the corresponding
navigational triangles together with the true and calculated altitudes, the two points
s1 and s2 on the circle of equal altitudes and henceforth the two LOPs that coincide
with the tangent lines at s1 and s2 respectively, intersect at the point ~P that corre-
sponds to the iteration defined above.

RESULT #3:
Accordingly, we may conclude that from the mathematical point of view the two
methods are equivalent and hence successive application of the method of assumed
positions is equivalent to the method of successive iteration of the tangent line

Fig. 2.10.1
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method that constitutes a well established mathematical method for approximating
the true solution. Furthermore, the well-known error analysis for this method can
now be readily applied to the LOPs method.

RESULT # 4:
For the mathematically minded only—the concept of equivalence as defined above
does not, however, necessarily imply that the convergence of the tangent iterative
method assures also the convergence of the corresponding LOPs method to the true
solution. However, it can be shown that if the two iterative sequences {ui} and
~uif g defined by the iterative tangent method and the LOPs method respectively are

also contracting, i.e., if 8e[ 0; 9 : N)8i�N) ui � ~uij j\e then the LOPs
method will also converge to the exact solution.

Proof Since lim uif g
i!1

¼ u , 8e[ 09 : N)8i[N) ~u� uij j\ e
2. Because these

sequences are also contracting we conclude that:
8e[ 09 : ~N)8i�N) ui � ~uij j\ e

2, hence 8i� max (N, N′). We have:
~ui � uj j ¼ ~ui � uð Þþ ui � uð Þj j � ~ui � uij j þ ui � uj j\e and therefore:
lim
i!1

~ui ¼ u:

2.11 Numerical Example and Logarithmic Algorithm

Heretofore, I have included a section on the use and limitations of the assumed
position method because of its wide-spread use and the navigators adherence to
tradition. However, as an advocate of the use of calculators and computers as well
as of the exact mathematical methods, I felt compelled to offer an algorithm that can
also be employed in case all the computers and calculators on board fail to function
(a possibility with a very low statistical probability). Therefore, I have devised an
algorithm that can be executed by the use of a pocket-sized table of logarithms.
Because of the wide-spread use of the assumed position method, and my own
earlier exposure to it, I have based this algorithm on the assumed method formulae
as discussed in previous chapters and I keep it only for emergency purposes. [50]

Let’s recall the formulae corresponding to the assumed navigational triangle
PŜZA as:

(i) sin aC ¼ sinuA � sin dþ cosuA � cos d � cos tA, where tA = ± (GHA
(S) + kA) + 360°
+ if observer is West, − if East

(ii) sin Az ¼ cos d � sin tA
cos aC

(iii) ZA ¼ AZ if ZA � 180�

360� � AZ if ZA [ 180�

�
The subscript A refers to assumed and C to computed values. The resulting

algorithm is given in the form of schematic program.
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ALGORITH C
FOR THE LOGARITHMIC—PRODEDURE

i.)   AAAC tsin sin soc soc socasin •δ•ϕ + δ •ϕ= , where tA = ± (GHA (S) + λA) + 360°*

ii.)   
C

A
z acos

tsoc nisAsin •δ= , where 
⎪⎩

⎪
⎨
⎧

>−

≤
=

oo

o

Z 081if063 A

180ZifA
Z

NZ

NZ
N

* + if S is West of Z; - if S is East of Z.  Employ the second part of formula i.)  

to calculate tA 

First part:

Calculation of aC:

I.  Define 

 A = log (± sin φA) = log (± sin ____)  =  ________________  
⎩
⎨
⎧

<−
>+

0sin_____
0sin_____

if
if

 B = log (± sin δ)    = log (± sin ____)  =  ________________ 

II.  Calculate:

 A  + B  and              ______________  =  __________________ 

 log -1 (A  + B)  = log -1____________  =  __________________ 

III.  Define:

 C = log cos φA     =  log cos _________  =  _________________ 

 D = log cos δ        =  log cos _________  =  _________________ 

 E = log (± cos tA)  = log (±__________)  =  _________________  
⎩
⎨
⎧

<−
>+

0tcosif
0tcosif

A

A

IV.  Calculate

 C + D + E              =  ________________ =  _________________ 

             log -1 (C+D+E)     = log -1 ___________ =  _________________ 

V.  Calculate
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 F = ± log -1 (A+B) ± log -1 (C+D+E) use:   

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<−
>+

−
+

cosiftermondsecin

<δϕ
>δϕ

0t
0tcosiftermondsecin

0nis nisiftermfirstin
0nis nisiftermfirstin

A

A

A

A

                 =  _________________________ , and 

             G = log (± F), and    = ___________________  
⎩
⎨
⎧ >+

0Fif
0Fif

 aC =  ± (log sin) -1 G =  ___________________ 
⎩
⎨
⎧

<−

<−
>+

0Fif
0Fif

________________________________________________________________________

________________________________________________________________________

Second Part: Calculation of ZN: 

VI.  Define:

 H = log (± sin tA)  =  log (± sin ______)    =  ______________ 
⎩
⎨
⎧

sinif
sinif

A

A

 I  =  log cos aC      =  log    cos ________   =  ________________ 

J  =  log cos δ       =  log    cos ________   =  ________________  

VII. Calculate:

J + H - I                                                       = __________________ , and  

 AZ = ± (log sin)-1 (J + H - I)                       = __________________ 
⎩
⎨
⎧

sinif

<−
>+

0t
0t

<−
>+

0t
0tsinif

A

A

⎪⎩

⎪
⎨
⎧

>−

≤
=

oo

o

Z 081if063 A

180ZifA
Z

NZ

NZ
N                = ____________________ 
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Note that “log−1” denotes the anti-logarithm, i.e., log�1x ¼ y implies that x =
log y, and log sinð Þ�1x ¼ y implies that x ¼ log sinð Þy Also note that
log sinð Þ�1x ¼ sin�1 log�1x

� �
and log cos x ¼ log cos xð Þ.

Here’s how it works. Let us consider the following example:

Example

Given the following data for a LOP of a rising CO.-S,
Assumed position uA = −25°, and kA = 110°
Ephemeral data of S: GHA (S) = 155°, d = −9°, and S rising NE of ZA.
Find aC and ZA of S

Solution:
By using the second part of (i) we find that
tA ¼ � 155� þ 110�ð Þþ 360� ¼ 95�

Substituting these values in our program-algorithm C and using the logarithmic
tables we find that:

aC ¼ �410; and ZA ¼ 79�440

Algorithm C
For the Logarithmic—Prodedure
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Note that “log−1” denotes the anti-logarithm, i.e., log�1x ¼ y implies that
x ¼ log y, and log sinð Þ�1x ¼ y implies that x ¼ log sinð Þy. Also note that
log sinð Þ�1x ¼ sin�1 log�1x

� �
and log cos x ¼ log cos xð Þ.

Reviewing the calculations above, the reader will realize that the logarithmic
procedure is fairly complicated by the fact that the domain of the logarithmic
function log x is confined to the set of all real positive numbers. Because of this, the
underlying formulae have to be altered by the introduction of the factor −1, thereby
somewhat complicating the resulting algorithm. Just by mixing up a plus or a minus
sign, this algorithm can produce the wrong result. Because of that, any navigator
wishing to use this logarithm needs to practice with it in order to acquire the
necessary efficiency. [30]

Finally, some practical advice about the acquisition of suitable logarithm-tables.
There are, of course, a multitude of fine tables available, but some may cost more
than the inexpensive scientific calculator that uses them. To use the above loga-
rithm, a navigator only need a compact set of tables comparably priced to the
calculator. [36]
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2.12 How an Approximate Position at Sea or Air Can Be
Found if an Approximate Value for the Azimuth
or the Parallactic Angle Is Known in Addition to One
Altitude

As has been pointed out already in some of the previous sections of this book, the
main objective of any type of analysis of astronavigation should be to analyze
existing methods of navigation and to promote the development of new and lesser
known independent analytic methods for finding the exact or approximate position
at sea or in the air by computational procedures. Although I do not advocate for the
LOP method of celestial navigation as analyzed in the previous sections, I appre-
ciate some of its merits and encourage the use of the navigational triangle of
assumed position for use in other methods. In this section, we will use only one
altitude observation in conjunction with an approximation of either the azimuth or
the parallactic angle to determine the approximate position of the observer.

First, we will have to derive the simple formulae for finding the exact position of
an observer when the altitude of one CO together with the exact azimuth or the
parallactic angle is known. Secondly, we will also discover an approximate method
for computing the azimuth and also the parallactic angle.

From the practical point of view, there is a difference between finding an
approximate value for the azimuth and the parallactic angle. In the case of the
azimuth there are basically two methods for finding an approximation to it, namely,
by observations or by computation. Of course, as every navigator knows, measuring
the azimuth of a CO from a moving vessel or an airplane without employing special
instruments is very difficult especially if a high degree of accuracy is required.

In this context, the reader should be reminded that ancient Polynesian sea-farers
hardly ever used any type of altitude observations, except for rising, setting and
zenith COs, i.e., for altitudes of zero or ninety degrees. They relied chiefly on
azimuth observations and on the concept of constellations.

The other method for finding the desired approximation for the azimuth rests
strictly on computational methods (as presented in this section). Finding an
approximate value for the parallactic angle the navigator has to rely on indirect
methods only and such methods will always be based on another approximation and
will involve a series of computations.

For now, let’s assume that we know the elements d, h0, and AZ exactly, and also
let’s assume that we have the exact UTC time at the instant the altitude and azimuth
were measured. Then by applying the COS-TH. to our navigational triangle, we
obtain:

sin d ¼ sin h0 � sinuþ cos h0 � cosu � cosAz

with z ¼ 90� � h0, �d ¼ 90� � d, �u ¼ 90� � u, and
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t ¼ �ðGHA(S)þ kÞ þ if West
�if East

�
Az ¼ Zn if Zn � 180�

360� � Zn if Zn is[ 180�

�
Next we define the auxiliary parameters A, B, C and a as follows (Fig. 2.12.1):

A ¼ sin h0;

B ¼ cos h0 � cos Az;

C � cos a ¼ A

C � sin a ¼ B

From these definitions it follows then that for all A 6¼ 0; a ¼ tan�1 B
A, and

C ¼ 1� cos2 h0 sin2 AZ
� �1

2: Then the above equation for the latitude
becomes:

sin d ¼ A � sinuþB cosu ¼ Cðcos a � sinuþ sin a � cosuÞ
¼ C � sinðuþ aÞ , and

(1) u ¼

sin�1 sin d

ð1� cos2 h0 � sin2 AzÞ1=2
 !

� tan�1ðcosAz

tan h0
Þ; if h0 6¼ 0

cos�1 sin d
sin Az

� �
; if h0 ¼ 0; andAz 6¼ 90�

sin�1 sin d
sin h0

� �
; if Az ¼ 90�; and h0 6¼ 0

8>>>>>>>>><>>>>>>>>>:
If h0 = 0 and Az = 90°, then necessarily d = 0 and no value for u can be found by
the above procedure.

In order to compute the local hour angle, we employ once more the COS-TH. of
spherical trigonometry and obtain the well-known formula:

Fig. 2.12.1
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(2) t ¼ cos�1 sin h0�sin d� sin u
cos d cos u

� 	
, and subsequently

(3) k = −GHA (S) ± t, + if S is West, and − if S is East of observer.

As can readily be seen, the critical values for altitudes are the ones that are close
to 90° and 0°, and azimuths close to 90° and 270°. Furthermore, all ambiguities due
to the use of the multivalued functions sin�1 x; cos�1 x; and tan�1 x in the above
formulae must be removed by using the facts that juj\90�; t[ 0, and the com-
puted position must be in accordance with the prescribed value of Zn.

In all critical cases where h0 is either close to zero or ninety degrees and/or the
azimuth ZN is close to ninety or two hundred and seventy degrees, the measured or
computed azimuth that enters the above equations must be determined with the
highest degree of accuracy possible. In all other cases, one can expect to obtain
acceptable results by approximating the true azimuth by values that differ in
magnitude by not more than half a degree. Nevertheless, even in cases where the
error in azimuth is in excess of half a degree, this method may still produce results
that meet the actual requirements. This, in turn, suggests that it may be possible to
employ approximations to the true azimuth that have been obtained by computa-
tional methods. Of course, such type of methods are always based on other
approximations, as will be shown shortly. Therefore, let us devise a fairly simple
method of finding an approximation to the true azimuth by computational
procedures.

Since, by now, the reader should be quite familiar with the classical method of
LOPs, he will appreciate that we are going to adopt the navigational triangle of the
assumed position method as the base for computing an approximation to the az-
imuth. By doing so, we actually use only one altitude observation together with an
assumed position to find the approximate position of the observer. Therefore, this
approximation is bound to fail unless the assumed position is very close to the true
position of the observer. (See also the numerical example.)

Although in practice it may be difficult to find an assumed position that is
sufficiently close to the true position, we shall nevertheless state the well-known
formulae for finding the azimuth of the assumed position triangle (Fig. 2.12.2).

Accordingly, if the assumed position Z′ has the coordinates ðkA;uAÞ; and if
“A′Z” denotes the azimuth angle of this triangle, then we conclude that:

(4) tA ¼ �ðGHA(S)þ kAÞ,
(5) hC ¼ sin�1ðsin d � sinuA þ cos d � cosuA � cos tAÞ; and
(6) A0

z ¼ sin�1 cos d � sin tA
cos hC

� �
, where “hC” denotes the computed altitude.

Because, in general, it is virtually impossible to find an assumed position that is
close to the true position, it is a good idea to use the physical method over this
computational method whenever possible. (See numerical example below.)
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Next, let’s consider some numerical examples that are based on almost critical
input data.

Example 1 Date: 06/13/08, UTC: 20h 00m 00s, C.O.: Sun 
,
h0 ¼ 81�2901400 ¼ 81�:48735571
Zn ¼ 268�380;
d ¼ 23�150:8N; (Taken from NA)
GHA Sð Þ ¼ 119�560:8 (Taken from NA)
S observed South West of observer.
Problem: Find the position Z of the observer.
Solution:
Compute: Az ¼ 360� � Zn ¼ 91�220 ¼ 91�:3666…, and

1� cos2 h0 sin2 AZ
� �1

2¼ 0:988989521, and

sin�1 sin d

1�cos2 h0 sin2 AZð Þ12

 !
¼ sin�1 0:399354739 ¼ 23�:53784629 and

tan�1 cos AZ

tan h0

� 	
¼ tan�1 �0:003569831ð Þ ¼ �0:204535381, and

u ¼ 23�:74238167 ¼ 23�440:54N, and
t ¼ cos�1 0:986941114 ¼ 9�:269673724, and
k ¼ �GHA Sð Þþ t ¼ �110�:6769923 ¼ 110�400:62W

Example 2 Same data as in the first example—except for the azimuth that is now to
be approximated by Z0

n ¼ 269° (obtained by observations).
Problem: Find the approximate position Z′ corresponding to this approximate

azimuth Z0
n by invoking formulae (1)–(3).

Solution:
Compute: A0

z ¼ 360� � Z0
n ¼ 91�, and

1� cos2 h0 sin2 A0
Z

� �1
2¼ 0:9883865593, and

Fig. 2.12.2
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sin�1 sin d

1� cos2 h0 sin2 A0
Z

� �1
2

0@ 1A ¼ 23�:53784629 and

tan�1 cos A0
Z

tan h0

� �
¼ �0:204535381, and

u0 ¼ 23�74238167 ¼ 23�440:54N, and
t0 ¼ cos�1 0:956941114 ¼ 9�:269673724, and
k0 ¼ �GHA Sð Þþ t ¼ �110�:6769923 ¼ 110�400:62W

Example 3 All relevant data as in Example 1, but here the azimuth is not known.
However, an approximate, i.e., an assumed position Z0

A �ðkA;uAÞ is given as
uA ¼ 23�300, and kA ¼ �110�300.
Problem: Find an approximation to the azimuth by invoking formulae (4)–(6)
Solution:
Compute: tA = 119°.946666 − 110°.5 = 9°.44666, and
hC ¼ sin�1 0:988566146 ¼ 81�:32741377, and

A0
z ¼ sin�1 0:999984545 ¼ 89�:68145356

90� þ 0:31854644

�
according to Sect. 2.4, formulae (6′).
This ambiguity is removed by recalling that our CO lies to the South West

(quadrant III) of our observer. Hence:
A0

z ¼ 90�:31854644 ¼ 90�190:1

Example 4 Here, we consider the same case as in Example 3 but with a different
assumed position, one that is further away from the true position, namely:

uA ¼ 24� N, and kA ¼ 111� W.
Problem: Find the approximate value for the azimuth corresponding to the above

assumed position.
Solution:
Compute: tA ¼ 119�:946666� 111� ¼ 8�:94666, and
hC ¼ sin�1 0:989706381 ¼ 81�:77198796, and

A0
z ¼ sin�1 0:998313337 ¼ 86�:67177368

90� þ 3:328226319

�
according to formulae (6′), Chap. 2, Sect. 2.4.
However, since S lies to the South West (quadrant III) of our observer, we

conclude that:
A0

z ¼ 93�:328226319 ¼ 93�190:7
Therefore, this approximation is way off and not acceptable for further use.
Similar to the method of employing the azimuth angle Az, one can also use the

angle X subtended by the polar distance of S (See Fig. 2.12.3) and the zenith
distance, referred to as the parallactic angle, to compute the position of the observer.
From the mathematical point of view, these two methods are basically the same.
However, from the point of view of the navigator, these two methods are quite
different since the navigator has no physical aids available to measure, the

2.12 How an Approximate Position at Sea or Air … 107

http://dx.doi.org/10.1007/978-3-319-47994-1_2


parallactic angle. Therefore, by employing this angle in computational procedures,
navigators have to rely on computational methods for actually finding it. This, in
turn, requires the use of other approximations thereby making it more difficult.

Again, let us first derive the necessary equations for finding the position of the
observer Z whenever one altitude observation together with the corresponding
parallactic angle X is available.

By referring to Fig. 2.12.3, and applying the COS-TH. and SIN-TH. we find
that:

(7) u ¼ sin�1ðsin d � sin h0 þ cos d � cos h0 � cosXÞ;X\90�; and

(8) t ¼ sin�1 cos h0 sin X
cos u

� 	
[ 0, and

(9) k ¼ �t� GHA Sð Þ; þWest;�East of observer.

In order to find an approximation to the parallactic angle X by computation,
whenever a suitable assumed position is available, we refer to Fig. 2.12.4 and
deduce that:

(10) tA ¼ �ðGHA Sð Þþ kAÞþ 360�; and
(11) hC ¼ sin�1ðsin d � sinuA þ cos d � cosuA � cos tAÞ;\90�, and

Fig. 2.12.3

Fig. 2.12.4
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(11′) sin hC ¼ sin d � sinuA þ cos d � cosuA � cos tA, for removing ambiguities
only,

(12) XA ¼ sin�1 cos uA � sin tA
cos hC

� �
Next let us again consider some numerical examples that are based on the same

set of ephemeral data as the previous ones.

Example 5 Given the observed altitude of h0 ¼ 81�:48735571 and the parallactic
angle X = 84°.7553680501.

Problem: Find the position of the observer.
Solution:
By employing the Eqs. (7)–(9) we deduce that:
u ¼ sin�1 0:403037327 ¼ 23�:76819429 ¼ 23�460:1N

t ¼ sin�10:161069275 ¼ 9�:26896620
90� þ 80�:7310338

�
, and since S is visible to the

West of the observer, we conclude that:
t ¼ 9�:26896620, and therefore:
k ¼ �110�:6776938 ¼ 110�400:7W

Example 6 Same ephemeral data as in Example 5, but X is not known.
Problem: Given the coordinates of the assumed position as:
uA ¼ 23�420, and kA ¼ �110�420. Find the corresponding parallactic angle XA

by employing the Eqs. (11)–(12)
Solution:
Compute:
tA ¼ 9�:24666, and
hC ¼ 81�:50933255, and
XA ¼ 85�:21290697, and hence—
DX ¼ X� XA ¼ �0�:4575. . . ¼ �0�:46, that is still acceptable as an

approximation.

Example 7 Same as above except that now:
uA ¼ 24�; and kA ¼ �111�:
Solution:
Compute:
tA ¼ 8�:94666, and
hC ¼ 81�:77198796, and
XA ¼ 83�:07879612, and hence—
DX ¼ X� XA ¼ 1�:676571934. Therefore, this approximation is not

acceptable.
In conclusion, it can be said that these examples confirm the conclusions drawn

in the theoretical part of this section and also demonstrate the importance of using
the correct branch of the inverse trigonometric function.
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2.13 On the Effect of a Change in Time on the Altitude
and Azimuth

Finding a suitable estimate for the change in altitude due to a change in time is of
great practical value to the navigator. Once such an estimate has been found, it will
be possible to reduce two sights taken at distinct instants to two sights taken
simultaneously, provided that the time elapsed between these sights is relatively
small, say, less then 5 min (See Sect. 2.8).

Mathematically speaking, we would like to know how a small change in time
(Dt) results in a change Dh0 in altitude and in azimuth angle DAz. To establish the
desired mathematical relation, we again look at our navigational triangle ZbPS0 (See
Fig. 2.13.1).

According to the COS-TH. of spherical trigonometry we have:
cos z ¼ sin d � sinuþ cos d � cosu � cosH:
For our purposes we can consider that d and u are constants. Therefore, by

differentiating the above expression with respect to H we have:

sin z dz
dH ¼ cos d � cosu � sin H

Next, by applying the SIN-TH. we find that:
sin H
sin z

¼ sin Az

cos d

Substituting sin H ¼ sin z sin AZ

cos d
in the above expression for dz

dH yields:

(1) dz
dH ¼ cosu � sin AZ

With dH
dt ¼ � 15:0400

sec
and z ¼ 90� � h0, we conclude that:

(1′) dh0 ¼ �15:04 � cosu � sin Az � dt. (+ if S rising, − if S setting.)
It should be clearly understood that the expressions (1) and (1′) are exact
infinitesimal relations that give rise to the following finite approximation:

(2) Dh0 ¼ �15:04 � cosu � sin Az � Dt, with Dt in seconds and Dh0 in arcsec-
onds. [4, 13]

Of course the reader should be keenly aware of the limitations of this estimate
for the change Dh0 with regards to the elapsed time Dt. The application of formula

Fig. 2.13.1
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(2) to all cases where Dt is in excess of the imposed limit will certainly result in
erroneous results. Furthermore, the above formula requires a good approximation
or, if possible, a computation of the latitude of the observer. Once such an
approximation has been found, the azimuth angle Az can be calculated by
employing formulae (4)–(6) of the previous Section (Sect. 2.12).

In all cases where the navigator uses Celestial Navigation, the required data in
formulae (4)–(6) can be taken from the navigational triangle of the assumed
position.

In order to improve formula (2) with respect to accuracy, the Taylor expansion
of z(t), i.e., h0 (t) can be readily employed. However, the latter requires an explicit

expression for the rate of change of the azimuth angle, i.e., for dAZ

dt . Therefore, let

us first derive this formula in terms of the known quantities.
Again, let us have another look at Fig. 2.13.1 and conclude that the application

of our Analogue Formula (see Sect. 2.2, formula 2iii) to this triangle results in:
cos d � cosH ¼ cos z � cosu� sin z � sinu � cosAz. Then in accordance with

formula (2ii) Sect. 2.2, we have:

sin H � cos d ¼ sin z � sin Az

Differentiating this expression with respect to H and recalling that z depends on
H (see formula 1), we obtain:

cos d � cosH ¼ cos z � cosu � sin2 Az þ sin z � cos Az
dAZ

dH Combining this

expression with the first formula above, we find that:
dAZ

dH ¼ cot z � cosu � cosAz � sinu; and hence:

(3) dAz ¼ �150:04ðcot z � cosu � cosAz � sinuÞdt, a truely infinitesimal expres-
sion for d Az. By approximating the latter by finite quantities we obtain the
desired formula:

(4) DAz ¼ �150:04ðcot z � cosu � cos Az � sinuÞDt ; jDtj\5min.

We can now turn our attention to the task of improving formula (2). According
to Taylor’s expansion theorem, we have with Dt ¼ t� t0:

Dz ¼ �Dh0 ¼ dz
dt

� 	
t0
�Dtþ 1

2
d2z
dt2
� 	

t0
�Dt2 þ � � � and it is reasoned that the first

two terms on the right hand side of this formula will suffice to achieve the desired
improvement over (2).

Since we have already evaluated dz
dt

� 	
t0
¼ �15:04 � cosu � sin Az (see for-

mula 1), we merely have to differentiate this formula once more to find:
d2z
dt2
� 	

t0
¼ �1500:04 � cosu � cosAz

dAr
Z

dt , where Ar
Z stands for Az in radians.

Hence if Az is given in arcseconds, then dAr
z

dt ¼ sin 100 dAz

dt . Substituting the last

expression in the above equation for d
2z
dt2

, the above approximation for the Taylor

expansion becomes:
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Dz ¼ �1500:04 � cosu � sin Az � Dt � 1500:04 � cosu � cosAz � sin 100 dAZ

dt
� Dt

2

2
:

By employing the expression (3) for dAZ

dt we obtain the desired result:

(5) Dh0 ¼ �1500:04 � cosu � sin Az � Dt� cosu � cosAzðtan h0 � cosu � cosAz�

� sin uÞ � 15:04�Dt
2

� �2� sin 100; + if S Rising, − if S setting; t in seconds, and h0 in
arcseconds.

2.14 How to Determine Latitude at Sea or Air Without
the Use of a Clock

Long before man invented the clock and the chronometer, sailors knew how to
determine latitude at sea and sailed along circles of equal latitude. It may not have
always been convenient, but it was a sure method for making a landfall. Besides
this particular application, exact latitude is imperative for finding longitude and
time. (See Sect. 2.21.)

Of course there are various methods available for finding latitude without the use
of a time piece. However, for our purposes, we shall only look at three:

I. Determining exact latitude by observing two stars simultaneously, or within
a very short interval of time.

II. By observing a circumpolar star at upper or lower culmination.
III. By observing the sun or a star at or near the passage of the local meridian.

(The case where the altitude of POLARIS is employed will be considered in
Sect. 2.16.)

Now, let’s take a look at a couple of examples:

Case #I:

This case has already been covered in Sect. 2.4. Here DS is either computed by
formula (4) in the case of simultaneous observations, or by formula (6) where the
interval T1 − T2 is determined by counting the seconds or by the use of an
Hour-Glass. By entering formula (9) with the known values of the declinations for
S1 and S2 and DS we find d. Next by employing formula (10) with the values for the
declination we find a1. Next by using the values for the observed altitudes a1 and a2,
respectively, we find a2 with the help of formula (11). By recalling the sectors in
which S1 and S2 have been observed, we calculate a with the help of expression
(12) and finally find u by means of formula (13).
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Now, let us consider a numerical example of this very important application.

Example 1

On July 31, 2008, the navigator of a small sailing vessel in the Gulf of Mexico
observes at 04h 20m 00s UTC16 KOCHAB and DENEB virtually simultaneously,
and after reductions, deduces that: a1 ¼ h10 ¼ 31� 310:1 and a2 ¼ h20 ¼ 56� 270:78.
He wants to know on which latitude he is approaching the coast.

Solution:

The application of expression (4) from Sect. 2.4 yields:
DS = SHA (S1)−SHA (S2) = 87°.761.Entering expression (9)with this value,wefind:

d ¼ cos�1 sin 45:311 � sin 74:123þ cos 74:123 � cos 45:311 � cos 87:761ð Þ ¼ 46�:2645:

Entering formula (10) with this value yields:

a1 ¼ cos�1 sin 45:311� sin 74:123 � cos 46:2645
cos 74:123 � sin 46:2645

� �
¼ 76�:5495:

Next by employing formula (11), we find:

a2 ¼ cos�1 sin 56:463� cos 46:2645 � sin 31:5183
sin 46:2645 � cos 31:5783

� �
¼ 39�:9594

Since S12IV and S22I, (See the four sections for the azimuth.), we have
ðS1; S2Þ ¼ IV; Ið Þ; and in accordance with our quadrant formulae (12) deduce:
a ¼ a1 þ a2 ¼ 116�:5089 and therefore by virtue of expression (13), we find that:
u ¼ 90� � cos�1ðsin 74:1233 � sin 31:5783þ cos 74:1233 � cos 31:5783�

� cos 116:5089Þ ¼ 23�:4993 ¼ 23�300 N
Next, let us consider case #II.

Case #II:

First let us recall that for a star to be a “Circumpolar Star” its declination d must
satisfy the obvious condition that d[ 90� � u ¼ �u i.e., the declination of this star
must be greater than the colatitude of the observer. (See Fig. 2.14.1.)

Then we readily deduce from Figs. 2.14.1 and 2.14.2 that:

u ¼ HL
0 þ PL ¼ HL

0 þ 90� � dL, and also
¼ HU

0 � PU ¼ HU
0 � 90� þ dU, if Zn = 0. Similarly we deduce that:

u ¼ HL
0 þ PL ¼ HL

0 þ 90� � dL, and
¼ 180� � HU

0 þ PU
� � ¼ 90� � HU

0 � dU
� �

, if Zn ¼ 180� Hence:

u ¼
HL

0 þHU
0

2
þ dU � dL

2
if Zn ¼ 0

HL
0 þHU

0

2
þ dU � dL

2
þð90� � HU

0 Þ if Zn ¼ 180�

8>><>>:

16The time is actually not required.
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Since for our particular purposes the change in declination within a period of less
then 24 h is negligible, we deduce that:

(1) 17u ¼
HL

0 þH
U
0

2 if Zn ¼ 0
HL

0 þH
U
0

2 þð90� � HU
0 Þ if Zn ¼ 180�

8<: [8, 16]

Furthermore, as long as the error committed by assuming that the actual azimuth
is either zero or one hundred eighty degrees respectively is negligible, expression
(1) constitutes an excellent approximation for the latitude of the observer. The latter
can readily be verified by carrying out an error analysis.

The major disadvantage of this method consists in not always providing a tan-
gible result in low latitudes because the time between the two observations is

Fig. 2.14.1

Fig. 2.14.2

17In all cases where the vessel moves between the two culminations of the star during the period of
12h Sid. T. = 11h.96723467 Sol. M. T. the altitude of the first culmination in formula (1) has to be
adjusted by either adding or subtracting the latitude made good by the vessel during that interval of
time. This change in latitude can be easily calculated by using the corresponding formulae of
Sect. 1.2 or 1.3.

114 2 Astro-navigation

http://dx.doi.org/10.1007/978-3-319-47994-1_1
http://dx.doi.org/10.1007/978-3-319-47994-1_1


exactly 12 h sidereal time and therefore will most likely render the star invisible at
one of its culminations.

Let’s take a look at a numerical example:

Example 2

The date is November 26, 2008 and you are on board a fishing vessel in the Sea of
Labrador. Shortly after the sun sets, you find the starDENEB almost at the zenith and
after having checked all the compasses on board, the altitude of it is determinedwhen it
passes the assumed meridian. After the necessary reductions, you determine that:

HU
0 ¼ 84�:190:2

You decide to return to the same fishing grounds the next day. 11h 58m later
DENEB passes your meridian again and you take another measurement. After
making the necessary adjustments, you find that:

HL
0¼ 6�190:2

These two values for the altitude so obtained together with expression (1) above
yields:

u ffi 51�190:2N

Next, let’s consider case #III. (See also Figs. 2.14.1 and 2.14.2.)

Case #III:

This case does not involve more mathematics than adding or subtracting the decli-
nation to the altitude once the declination has been found. Of course it is always
assumed that a good approximation for the local meridian has been determined.
However, in the case of the Sun, we require an approximation of the longitude of the
observer, since no time piece is available. This is necessary since the computation of
the latitude also requires the exact value of the declination at the time of transit.

Recalling that the local time of transit of the sun is listed in the Nautical Almanac
or can be computed by employing one of the algorithms provided in the second part
of this book, we merely need an approximate longitude in order to find the
approximate UTC of transit and subsequently can extract the required declination
from said publication or computation. (What has been said about the Sun also
applies to the planets.)

In the case of a transit of a star, an approximation for the longitude is not
required since the declination of stars does not change for the purpose of our
applications within the relatively short period of 24 h.

The reader should also be acutely aware of the fact that the methods employed in
Cases #II and #III require that the assumed meridian, most likely determined by
compass observations, should fall within a small fraction of a degree of the true
azimuth, i.e., zero or one hundred eighty degrees respectively, in order to assure
that the value for the computed latitude falls within the same range with respect to
its error.
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In conclusion, I would like to encourage the reader to use the exact method
described in Case #I whenever possible and discourage the modern navigator from
doing the “old” thing over and over again, i.e., resort to the use of approximate
procedures when exact ones are available.

2.15 On Calculating the Interval Between Meridian
Passage and Maximum Altitude and Finding
Approximate Longitude and Latitude of a Moving
Vessel, and Longitude by Equal Altitudes

For the astronomer who has a well-defined meridian at his disposal, the determi-
nation of the time of meridian transit and latitude are trivial matters. But for the
navigator, only approximate methods for finding the longitude and latitude are
available, notwithstanding the existence of exact mathematical methods as provided
in this book.

In one of the previous sections, I have shown that the exact position of the vessel
can be calculated when altitude and azimuth together with the declination and GHA
of a celestial object are known. However, in general, on a ship or airplane, the exact
azimuth is not known. In particular, the determination of true north by means of a
compass is always subject to some errors. Therefore, in order to find a suitable
approximation to the true time of meridian passage indirect methods have to be
devised. One of the most obvious methods of accomplishing this task is to observe
the CO continuously when it is near the meridian and to determine the time when it
reaches its maximum altitude. The fact that the time of maximum altitude and
meridian transit do not coincide, in general, should be obvious. In the case where
the celestial object is the sun or a planet, the two times never coincide as long as
their declinations change. In the case of a star, these two events will also not occur
at the same time as long as the ship has a north/south component in its trajectory.
Therefore, it is necessary to correlate the time of these two events, i.e., meridian and
maximum altitude passage, analytically.

I will now devise a suitable formula subject to the conditions that either the
latitude, course and speed of the vessel together with the approximate time of
meridian transit, or the approximate time of meridian passage and the altitude of the
sun, planet or other CO together with the course and speed of the vessel are known.
The exact or approximate longitude can also be calculated once the navigator has
determined the interval between meridian transit and maximum altitude.

First, let’s depict a typical case of a moving vessel relative to the ever-moving
sun. (See Fig. 2.15.1.)

Here “Z” denotes the position of the vessel when the sun 
 passes the meridian
and “Z′” denotes the position of the vessel when the altitude of the sun 
 reaches its
maximum altitude relative to Z′. According to Fig. 2.15.1, the local hour angle H at
Z when the sun 
 reaches its maximum altitude relative to Z′ is given by:
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(1) H ¼ hþ h0

Note that in reality, the angles h and h′ are very small, indeed.
Since we want to find the local hour angle h of the sun at Z′ at the time of

maximum altitude, we need to look at the navigational triangle PẐ0S0 in order to
establish the dependence of the zenith distance z′ on the latitude u′, declination d,
and the hour angle h. (See Fig. 2.15.2.)

In Fig. 2.15.2 we have already approximated the latitude u′ of Z′ by the latitude
u of Z. The application of the COS-TH. yields:

cos z0 ¼ sin d � sinuþ cos d � cosu � cos h:

Because we would like to find h so that the altitude is at maximum, we must
minimize the zenith distance z′, i.e., we must first find an expression for the

derivative of dzdt. The latter can be derived easily by applying the implicit differential

expression provided in Sect. 4.2. If we define:
F z0ð Þ ¼ cos z0; andGðd;u; hÞ ¼ sin d � sin uþ cos d � cos u � cos h, the

application of said expression yields:

� sin z0
dz0

dt
¼ ðsin u � cos d� sin d � cos u � cos hÞ � dd

dt
þðsin d � cos u� cos d�

� sin u � cos hÞ � du
dt

� cos d � cos u � sin h � dh
dt

Fig. 2.15.1

Fig. 2.15.2
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By taking into account that h is a very small angle, we may approximate cos h by
one, i.e., cos h ffi 1. Hence, the above expression reduces to:

� sin z0 dz
0

dt ¼ sinðu� dÞ dd
dt �

du
dt

� 	
� cos d � cosu � sin h � dhdt : Because we

are looking for a minimum value of z′, the necessary condition is:
dz0

dt ¼ 0, which reduces the above equation to:

(2) sinðu� dÞ ddt ðd� uÞ ffi cos d � cosu � sin h � dhdt [1, 13, 27]

In this equation “dhdt” denotes the change of the local hour angle, i.e., the change

of the hour angle of the sun relative to the moving vessel. If we denote the change
in longitude of the sun by dk
/dt, and the change in longitude of the vessel by
dkv/dt, we have:

dh
dt = dkv/dt − dk
/dt. Since we measure longitude negative if West and posi-

tive if East of Greenwich, and since the sum moves approximately 15°/h West, we
conclude that: dk
/dt = 900′. Hence:

(3) dh
dt ¼ 900þ dkv=dt, (arc minute/hour). Furthermore, “ddt ðd� uÞ” denotes the

difference between the rate of change of declination and latitude that we shall
denote by y, i.e.,

(4) y ¼ dd
dt �

du
dt . Then, Eq. (2) reduces to:

tan u� tan dð Þ
ð900þ dkv

dt Þ
� y ffi sin h. But we have already taking into account that h is

very small, therefore, sin h ffi sin 10: h, with sin 10 ¼ p
180 � 60 ¼ 1

3; 437:73
.

Substituting this approximation into the expression above, we find that:

h ¼ 1
sin 10

� 1

ð900þ dkv
dt Þ

� y � tan u� tan dð Þ. By also taking into account that

1
900

dkv
dt � 1, we may again approximate by employing the Taylor expansion to

obtain:
1

1þ 1
900

dkv
dt

¼ 1� 1
900

� dkv
dt

, and finally resulting in the relevant equa-

tion:

(5) h ¼ 1
900 � sin 10 1� 1

900
dkv
dt

� �
� y � tanu� tan dð Þ; (arc minutes).

Again, the reader is to be reminded that we measure latitude and declination in
the North by assigning positive values to u and d, respectively; and in the Southern
hemisphere, negative values to these measurements. Therefore, Eq. (5) holds for all
admissible values of u, d, and kv. We also note that the expression (1) stands for
the actual physical values of H, h, and h′, i.e., for the values obtained by our
equations in arc minutes.
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Next let us consider the ratio h0

H that equals the ratio of change of h′, i.e., dh
0

dt and

the rate of change of H, i.e., dHdt . Since “
dh0

dt ” stands for the change of the longitude

of the vessel, we conclude that
dh0

dt
¼ dkv

dt
. The derivative “dHdt ” stands for the rate

of change in longitude of the sun and therefore, we also have dHdt ¼ �900. Hence:

h0

H ¼ � 1
900

¼ dkv
dt

or

(6) h0 ¼ � 1
900

¼ dkv
dt

� H, (arc minutes)

It follows then from expression (1) that h ¼ H� h0 ¼ H 1þ 1
900

� dkv
dt

� �
.

Substituting this value for h into Eq. (5) yields:

H ¼ 3:819722 � 1� 1
900

dkv
dt

� �2

�y � tanu� tan dð Þ. Note that we have again

made use of the approximation that is based on
1

900
dkv
dt

� 1, therefore, we may

also conclude that: 1� 1
900

dkv
dt

� �2

ffi 1� 2
900

dkv
dt

, and therefore we arrive at the

final result:

(7) H ¼ 3:819722 � 1� 2
900

dkv
dt

� �
� y � tanu� tan dð Þ; y ¼ dd

dt
� duv

dt
:

Of course, we have also assumed that the observer has recorded the time of
maximum altitude LMA. Therefore, once H has been computed, the time of
meridian transit LAN has been determined and the longitude of the vessel has been
found. Specifically, we may conclude that the relationship between the local

apparent noon LAN and the time of maximum altitude LMA is LAN ¼ LMA� H
900

in hours) and the longitude is given by:

(8) k ¼ � LANþETð Þ � 12hÞ � 15�
, where “ET” denotes the equation of time, i.e.,

the difference between the meridian passage of the true and mean sun, i.e.:
(9) ET = (GHA 
 − GHA Ø)/15, 
 true sun, Ø mean sun.

In detail, we can derive the expression (8) by noting that at the time of meridian
passage of the sun:

(i) LHA 
 = 0, but (ii) LHA 
 = GHA 
 + k, hence:
(ii) GHA 
 = −k, and from (9) it follows that:
(iii) GHA 
 = GHA Ø + 15 � ET. Since
(iv) GHA Ø = (LAN − 12) � 15, we conclude that:
(v) GHA 
 = ((LAN + ET) − 12h) � 15, and therefore, by virtue of (iii),

(8) follows.

2.15 On Calculating the Interval Between Meridian … 119



The reader may also recall that the equation of time is listed in the NA for every
day twice. Furthermore, in the second part of this book, the reader will find an
explicit formula for computing the equation of time for any specified instant.
However, for now, it will suffice us to know that for our specific purposes the
relevant values for the ET can be found in the NA. [At this point, it may be of
interest to know that: −14 � ET � 16 min.]

So far we have assumed that the exact or approximate latitude of the vessel is
known, which may not always be the case. If we now assume that the latitude is not
known, we may proceed as follows:

(a) Observe the sun several minutes before the sun is even close to the assumed
meridian.

(b) With the help of a well adjusted compass and pelerous, if available, estimate
the actual time of meridian transit and measure the altitude of the sun.

(c) Calculate the latitude by assuming that the azimuth of the sun is exactly 180°
or 0°, i.e., use the well-known formula:

(10) u = 90° − H0 ± d. Plus (+) if 
 is North of equator; minus (−) if 
 is South
of equator.

Hence, by virtue of the expressions (8), (9), and (10), we now have a suitable
expression for the latitude of the observer.

(d) Next, by employing the latitude obtained by formula (10), we then calculate H
with the help of expression (7), and after having determined the time of maxi-
mum altitude LMA, obtain the “exact” time of meridian transit LAN by virtue of
the expression that precedes formula (8). If the difference between this time and
the assumed time of meridian passage does not exceed four minutes, the
approximate latitude so obtained will be sufficiently close to the true latitude,
and further adjustments for an error in latitude are unnecessary. The latter fol-
lows directly if one employs the formula for the change in zenith distance due to
a change in the time of observation as derived in Sect. 2.13. This formula is:

(11) Dz0 ¼ �15 � cosu � sinAz � DT, DT in minutes, Dz′ in arc minutes.
Since Az ¼ 180� � DAz;DAz small and less than 30′ arc minutes, we con-
clude that sinð180� ¼ �DAzÞ ¼ � sinAz ¼ �DAz � sin 10, but Dz0 ¼ �DH
and therefore it follows that:
DH0 ¼ � cosu � DAz � DT � 0:0043633, and
jDH0 �j j cosuj � 300 � 4 � 0:0043633� 00:5236 because DAz � 30′ and
|DT| = 4 min, |cos u| � 1.
The reader is reminded that “H0” denotes the altitude of the sun and is not to
be confused with the hour angle H of expression (7).

We therefore may conclude that the error in latitude will be less than one arc minute
provided that the error in the assumed azimuth is less or equal to half a degree, and the
difference between assumed and true time of transit is less or equal to 4 min. However,
it should be noted that in most applications, the incurred error is considerably less than
this upper bound since we have approximated the absolute value of cos u by one.
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Let us now return to Eq. (7) in order to establish an important rule for the
occurrence of the maximum altitude. For this purpose, it is convenient to conduct a
proper case study of this equation.

Case Study

(Ia) Vessel moves West
1:Þ vessel moves towards the sun
2:Þ vessel moves away from the sun

�
(IIa) Vessel moves East

1:Þ vessel moves towards the sun
2:Þ vessel moves away from the sun

�
(a) tanu� tand[ 0:
The remaining four cases are defined in the same manner but with the notations

containing b.) signifying that:
(b) tanu� tand\0:

Case: Ia. (1)

Here
du
dt

\0, and
du
dt





 



[ dd
dt





 



, which implies that y > 0, h > 0, and H > 0.

Therefore, the time of maximum altitude LMA occurs LATER than the time of
meridian passage LAN. (See Fig. 2.15.3.)

Case: Ia. (2)

Here
du
dt

[ 0, and, again,
du
dt





 



[ dd
dt





 



, which implies that y < 0, h < 0, and H < 0.

Therefore, the time of maximum altitude LMA occurs BEFORE than the time of
meridian transit. (See Fig. 2.15.4.)

Case: IIa. (1)

Here
du
dt

\0, and, again,
du
dt





 



[ dd
dt





 



, resulting in y > 0, and also h > 0 as well as

H > 0.
Therefore the time of maximum altitude LMA occurs LATER than the time of

meridian transit LAN (Fig. 2.15.5).

Case IIa. (2)

Here
du
dt

[ 0, and, again,
du
dt





 



[ dd
dt





 



, implying that y < 0, and also h < 0 as well as

Fig. 2.15.3
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H < 0. Therefore the time of maximum altitude LMA occurs BEFORE the time
of meridian transit LAN (Fig. 2.15.6).

In all four cases (b), i.e., in those cases where tan u − tan d < 0, the situation is
merely reversed and therefore, we may conclude that the following rule holds:

RULE: Whenever the vessel move in its north/south component towards the
sun H > 0, the time of maximum altitude LMA occurs AFTER the
time of meridian transit, and if the vessel moves away from the sun,
the time of maximum altitude LMA occurs BEFORE the time of
meridian passage LAN.

Next, let us consider some numerical examples.

Fig. 2.15.4

Fig. 2.15.5

Fig. 2.15.6
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Example #1

On March 31, 2008, a fast motor-yacht proceeds at 14-knots on latitude 49° 30′ N
and longitude 51° 15′ W on a course of 227°. The time is close to the estimated
LAN. The navigator would like to know the difference between the true time of
meridian passage of the sun and the time of maximum altitude.

Solution:
By employing the terrestrial formulae (7) from Sect. 1.2, we find that:

(i) dep: ¼ D � sin C ¼ 14 � sin 227 ¼ �100:23895 ¼ �0�:17065

(ii) du
dt

ffi Du
Dt

¼ D/h � cos C ¼ 140=h � cos 227 ¼ �90:54798=h ¼ �0�:15913=h,

hence:
(iii) u ¼ 49:5� þ 49:34�ð Þ=2 ¼ 49�:42, and

(iv)
dkv
dt

¼ Dkv
Dt

¼ dep:
cos �u

=h ¼ �0�:2623=h.

Next, consulting the NA, we find that
dd
dt

¼ 10=hour, and d = 4° 28′ = 4°.4667.

Therefore, we have:

y ¼ dd
dt

� du
dt

¼ 100:54798, and tan u − tan d = 1.0927326.

Furthermore, we calculate: 1� 2
900

dkv
dt

¼ 1:03497. By applying formula (7) of

this section we find that
H
900

¼ 3m 2s.23 after meridian passage.

Example #2: (Most relevant application.)

Because of the breakdown of the distance-speed indicator, a trawler has been in the
Sea of Labrador for two days relying solely on the hour-meter and the RPM-indicator
for dead reckoning. Therefore, no reliable DRP is available at the time the sun was
approaching the local meridian. The date is May 3, 2008 and the skipper has deter-
mined that his vessel is steaming at 15.5-knots on a course of about 317°.
The navigator who has been observing the sun with his sextant notes that the time
of maximum altitude LMA was 15h 27m 34s. At 15h 28m 30s, he determines that the
sun was on his meridian and, after all the reductions were applied, its altitude
equated to H0 = 56° 54′.6. The skipper requires a reliable fix of the trawler’s
position.

Solution:
The navigator inspects the NA to determine that:

d = 15° 54′.6, dddt ¼ 00:7, GHA 
 = 52° 55′.2, and ET = 3m 10′.

He also knows that his assumed azimuth differs by not more than 30′ from 180°
and therefore, he calculates the latitude by approximating Zn by 180° to obtain
u = 90° − H0 + d = 49° N. As a result of this approximation, the skipper finds a
good initial approximation of his actual position, namely: u ≅ 49° N and

k ffi 52�550:2W:
However, since the navigator is aware of the dependence of the change in

altitude on the azimuth angle and time interval (see Sect. 2.14 and formula (10) of
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this section), he concludes that he has already found a suitable approximation of his
latitude, but his estimated longitude is still in error. Therefore, he calculates the
interval between meridian passage and maximum altitude as follows:

By employing the Rhumb-Line position calculation of Sect. 1.2, he finds that:
dep: ¼ D � sin C ¼ 15:5 � sin 317 ¼ �100:5709, and
du
dt

¼ Du
Dt

¼ D/h � cos C ¼ 150:5=h � cos 317 ¼ 110:3360=h, and

�u ¼ 49� þ 49�:1889ð Þ=2 ¼ 49�:0880, and
dkv
dt

¼ Dkv
Dt

¼ dep:
cos �u

¼ �16�:1413=h:

Hence y = 0′.7 − 11′.3360 = −10′.6360 and tan u − tan d = 0.8653.

Furthermore, 1� 2
900

dkv
dt

¼ 1:0359, and therefore, by virtue of expression (7):

H ¼ �2m25s:6:
Next, by applying H to the time of maximum altitude, the navigator concludes that

the true time of meridian transit was 15h 30m, and therefore a more accurate estimate
for the longitude could be obtained by using formula (8) of this section, namely—

k ¼ � 15h30m þ 3m10s
� �� 12h
� � � 15 ¼ 53�170:5W:

By noting that the difference between the estimated time of meridian transit and
true time of meridian transit is merely 1m 30s and since cos u = cos 49 = 0.6561,
the navigator accepts that for his purpose u = 49° N and k = 53° 17′.5 W—a very
nice place for a fishing trawler in the Sea of Labrador.

Longitude by Equal Altitudes

A direct and very useful application of the method described in this section is the
determination of longitude by two equal altitudes. As we have seen in this particular
section, the time of meridian transit LAN and the time of maximum altitude LMA

coincide in all cases where dddt �
du
dt ¼ 0. In those cases, the curve of altitudes versus

time is symmetric relative to the local meridian. Therefore, if the same altitude H0 is
observed at two distinct instants t1 and t2, respectively, then the time of meridian

transit is given by: tM ¼ t1 + t2
2 : [1]

However, in all other cases where dddt �
du
dt 6¼ 0, the symmetry no longer exists and

H 6¼ 0. Nevertheless, if the times t1 and t2 are sufficiently close to tM, say less than
20m, then the effect of the anti-symmetry about the local meridian can be neglected
and the mean-time tM is sufficiently close to the time of maximum altitude LMA.

Therefore, instead of clocking the time of maximum altitude by observing the sun
for a short while continuously, the navigator selects a suitable time t1 and then finds
the corresponding t2 by observing the sun for a relatively short interval of time only.

Once tM = LMA has been found, the expression (7) can be used to reduce t to
the true time of meridian transit LAN. Formula (8) finally furnishes the longitude.

In the following section, I will develop analytic expressions for determining
approximations to the latitude and longitude of the observer by employing
POLARIS, as the reverend star of orientation.
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2.16 To Find Latitude by Observing Polaris When
Exact UTC and Longitude or an Approximation Is
Available

Since POLARIS, the pole star, is very close (less than one degree) to the physical
pole of the earth, it serves as a sky mark for finding true north and also for deter-
mining the latitude of the observer. The NA provides tables for extracting the latitude
within certain limits of accuracy and also provides, as many other publications do, a
formula for calculating the latitude by means of using the method of successive
approximations without providing a formula that is simple enough to be readily
evaluated on a calculator of the type mentioned in the previous chapters. Moreover,
the tables and the stated formula have to be entered with the local hour angle of
POLARIS or Aries which entails that the user must have knowledge of the longitude
of the observer. It also implies that the user must also know the exact UTC.

The reader may recall that knowing the UTC, the altitude, the declination and
longitude implies that the reader also knows the azimuth of the CO being observed.
This becomes very obvious if one looks a the corresponding navigational triangle.
By applying the SIN-TH. to this triangle, one readily deduces that:

(1) Az ¼ sin�1 sin t cos d
cos h

� �
Note that the ambiguity of this formula is removed by knowing in which

quadrant S lies, and by applying formulae (3) from Sect. 2.2.
In a previous section, we have seen how the latitude u can be readily calculated

when the above data is provided. All the aforementioned hold for any celestial object
and not just for POLARIS. Therefore, we must ask ourselves what is so special about
this star when it comes to finding the exact latitude? The answer should be very
obvious: by employing POLARIS in our navigational triangle, we note that one of
the sides, namely, p = 90° − d, the polar distance is very small compared to the other
two sides of our NT—unless the observer is extremely close to the north pole.
Furthermore, we may also recall, as discussed in the section on finding the exact time,
that an approximation for the longitude can be used for finding a suitable approxi-
mation for the sidereal hour angle H of the observer and hence for the actual local
hour angle t. Taking these circumstances into account, we may then express:

(2) u = h0 − e, where e is a quantity of about the same magnitude as
(3) p = 90°− d, i.e., e is a small quantity in comparison to u and h0.

From the NT, with the help of the COS-TH., we deduce:

(4) sin h0 ¼ sinu � cos pþ cosu � sin p � cos t:
Expanding sin u = sin (h0 − e), and cos u = cos (h0 − e) in power series of e

about h0—Taylor series, and also expanding sin p, and cos p in power series of p
about p = 0, we find that:
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(5) e ¼ p � cos t� 1
2 ðe2 � 2 � e � p � cos tþ p2Þ � tan h0 þE3ðp; eÞ,where E3 (p, e)

involves powers of p and e, and also products of those powers of degree three
and higher. Taking into account that p and e are now radial quantities and
hence are of the order p

180, if the corresponding values in (4) are measured in
degrees. In the case where those quantities are measured in seconds of degrees,
they are of the order of sin 100 ¼ p

180�3600, hence, they are very small indeed.
Because of the extremely small magnitude of p and e, we may neglect the error
term in (5) to obtain:

(6) e ffi p � cos t� 1
2 ðe2 � 2 � e � p � cos tþ p2Þ � tan h0.

The application of the method of successive approximations to (6), with the
initial approximation:

e0 = p � cos t, yields:
e ffi p � cos t� p2

2 � sin2 t � tan h0:
If we want to express e in seconds with p also given in seconds of degrees, we

find, after having cancelled out the common factor sin 1″, that:

(7) e ffi p � cos t� p2

2 sin 100 � sin2 t � tan h0.

In this expression, p is given in seconds of circular measurements and so is e.
Converting e again to degrees and substituting in (2) yields the final explicit
equation for the latitude, namely:

(8) u ffi h0 þ 1
3600

p2

2 � sin 100 � sin2 t � tan h0 � p � cos t
� 	

. [13]

Again, t can be calculated by using the formula:
t = H ± SHA*. The local sidereal hour angle H can be found either by direct

computation using the equation H = ± (GHA ♈ + k), provided that the longitude
k is known, or by the method employed in the section of finding time when
longitude is only known approximately.

The above formula (8) should be accurate of up to 1″, provided that t also
satisfies the came criterion for accuracy. Of course, it is always assumed that h0 has
been measured with the highest degree of accuracy possible.

Numerical Example Date: 06/13/08
Time T0 = 03h 00m 00s UTC
CO = POLARIS
h0 = 23° 07′ 29″
k = 110° 40′.66 W

Problem:
Find the latitude.

Solution:
From the NA we extract GHA ♈ = 306° 48′, GHA* = 266° 43′.3,
d* = 89° 17′.9. Hence p = 90° − d = 0°.701667 = 2,562.0012″
SHA* = 319.9216, H = GHA ♈ + k = 196°.12235, and
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t = H + SHA* − 360° = 156°.044016
Substituting these values in expression (8) yields:
u = 23° 45′.97

Annex

Instead of finding an approximation to the solution of (4), we might as well solve
this equation analytically and thereby obtain an exact solution. It will turn out that
the numerical evaluation of the exact formula is not more elaborate than the
evaluation of the approximate expression (8). If this is the case, why use an
approximation in the first place?

In order to solve (4) for u, we need to proceed as follows:
Define auxiliary parameters C and b by:
C � cos b ¼ cos p; C � sin b ¼ sin p � cos t: Then it follows that:
b ¼ tan�1 tan p � cos tð Þ; andC2 ¼ cos2 pþ sin2 p cos2t : Hence,
sinh0
C

¼ cos b � sinuþ sinb cosu ¼ sinðuþ bÞ;, and therefore,

(9) u ¼ sin�1 sinh0
C

� �
� tan�1 tan p � cos tð Þ;C2\1:

Again, the quantity t is to be found by computing

t = H ± SHA*, H = LHA ♈, Star * = POLARIS

If by chance the longitude of the observer k is known then: H = ± (GHA
♈ + k).

If not, then the method employed in the aforementioned section can be used to
find an approximation to H.

Another method for finding t approximately is to look for a star e that has the
same, or approximately the same SHA as POLARIS. (See Fig. 2.16.1.) Then the

Fig. 2.16.1
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three objects, namely the north-pole N, the star * e, and POLARIS P lie on a
straight line-meridian through N. Hence we have defined a “hand” that subtends an
angle W together with the local meridian.

Using the corresponding transformation: W = 180° − t, it follows that
cos t = −cos W, and by recalling that tan−1 (−x) = −tan x, we deduce from

(9) that:

(9′) u ¼ sin�1 sinh0
C

� �
þ tan�1ðtan p � cosWÞ: [16, 37]

Since p is a very small quantity, we may use the approximation:
tan�1x ¼ x� x3

3 þ x5

5 � � � �
to obtain an approximation to u, namely:

(10) u ffi h0 þ p � cosW, also know as “The Life-Boat” formula.

Note that the “Hand” defined by W actually serves as “Sidereal Clock”, since
W = 180° − LHA* implies that:

(11) H = 180° − (W − SHA*) = 180° − (W + RA*), or explicitly in terms of local
sidereal time T:

(11′) T ¼ ðWþRA�Þ � 180�Þ � 1
15 ; þ ifW� 180� � RA�;�ifW� 180� � RA��

2.17 The Most Probable Position When Only One LOP
and DRP Are Known

Although it is possible that a mariner will find him or herself in a situation where he
or she has to rely solely on their Dead Reckoning Position (DRP) and only one
LOP, this situation is less probable and dangerous than in the case of an aviator who
may be encountering adverse meteorological conditions that do not permit the
establishment of a second LOP (See annex to this section.) For this reason, the
concept of the most probable position MPP, as used in aerial navigation, is less
known and used by seafarers.

First, let’s consider the case where at a given instant T, one LOP and one DRP
are at hand. It may not even be known whether or not the two are correlated. (See
Fig. 2.17.1.)

Fig. 2.17.1
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Even without knowing much about “least square” approximations and the theory
of probability, the reader would intuitively place the most probable position of the
vessel where it can be found in Fig. 2.17.1a.

If we now place a coordinate system with the origin (0, 0) at the point 0 and with
the x-axis in direction of the LOP, and the positive y-axis towards the DRP with the
coordinates (0, p) and the MPP with the coordinates (0, p2), the arbitrary point X will
have the coordinates (x, y). (See Fig. 2.17.1b.)

As everyone who has some knowledge of celestial navigation knows, it is highly
improbable that the true position lies on the line segment DRP-0, i.e., that the
coordinates of the true position are (0, y), unless the DRP and the LOP are com-
pletely uncorrelated. Therefore, the true position, in general, will lie either to the
right or left of the y-axis.

Next, let us define the sum of the weighted squares of the distances of 0 from the

DRP and the LOP, namely:
Pn
i�1

wid21 þw2d22 ¼ w1ðx2 þðy� pÞ2Þþw2y2, where

w1 and w2 are constants to be determined later. [19]
Since the probability density P(x, y) has the configuration: P x; yð Þ ¼ K � e�h2 �

�Pw1d21, with K, h, and w1 constants, we readily deduce that the value X� �x;�yð Þ;
where the

maximum of P(x, y) occurs, must make the weighted sum of the squaresPn
i�l

wid2i ¼
Pn
i�l

wiððx� xiÞ2 þðy� yiÞ2Þ a minimum. (See Fig. 2.17.2.)

If we plot the above probability density as a function of x in the one dimensional
case, the resulting curve, which is also called the probability curve, attains it
maximum at �x and its equation is simply:

PðxÞ ¼ k � e�h2ðx��xÞ2 , with k and h constants such that
R þ1
�1 PðxÞdx ¼ 1.

The necessary conditions for a maximum of the sum of the weighted squares of
the residuals di are:

@R
@x ¼ 2 � w1 � �x ¼ 0, implying that �x ¼ 0, and
@R
@y ¼ 2 � w1 � ð�y� pÞþ 2 � w2 � �y ¼ 0, and hence �y ¼ w1

w1 þw2
� p.

The coordinates of the most probable position MPP so found and denoted by �x
and �y, respectively, are:�x ¼ 0; �y ¼ c � p, c ¼ w1

w1 þw2
� 1; w1 � 0; w2 � 0:

Fig. 2.17.2
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Therefore, we still have two degrees of freedom left in our formulae for the MPP
that we can correlate to the two objects DRP and LOP. If no additional information
pertaining to the DRP and/or the LOP are available, we shall put w1 = w2 = 1 and
again obtain the least probable solution to our problem.

However, if we know the time T0 of our last fix “F”, we now have two relevant
parameters that will give some indications with regards to the accuracy of our
approximation (�x, �y) to the true solution, namely, the quantity p and the elapsed time

t = T − T0 since the last fix. If we choose w1 to be equal to t and w2 to be
identically to p, our probability factor c becomes:

c ¼ t
tþp, and the coordinates of our MPP are:

(2) �x ¼ 0; �y ¼ t
tþp � p

The above formula can also be found in the Air Force Manual [2]. As has been
pointed out already, these formulae still lack the necessary accuracy with regards tot
he component �x of the MPP. The reason for this deficiency is the lack of additional
information.

Let us now assume that the position of the fix “F” at T0 is also known in addition
to the resulting track, i.e., the vector ~T connecting F, the T0 fix, to the DRPF at T.
(See Fig. 2.17.3.)

This additional information still does not enable us to find the x-component of
the MPP that we are trying to determine. However, if we also assume that the DRP
at T0 of the assumed position on which the fix “F” is based is known, then we may
advance this DRP(T0) parallel to the track T (see Fig. 2.17.3a) to find another DRP
(T) that is not directly correlated to the LOP and thereby establish the MPP for all
values of t 	 p as MPP * (L, p).

If we reason then that with:

�y ¼ c � p, we must also have: �x ¼ c � D with
�y
�x ¼ p

L, we deduce that:
D = L = 1 � cos e. (See Fig. 2.17.3b.)

Fig. 2.17.3
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Therefore, we have found a more realistic MPP, namely:

(3)

�x ¼ t
t + p

� 1 � cos e

�y ¼ t
t + p

p

t ¼ T� T0

Here “l” denotes the distance between DRP(T0) and F

(T0), and “e” denotes the angle the LOP forms with the vector~l that connects the
DRP(T0) with F(T0). (See Fig. 2.17.3a.)

To convince the reader that the case where l = 0, corresponding to �x ¼ 0, does
not constitute a realistic situation, it suffices to point out that in this case the MPP
lies on the line segment between the assumed, i.e., DRP and the point 0 on the
circle of equal altitude with its tangent equal to the LOP. Obviously, these points,
DRP(T0) and 0 are correlated and therefore should not be used in a statistical
analysis.

In conclusion, the navigator will note that formulae (2) and (3) are definitely an
improvement over mere dead-reckoning procedures, but are inferior relative to a
celestial fix and therefore occupy only a third place in the praxis of navigation.

ANNEX—From the Personal Exploits of the Author—

A long time before writing this book, I believed that celestial navigation in aerial
navigation had, in general, become obsolete. In particular, commercial airline pilots
are no longer required to pass any kind of exam pertaining to this discipline.
However, there are still some adventurous explorer pilots around the world that
practice it. I also believe that some air forces still require that the navigational
officer has to demonstrate a certain degree of proficiency in celestial navigation
since there always exists the possibility that the enemy forces could disable the GPS
that is currently in place.

As for myself, I first acquired a British Air Force bubble sextant Mark IX and a
DR-computer with a high speed scale for plotting LOPs even before I bought
myself a Cessna Float Plane. My object was to become a Bush Pilot. My initial
training included practice take-offs and landings in farmer’s backyards between
apple trees, telephone and power lines as well as other obstacles. I also had to
practice taking sextant sights while the plane was on autopilot. Of course, all this
happened before GPS became available.

Reflecting on the more serious things that involved navigating a small float plane
under adverse meteorological conditions, I vividly recall one incident that nearly
cost me my plane and the lives of everyone on board. I have always considered this
incident as a classic example of how accurate navigation can prevent serious
accidents from happening. It is also an example of how prudent navigation and the
usefulness of the MPP method.

Back in 1974, long before GPS became available, I found myself, together with
my instrument-instructor who was there to certify my proficiency in instrument
navigation, on an overland-sea flight from Ontario, Canada to Newfoundland. I was
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piloting my own float plane. I was also carrying cargo which limited by fuel
carrying capacity. Nor was I equipped with an oxygen supply system.

I recall that my instructor was surprised that I had brought my bubble sextant and
a high speed DR-computer along. He also noted a table with a chart that I had
mounted in the cockpit that enabled me to determine the glide-slope of my plane as
a function of air-speed, drift, flap-setting, and attitude of the airplane. He was also
amazed by the sticker that I had attached to the bubble sextant that showed the
formula for the Coriolus correction. (See Sect. 3.3.)

Everything went smoothly on the mainland including the last refueling at a
remote sea-plane base in Northern Quebec. However, once we crossed the stretch of
land that belonged to Labrador, ominous signs began to appear on the horizon. As a
precaution, I took a shot at the sun with my Mark IX to establish in speedy
succession the data for a sun-sight.

Once we reached the Strait of Belle Isle, the weather began to deteriorate. When
we reached the Island of Newfoundland, the plane was engulfed in solid white
clouds and the visibility was reduced to zero. I climbed the plane above the clouds.
The instrument instructor suggested lowering the plane so as to find the actual
ceiling. However, from personal experience, I knew that this was not a good idea.
I was very familiar with Newfoundland weather patterns having owned property at
the Bay of Exploits near Gander. On Newfoundland, it is not unusual for clouds to
hug the ground. I asked the instructor to make contact with the airport in Gander
and confirm my prognosis.

We received confirmation that the clouds were literally on the ground. Fog had
brought all highway traffic to a stand-still and all flights at the airport were
grounded until further notice. Making a safe landing at the sea-plane base in Gander
was no longer an option because of the fog. After hearing this report, I immediately
took inventory: I had only enough fuel to last me for a maximum of 2 h. Returning
to Northern Quebec was also out of the question. The only option open to me was
to attempt a landing in the Sea of Labrador.

At the time I was cruising above 10,000-feet. I was above the clouds, but I was
at an altitude that would soon require oxygen if I did not want to impair my mental
capacity. But I wasn’t carrying oxygen. Time was not on my side. After rechecking
my DRP and after doing some probability estimates in my head, I was able to
correlate this data to the LOP that I had advanced according to my track and drift
calculations.

It was then that I recalled that the U.S. Air Force was using a method referred to
as “establishing the most probable position MPP”. But I also recalled that the
formula given in their manual could be misleading unless the pilot also took into
account the actual probable error of his DRP. After having adjusted my DRP in
accordance with my own probability estimates, I applied the formula provided in
the Air Force Manual and arrived at my MPP that turned out to be only about two
N.M. away from my LOP. (See Fig. 2.17.1.)

Based on this information and my actual altitude, I determined that I could set
my plane down about three nautical miles away from shore near an inlet. My
instrument instructor was not happy to see water under his feet. He had not been
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taught the concept of making instrument landings without instruments. While I was
descending on the Sea of Labrador, I casually mentioned to him that the maneuver I
was attempting was locally known as “Newfoundland-Roulette”. He had never
heard of it. I explained that it meant that we could get killed trying to do what I was
about to do.

“Look at the chart,” I said. “I will be making contact with a sea with waves about
three-feet high around here.” I pointed to the spot on the aeronautical chart. “We
have a margin of error of about one nautical mile. We also have to worry about ice
floats and ice bergs which are not marked on the chart. Our visibility will be less
than a hundred feet.” I could tell by his reaction that even the brave sometimes get a
little scared.

My good, old Cessna did not let me down. She came in like a Mallard-Canadian
Duck, made contact with the waves and came to a complete stop in less than about
50-ft away from a large ice float. However, the landing was not without incident.
Something, a small chunk of ice or flotsam damaged the rudder on the starboard
pontoon. Fortunately the damage was minor and we were able to find shelter in a
near-by inlet. It was while we were waiting there for a break in the weather that I
started contemplating the possibility of writing a book about the science of navi-
gation fully self-contained with calculational ephemeris.

2.18 How to Calculate the Time of Rising and Setting
of Celestial Objects and How to Use the Measured
Time of These Phenomena to Find Longitude

Until we get to the second part of this book, we will still need to depend on our NA
or some other ephemeris for most of our calculations. (That will change.) Therefore,
throughout part I, it’s assumed that the reader has such a publication at his or her
disposal and also knows how to use it. Having made this basic assumption, we may
refer to the approximate times listed for the rising and setting or the Sun and Moon
as listed on the daily pages of said publication. That said, I will first provide the
general equations for these phenomena as they apply to any celestial object and then
add whatever is necessary to cover the case of celestial objects with finite
semi-diameters such as the Sun and Moon. With the modifications so obtained, we
will be able to use the measured time of sunrise and sunset to find the longitude.

Again, let’s look at our navigational triangle ZP̂S (See Fig. 2.18.1) and deduce
that according to the COS-TH.:

sin d ¼ sinu � sin h0 þ cosu � cos h0 � cosAz:
This fundamental equation reduces in case of rising-setting phenomena defined

by h0 = 0 to:
sin d ¼ cosu � cos Az, i.e., to: cosAz ¼ sin d � secu:
Provided that |sin d| � |cos u|, this equations yields:
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(1) Az ¼ cos�1ðsin d � secuÞ.
In the case that d > 90°– u or u > 90° − d, we have sin d > cos u, and the

above equation has no real solution as it is supposed to be since for all d > 90° − u,
the celestial object is a CIRCUMPOLAR object.

If we now apply the COS-TH. to the side z = 90°, corresponding to h0 = 0, we
find that:

0 ¼ sin d � sinuþ cos d � cos H � cosu, resulting in
cosH ¼ �tand � tanu, an equation for H provided that |tan d| � |cot u| holds.

That is to say that if the celestial object is not a circumpolar object, we have:

(2) H ¼ cos�1ð�tand � tanuÞ: [1, 2, 4]

The values so obtained for Az and H are the theoretical values for the established
phenomena under consideration. Accordingly, the theoretically established value
for the time of rising-setting are then given by:

(3) LMT (RIS/SET) = 12h − ET ± H
15 + [RA(CO) − RA
]18 − if rising, + if

setting.

Hence:

(3′) LMT SRISð Þ ¼ 12h � ET� H
15, Equation for the Sun.

Therefore, the local mean time of the theoretical phenomena, i.e., when the
center of the celestial object touches the horizon, is known provided that the
Equations of Time (ET) and the RAs are also known. The latter can readily be taken
from the daily pages of the Nautical Almanac or can be calculated by an equation
provided in the second part of this book.

In order to compute Az and H, we also require the declination of the celestial
object. In the case where this object is a star, no estimate for d at the time of the
event is necessary. However, in the cases of the Sun, Moon and Planets, this

Fig. 2.18.1

18RA(CO) = [GHA♈ − GHA(CO)]/15.
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additional information is required. For now, we will obtain this estimate by
inspecting the NA from which we will also take the actual value of d.

We may conclude that the prediction of the time of the theoretical rise or setting
of a celestial object does not require more than the evaluation of Eqs. (2) and (3).
However, since the theoretically predicted time does not coincide with the time
when we actually visualize these phenomena in the case of the Sun and the Moon,
on account of the necessary corrections for the altitude, we still must provide a
suitable estimate for the time that elapses between theoretical and visual sunrise/set.

It should be clearly understood that a precise time for the visual sunrise/set
cannot be established theoretically since the meteorological conditions are variables
that are, in general, not available to the navigator.19 As we shall see in Sect. 4.1, the
determination of refraction for very low altitudes, like h0 = 0, or h0 = −1°, imposes
a serious restriction on precise navigation—Astro and GPS. Therefore, in order to
arrive at a suitable approximation for the time between theoretical sunrise/set and
the corresponding visual event, it is necessary to rely more on experimental data
than on theories.

It has been found that with the exception of very extreme conditions it may be
assumed that the difference in altitude between these two events is approximately
one full degree. This full degree accounts for the semi-diameter of the sun, the effect
of refraction on the altitude, and the effect of parallax on the altitude. (A more
accurate formula that shows the dependence on refraction, semi-diameter and
parallax is provided in the appendix to this section.)

Based on the above assumption, we can now establish the lapse of time between
theoretical and visual sunrise/set with the help of our formula (4) Sect. 2.9, namely
by solving:

600 ¼ 150 cosu � sin Az � DT forDT, thereby obtaining:

(4) DT ¼ 4 sec u
sin Az � 60 ½hour��

The change in azimuth that occurs between the two events can be evaluated by
the use of formula (4) Sect. 2.13 that yields:

(5) DAz ¼ � tanu
sin Az

½degree��

The great importance of these formulae lies in the possibility of finding the
approximate longitude by observing sunrise/set.

Now, let’s assume that we have clocked the UTC of sunrise/set at a specific date
and let us denote that time by GMT (SR/S)vi. Then by applying formula (4) we find
the theoretical time of sunrise/set GMT (SR/S)th by:

19When I practiced navigation onboard a chartered “DWOW” in the Bay of Bombay, India (now
the Bay of Mumbai) back in 1974, I relied primarily on sunrise/set observations and also on low
altitude observations executed with the help of an ancient Arabian “KAMEL”.

2.18 How to Calculate the Time of Rising and Setting … 135

http://dx.doi.org/10.1007/978-3-319-47994-1_4


(6) GMT SR=Sð Þth¼ GMT SR=Sð Þvi� 4 sec u
sin Az�60, (the − sign applies at sunset).

From the definition of the Equation of Time (ET), we deduce that:
GHA 
 (SR/S) = GHA Ø (SR/S) + ET 15,
but GHA Ø (SR/S) = (GMT (SR/S)vi −12

h) 15.
(As usual 
 denotes the true sun and Ø denotes the mean sun.)
We also conclude that:
GHA 
 (SR/S) = −(k ± H). Recall that k is negative if WEST and positive if

EAST. The + sign holds if rising; the minus if setting.
Combining the last three expressions, we find that:
−k = GHA 
 (SR/S) ± H = GHA Ø (SR/S) + ET 15 ± H = [GMT (SR/S)th −

12h + ET] 15 ± H.
On the other hand, we deduce from 3′.) that:
H = ± [LMT (RS/S) − 12h + ET] � 15. Substituting into the above equation for

k yields:
�k ¼ ½GMT SR=Sð Þth�LMT RS=Sð Þth� � 15, or

(7) k ¼ �½GMT SR=Sð Þvi� 4 sec u
sin Az�60 � LMT RS=Sð Þth� � 15, − sign if setting.

Although it’s very tempting to argue that by measuring the azimuth of the Sun at
rising or setting, one can find the latitude by solving Eq. (1) for u, the truth is,
however, that this formula, which is equivalent to formula (1b) of Sect. 2.9, clearly
shows that a slight error in the azimuth produces a significant error in the latitude,
something that has already been pointed out in Sect. 2.9.

Next, let us consider some typical cases by applying the formulae or this section
to actual numerical values.

Numerical Examples #1 On March 29, 2008 at latitude u = 24°.7, and approxi-
mate longitude 97°.5 W in the Gulf of Mexico, predict
the visual sunrise and azimuth of the Sun.

Solution:
From the NA we extract the approximate local time for sunrise: 5h 56m. Using

the approximate longitude we arrive at an approximation to the GMT of sunrise to
be 5h 56m + 6h 30m = 12h 26m UTC. Entering the NA, again, we find the decli-
nation of the Sun to be: d (12h 26m) = 3°.38′.6 = 3°.6433 and ET = −4m 39s.

Next we evaluate formula (1) and obtain:

Az ¼ cos�1 sin 3:6433
cos 24:7

� �
¼ 85�590:35 and by evaluating formula (2) we find:

H ¼ cos�1 �tan 3:6433 tan 24:7ð Þ ¼ 91�:6782 and hence by formula (3′)

LMT (SR)th = 12h −(−04m 39s) −
91�:6782

15
= 5h 57m 50s.

This gives us the time of the theoretical sunrise. Next we employ formula (4) in
order to find the time of the visual sunrise. Accordingly we have:
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DT ¼ 4
cos 24:7 � sin 85:9892 � 60 ¼ 4:4136

60
¼ 0:0736 ¼ 4:414m, and therefore

the LMT of visual sunrise is:
LMT (SR) = 5h 57m 50s - 4m 24s .8 = 5h 53m 25s. The azimuth at this time is:

Az ¼ 85�590:35� tan 24:7
sin 85:9892

¼ 85�590:35� 270:6647 ¼ 85�310:7:

Next let us consider an example that illustrates the case where the navigator
determines the longitude by suing the time of visual sunrise.

#2 The date is August 26, 2008. The latitude of the vessel in the Gulf of Mexico
is u = 23°.5 N. The navigator clocks the time of visual sunrise at 12h 03m 25s U.T.
C. The navigator has to find the longitude of the vessel.

Solution:
Entering the daily page of the current NA with this information, the navigator

finds that:
ET ¼ 01m44s; and d ¼ 10�100:8 ¼ 10�:18. Substituting these values into for-

mulae (1) and (2), respectively, he finds that:
H ¼ cos�1 �tan 10:18 tan 23:5ð Þ ¼ 94�:4781, and

Az ¼ cos�1 sin 10:18
cos 23:5

� �
¼ 78�:8881. By employing formula (3) he deduces

that:

LMT (SR)th = 12h −(−1m 41s) −
94�4781

15
= 5h 43m 46s.

Next in order to find the theoretical sunrise, we evaluate formula (4), and find:

DT ¼ 4
cos 23:5 � sin 78:88 � 60 ¼ 4:44

60
¼ 4m27s�

Applying this to the visual sunrise, we find that:
GMT (SR/S)th = 12h 07m 52s. Substituting these values into Eq. (7) yields:
k ¼ � GMT SR=Sð Þth�LMT RS=Sð Þth �15 ¼ �� ½12h7m52s � 5h43m46s

�  � 15
¼ �96�:025 ¼ 96�020W:

Appendix

In what follows, the underlying hypothesis is that an approximate value for the
declination of the Sun at theoretical sunrise/set is available.

If the NA together with an approximation for the longitude is available, an
approximation for the GMT can be readily found and the value for the declination
can then be extracted from it. Of course in all cases where UTC is available, the
declination of the Sun can be taken directly from the daily pages of the NA, or can
be computed with the help of the corresponding formulae offered in the second part
of this book. Furthermore, in all cases where the sunrise/set is being clocked, the
time of the visual sunrise/set can be used to find the corresponding value for the
declination of the Sun.

But first, let us adopt the following definitions:
Tth = Time of theoretical sunrise/set.
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Tvi = Time of visual sunrise/set.
dvi = d(Tvi) = Declination of the sun at visual sunrise/set.
~d = Approximation to the declination of the sun at theoretical sunrise/set.

Note that the symbol “*” always indicates that the corresponding value is an
approximation.

By employing the formulae (1)–(3′) of this section we conclude that:

~Hth ¼ cos�1ð�tanu � tan ~dÞ; ~Az ¼ cos�1ðsecu � sin ~dÞ, or u ¼ cos�1 sin ~d

cos ~Az

� �
,

and

L ~MT SR=Sthð Þ ¼ 12h � ET � Hth
15 , the − sign applies in case of rising.

If “D” denotes the dip, “R” the refraction, “SD” the semi-diameter, and “P” the
horizontal parallax of the sun at sunrise/set, we have:

cosð90� � D� R� SDþPÞ ¼ cos½90� � ð�PþDþRþSDÞ� ¼ sinðDþRþ SD�PÞ:
The application of the COS-TH. to the corresponding navigational triangle

yields:
sinðDþRþ SD�PÞ ¼ sinu � sin ~dþ cosu � cos ~d � cos ~Hvi, and hence:

~Hvi ¼ cos�1 sin D + R + SD�Pð Þ�sinu� sin ~d
cos u� cos ~d

� �
. According to formula (3), we

have:

L ~MT SR/Sð Þth¼ 12h � ET� ~Hth
15 , and L ~MT SR/Sð Þvi¼ 12h � E:T� ~Hvi

15 , and
therefore:

DLMT ¼ L ~MTth � L ~MTvi ¼ � ~Hth� ~Hvi
15

� 	
. Here “DLMT” denotes the time

correction in hours. Hence we conclude that:

(1a) DLMT ¼ � 1
15

cos�1 � tan ~d � tanuþ sin D + R + SD�Pð Þ
cosu � cos ~d

� �
� cos�1 � tan ~d � tanu

� 	� �
, − if

rising, + if setting. Note that P = 8″.794 = 0′.1466
Because we also have:
G ~MT SR/Sð Þth�G ~MT SR/Sð Þvi¼ L ~MT SR/Sð Þth�L ~MT SR/Sð Þvi¼ DLMT
we conclude that:

(2a) G ~MT SR=Sð Þth¼ G ~MT SR=Sð Þvi þDLMT

Formula (2a) gives the time of the theoretical sunrise/set whenever the UTC of
the visual sunrise/set is known. It also enables the navigator to predict the time of
the visual sunrise/set when the theoretical sunrise/set is known.

With the help of (2a), the approximate longitude ~k of the observer can be found
in two different ways: either by using the G eMT(SR=S)th to look up the LHA 
 and
also by finding ~d ¼ d (GMT (SR/S)th) and then by recalculating eHth with this value
for d; or by employing formula (3a) below:
(3a) k ¼ �15 G ~MTvi þDLMTþ � L ~MTvi

� �
. Also note that DLMT � DT

The above formula follows directly from the definition of LMT, i.e., from
k = −15 (GMT − LMT), and formula (2a).
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2.19 On the Identification of Stars and Planets

The methods of recognition or identification of heavenly bodies—stars, planets,
Moon, etc., can be divided into two classes. The first method is solely based on the
ability of our eyes to distinguish sharply between light sources of various “bright-
ness” and geometric patterns as they occur on the celestial sphere. The other method
is based on the measurements of altitude and azimuth of a celestial body and on star
charts that are based on those measurements. In addition to the two fundamental
parameters employed, we still use the classifications based on magnitudes referred to
as simple means of indicating the illumination of the celestial body.

One fundamental difference, between the ancient methods and the scientific
methods employed today is that in our epoch we rely on measurements of the light
flux per unit surface area measured by employing sensitive photo cells and by
defining magnitudes according to a mathematical formula that is based on our
knowledge of psychology and physiology.

The astronomers in general refer to the classification of Hipparchus and Ptolemy
that was made more than two thousand years ago to classify the apparent brightness
of all stars visible to the naked eye into six classes from the brightest of magnitude
one to the barely visible stars of magnitude six. By having chosen the parameters in
our exact method so that this original classification scale is nearly preserved, the
astronomer has widened the spectrum of magnitudes to −26.8 (Sun) to 20. (Stars of
magnitude greater than 20 number more than 109.)

In reality, classifications and pattern recognition have been known for much longer
than twenty centuries. One of the first men who conceived that the Earth was a sphere
and also conceived the concept of the celestial sphere was the great Archimedes.
However, the Arabic literature shows that the Moors with their origin in Ethiopia had
classified the visible stars also as the numerous Arabic star names testify.

Since this book is supposed to be a mathematical treatise of the subject under
consideration, I shall refrain from discussing constellations and star maps as well as
star finders in general and merely provide the mathematical tools, i.e., the mathe-
matical projection for making star charts and finders. Nevertheless, it’s necessary to
base the formulae for computing apparent and absolute magnitude on the definitions
and laws of physics and also on the underlying neurological laws of eye recognition
of illumination.

Photometry

Here we adopt the following definitions as used in physics, namely:

i. Luminous Flux (FL): measured in Lumens (lm).

ii. Luminous Intensity (IL): measured in candles (cd) or lm/sr, i.e., IL = dF
dX.

iii. Steradian (sr): is the solid angle X subtended at the center of the sphere by a
portion of the surface area S equal to the square of the radius of the sphere,

i.e.,dXdS ¼ 1
R2 �
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iv. Illumination (EL): defined as the light flux per unit area of the surface mea-

sured in Im
m2, i.e., EL ¼ dFL

dS .

Hence from definitions (ii) and (iv), we deduce that:

(1) EL ¼ IL
R2.

It should be clear from those definitions that the human eye or the photo cell
does not quantify IL only EL. Therefore, the underlying psycho-physiological law of
our eyes will merely involve quantities Em of various magnitudes m. This law is
based chiefly on experiments and states that the ratio of illuminations received from
two different light sources designated by their magnitudes m and n, respectively,
shall only depend on the difference of these two magnitudes and not in any other
form of combinations of m and n. This statement translates into the equivalent
mathematical statement, namely:

(2) Ek

E1
¼ Em

En
, if and only if k − l = m − n. Furthermore, if “p” denotes the mag-

nitude of Ep then Ep =
dFp

dS . By putting E0 = l, and El = ƍ−1, ƍ > l to be

determined, we find that: Em

En
= ƍ− (m − n). [7, 8, 41]

In order to preserve the ancient classifications closely, we require that a star of
magnitude one should be one hundred times as bright as a star of magnitude six. We
readily deduce from the above expression that this condition will be satisfied if
ƍ5 = 102, i.e., if log ƍ = 0.4, hence we have found ƍ to be ƍ = 100.4.

Substituting that into the above formula, we find that:

(3) Em

En
¼ 10�0:4 m�nð Þ For n = 0, we deduce that Em = 10−0.4m from which we

deduce the formula for the magnitude m to be:
(4) m = −2.5 log Em.

So far we have merely obtained a measure for the apparent brightness of a
celestial object as it appears at the distance the observer is away from this light
source. However, if we actually would like to know how strong a given light source
might be, we must use another classification, one which does not depend on the
distance of the celestial object is away from the observer. According to our defi-
nitions, the luminous intensity IL is the quantity that does not depend on the
distance and therefore serves as a base for defining an absolute scale of brightness,
namely the magnitude M as compared to the apparent magnitude m. In order to find
a mathematical formula we reduce the illumination Em to a common distance R = r,

and by using formulas (1) and (3), we arrive at ImIn ¼ 10�0:4 m�nð Þ. This formula hold

whenever the two light sources are the same distance away from the observer.
In order to arrive at an absolute magnitude scale, we must reduce the observa-

tions of all celestial light sourced to a common distance denoted by r0 and defined
to be:
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r0 = 10 � PARSEK = 3.086 � 1014 km (as adopted by the Astronomers
International.) Then, by using M and N in lieu of m and n because of the common
distance r0 employed, the above equation becomes:

(5) IM
IN

¼ 10�0:4 M�Nð Þ.

Furthermore, according to Eq. (1), we also have I0 ¼ r20 since E0 = l by defi-
nition. Therefore, by Eq. (5) we find that:

I0 ¼ r2010
�0:4M. By using Eq. (1) once more, we deduce that Em ¼ IM

r2 and
therefore obtain IM = r2Em, i.e., IM = r2 10−0.4M. Combining the two equations for

Im we find that:
r0
r

� 	2
¼ 10�0:4 m�Mð Þ that implies the equation for M, namely:

(6) M = m + 5 log r0 − 5 log r. This equation reduces to:

M = m + 5 + 5 � log P, where P is the parallax of the star. [73]

Now, let’s consider some special examples of celestial objects that are of
importance to the navigator. First let’s look at the Sun (very dangerous indeed.20) It
has been measured that m(SUN) = −26.8, and taking into account that the Earth is
about one astronomical unit AU = a = 1.495979 � 108 km away from the Sun,
formula (6) gives M(SUN) = 4.77 absolute magnitude. The latter implies that if we
move 10 PARSEKS way from the Sun, we would barely see it with the naked eye.

Next, the MOON (variable), at full-moon has an apparent magnitude of m
(MOON) = −12.5.

Next are the most brill iant Planets:
VENUS (variable) with −3.1 � m � −4.3.
MARS variableð Þaverage of m MARSð Þ ffi �0:2:
JUPITER variableð Þaverage of m JUPITERð Þ ffi �2:2
SATURN variableð Þ average of m SATURNð Þ ffi 1:4

So far as the most important navigational stars are concerned, we note that the
brightest ones in the sky are:

SIRIUS: m = −1.58 CANAPUS: m = −0.9 RIGEL KENTAURUS: m = −0.3

ARCTURUS: m = 0.0 VEGA: m = 0.0 RIGEL: m = 0.1

CAPELLA: m = 0.1 PROCYON: m = 0.4 ARCHENAR: m = 0.5

HADAR: m = 0.6 ALTAIR: m = 0.8 BETELGEUS—variable

The spectrum of absolute magnitudes for celestial objects varies between minus
five and plus fifteen, i.e., −5 � M � 15, approximately. (See the back of this
book for the listing of the navigational stars and their magnitudes.)

20Also see the evaluation of said danger in Chap. 3, Sect. 3.2.
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Although it is certainly very helpful for the navigator to be ale to identify a star
in the night sky merely by looking at the corresponding constellation, it is by no
means necessary to have this ability. On the other hand, there are many people with
very little formal education, like shepherds in the remote mountains of Turkey or
Camel drivers in the Sahara who know the night sky very well.

For the navigator, there are basically two problems associated with star identification:
the first is the problem of actually recognizing a star by looking at it, i.e., by knowing its
name; and the second is the problem of selecting a star from the NA or a star map and
then knowing where to find this particular star at a specific time in the night sky.

In Sect. 2.1, we have learned to associate four real numbers with any celestial object
depending on how we look at that object. Those numbers represent the
COORDINATES of the celestial object relative to one or the other frame of reference.
In the case that we are looking at such an object from a known position on the globe, we
employ the HORIZON system of coordinates which uses the two numbers referred to
as altitude and azimuth, respectively. In the case that we take a star from a Celestial
Globe, map, or catalogue, those two numbers refer to the declination and hour angle
(Greenwich Hour Angle). Therefore, the first problem of star identification can be
solved by measuring the altitude with a sextant and the azimuth with a pylorus or
compass. By using formulae (2) Sect. 2.2, we can then calculate the declination and the
local hour angle and subsequently the Greenwich hour angle of the star or planet.

By entering a star map, star catalogue, or the NA with declination and Greenwich
hour angle or SHA, we can then extract the name of the star or planet. [11, 43]

The actual task of evaluating Eq. (2) can be eliminated if a star finder is available
and only navigational stars of magnitude � 3 are to be identified. This will be
explained later and in more detail.

The second problem is solved in a similar manner. First we select a star or planet
from the celestial globe, chart, or catalogue and extract the coordinates with respect
to the celestial equator, namely: declination and Greenwich Hour Angle. Here we
also have assumed that we know the approximate latitude and longitude of the
observer. Therefore, we have determined the local hour angle as well. Finally, by
entering formulae (1) Sect. 2.1, with the declination d, hour angle t, and latitude u,
we find the altitude a and azimuth Zn.

As in the case of the first type of problem, we can eliminate the need for
evaluating the corresponding formulae (1) if a star finder or star globe is available
provided that the star belongs to the class of navigational stars of magnitude � 3.

Let’s consider two examples to demonstrate the method employed herein:

Numerical Example #1 On September 1, 2008 at 00h 45m UT, the skipper of a
sailing vessel in the Gulf of Mexico north of Tampico at
u ≅ 23° 48′ and longitude k = −96° 54′ decides to take a
sight of a somewhat faint star, but he is not 100 % sure
about the identity of it. Therefore, he measures its altitude
and azimuth simultaneously. The approximate values he
comes up with are: h0 = 21°.05 and Az = 88°. He then
proceeds with the identification of this star.
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Solution:
Entering formula (2i) with u = 23°.8, a = 21°, Az = 88°. He finds that
d ¼ sin�1 sin 23:8 � sin 21þ cos 23:8 � cos 21 � cos 88ð Þ ¼ 10
He then evaluates Eq. (2ii) and obtains:

t ¼ sin�1 cos 21 � sin 88
cos 10

� �
¼ 71�:3348 ¼ 71�:33:

Since the longitude is WEST, i.e., k < 0, it follows that:
−k = GHA* + t and hence: −k = GHA ♈ + SHA* + t from which follows

that:
SHA* = −(k + GHA ♈ + t). Entering the NA with the time 00h 45m UTC, he
finds that GHA ♈ = 351° 48′.6 and entering the equation for SHA* he obtains:
SHA* = −(−90.9 + 71.33 + 351.81) = 33°.76. By inspecting the list of

navigational
stars in the NA, he identifies this star of magnitude m = 2.6 as ENIF
(constellation Pegasus) with SHA* = 33° 50′.4 and d = 9° 55′.

Numerical Example #2 On the same day relative to Greenwich, September 1, 2008
and at the same position except for the leeway of the sea
anchor, the skipper wanted to know where he could find
the navigational star ARCHERNAR (constellation
Eridanus), m = 0.5, at about the time of local twilight,
around 11h UTC.

Solution:
The skipper extracts the SHA* and declination of this star from the daily pages

of the NA to obtain: SHA� ¼ 335�280:8 ¼ 335�48; and d ¼ 57�1102; S ¼
�57�:1866.

He also finds that GHA ♈ (11h) = 145° 58′.9 and deduces that: GHA� ¼
145�580:9þ 335�280:8 ¼ 481�270:7� 360� ¼ 121�270:7. Recalling that

k = −96° 54′.0, he obtains t = GHA* + k = 24° 33′.7 = 24°.5616. Therefore,
together with u = 23°.8, he has all the required data to compute a = h0.

Formula (1i) readily yields:
a ¼ h0 ¼ sin�1 sin 23�:8 � sin�57:1866þ cos 23:8 � cos 57:1866 � cos 24:5616ð Þ

¼ 6�250:15 ¼ 6�:4191:
Next he calculates the azimuth angle by using formula (1ii) to obtain:

Az ¼ sin�1 cos�57:1866 � sin24:5616
cos 6:4191

� �
¼ 13�:1014

90� þ cos�1 0:226675

�
He finally verifies his result by eliminating the ambiguity with the help of

formula (1) (iii) and determines that:
Zn ¼ 360� � Az ¼ 193�:101415
Although the analytic methods for identifying stars together with the exact methods

for finding the position at sea or air (See Sect. 2.4) provide the navigator with almost
unlimited choices—several hundred stars to chose from—in the selection of celestial
objects for obtaining a “fix”, it is still desirable that the seafarer develop a photographic
memory of the night sky thereby giving him or her the necessary confidence in all
matters pertaining to orientation at sea or in the air. In order to develop this type of
photographic memory, it is imperative that the navigator has access to star charts and if
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possible to a star globe or celestial sphere and also to a suitable star finder. As far a star
charts are concerned, since so many can be found, not to mention the ones in the NA,
there is no need to elaborate on the use of them in this treatise. [10, 11, 31]

However, with regards to star globes, it is a little different. These devices are not
as easily available as the charts. I have personally found star globes to be a won-
derful aid in learning to read the night sky and in understanding the basics of
celestial navigation. The reader can make his or her selection by consulting the
relevant catalogues and/or looking for ones on sale on the Internet. But navigators
also have the option of making their own using simple tools and materials.

Star globes are nice to have around, but they are fairly bulky and lack precision.
It was for that reason that those early astronomers developed geometric methods of
projecting parts of a sphere on the two dimensional Euclidean plane subject to two
basic requirements: that the angles are preserved, i.e., conformity; and that all
circles on the sphere are mapped either on circles or straight lines on the plane. Both
of these requirements are met by the STEREOGRAPHIC PROJECTION whose
mathematical mapping formulae will be provided herein.

Based on the stereographic projection, the Greek astronomer Hipparchus (ca.
150 BCE) invented the ASTROLABE, a wonderful instrument that preceded the
star finder and also served as a device for solving spherical triangle calculations.
One disadvantage of the stereographic projection lies in the inadequateness of
mapping the entire sphere on a finite sheet of paper, since all points near the
projection point of the sphere get mapped close to infinity on the plane. This
shortcoming was later removed by another mathematician who invented another
type of azimuthal projection, namely, the EQUIDISTANT AZIMUTHAL
PROJECTION (whose mathematical mapping formula will also be derived herein.)

The reader may already know one of the most popular star finders: Star Finder
#2102-D. But the reader should also know that it is basically an application of the
azimuthal equidistant projection and that the azimuthal equidistant projection is an
abstract mathematical projection, i.e., it can only be constructed by use of the
underlying mathematical formulae. This type of projection is “Non-Conformal”,
i.e., it does not preserve angles, and circles on the sphere are not mapped on circles
in general. Therefore the images of this projection are distorted, but distances
relative to the point of projection are preserved. [39, 40]

Because of its importance in the design and construction of star charts and star
finders, we are going to have a closer look at the mathematical concept of the
stereographic projection and also of the non-conformal azimuthal equidistant pro-
jection. As usual, we choose the celestial sphere with a radius and equatorial plane
as the plane of projection with the coordinates x′, y′ and the center zero.

Although in most applications to astronomy, the projecting point is either the
south or north pole, we, however, will consider the more general case where the
projection point can be any point on the sphere because of the aforementioned
applications. Then the underlying geometry consists in connecting a given point z
on the sphere with the projection point z0 and the intersection of this straight line
with the equatorial plane denoted by z′ is the image point of z on this plane. (See
Figs. 2.19.1 and 2.19.2.)
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Because of the underlying Euclidean geometry, the vector representation was
chosen as the appropriate analytic tool. Then from Fig. 2.19.2. we readily deduct that:

~z0 þ að~z�~z0Þ ¼ z0
!
, hence:

x0 ¼ x0 þ aðx � x0Þ, and
y0 ¼ y0 þ aðy� y0Þ, and
0 ¼ z0 þ aðz� z0Þ . Therefore:
a ¼ z0

z0�z. Substituting the value for a into the above vector components yields:

(1) x0 ¼ x0 þ z0 x�x0ð Þ
z0�z ; y0 ¼ y0 þ

z0 y�y0ð Þ
z0�z ; z0 6¼ z�

If we choose x0 = 0 (Meridian), then (1) reduces to:

Fig. 2.19.1

Fig. 2.19.2
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(2) x0 ¼ z0x
z0�z ; y0 ¼ � y0z0�yz0

z0�z , furthermore, if we employ the spherical coordi-
nates u and k as is customary in navigation, we obtain with the help of
coordinate transformation:
x ¼ cos u � sinðk� k0Þ; y ¼ cos u � cosðk� k0Þ; z ¼ sinu; and x0 ¼ 0; y0 ¼ cos u0;

and z0 = sin u0 the expressions:

(3) x0 ¼ 1
sinu0 � sinu

cosu � sinu0 � sin k� k0ð Þ and

y0 ¼ 1
sinu0 � sinu

sinu0 � cosu � cos k� k0ð Þ � cosu0 � sinuð Þ;

i.e., the polar coordinate representation of the STEREOGRAPHIC PROJECTION.
In order to make the transition to the azimuthal equidistant projection, it follows
that:

Since the stereographic projection is a special case of the azimuthal projection,
we first transform-map the point~z on to the point ~z0 by employing a stereographic
projection and then merely applying scaling factors k and k′ to arrive at the
equidistant projection thereby obtaining the desired projection. In particular, if x′
and y′ are defined by (2) and then undergo another transformation as mentioned
above, we have:

x″ = k′x′, and y″ = ky′, where k and k′ are to be determined subject to the
requirement that the distance C on the sphere between ~z and ~z0 is preserved, i.e.,
that x″2 + y″2 = C2.

Next let us put k′ = b � k resulting in: x00 ¼ k�bxz0
z0�z , and

y00 ¼ � k y0z0�yz0ð Þ
z0�z , and determine k and b subject to the requirement that

x″2 + y″2 = C2 (C in radian) with cos C ¼ sinu0 � sinuþ cosu0 � cosu�
cosðk� k0Þ. By again employing the spherical coordinates u and k, we find

that: b ¼ 1
sin u0

; and k ¼ C
sin C, hence:

(4) x00 ¼ C
sin C cosu � sin k� k0ð Þ, and

y00 ¼ C
sin C cosu0 � sinu� sinu0 � cosu � cos k� k0ð Þð Þ, where

cos C ¼ sinu0 � sinuþ cosu0 � cosu � cosðk� k0Þ: Formula (4) constitutes
the analytic mapping of the AZIMUTHAL EQUIDISTANT PROJECTION in
spherical coordinates.

In most practical applications to astronomy, the projecting point~z0 is either the
North or South Pole. Obviously, the stereographic projection is a much simpler
projection and its main advantage lies in the simple geometry that can by handled
by the use of a compass, protractor, and ruler only.

For serious sky watchers, there are now several kinds of electronic star
finder-star identifiers and apps that can be loaded into you smart phones or on to
your notebooks making them hand-held devices that you merely point at the sky to
locate and identify thousands of celestial objects and constellations.
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2.20 How to Navigate Without a Sextant

A sextant in the hands of a competent navigator is a wonderful instrument. In fact, it
is indispensable. However, it is also a fairly bulky and heavy piece of equipment. In
comparison to a GPS, it is huge. As a sailor and aviator, I have a collection of them.
I own several marine sextants, one aircraft bubble sextant and two lifeboat drum
sextants. However, I enjoy the freedom and challenge of being without a sextant
relying solely on a low profile hand-bearing compass that I wear around my neck, a
wrist watch-chronometer and a shirt pocket sized calculator together with a com-
putational Ephemeris. (See second part of this book.)

Navigate without a sextant? It sounds archaic, but men have been sailing the
oceans of the world long before the sextant was invented. Ancient mariners knew
how to determine latitude from simply observing the altitude of the stars and
measuring that altitude with a sufficient degree of accuracy. Over the millennia,
man has devised a multitude of devices and methods of measuring that altitude. My
favorite is the “KAMAL” because it fits in my shirt pocket and weighs nearly
nothing. In fact, this device is still used by some Arab, East Indian and West
African sailors. (It was most likely invented by the Moors and passed on to the
Arabs. East Indians who invented the trigonometric functions claim to have used
this device before the first Arab traders arrived in India, but their claim is
unsubstantiated.)

Basically, a Kamal is a stick of wood with several notches engraved on it. It’s
attached to a lanyard of fixed length and worn around the neck. The purpose of the
lanyard is to maintain a constant distance between the notched wood and the eye of
the user. Contrary to what many westerners believe, the Kamal was never meant to
be a measuring devise as such, but was designed to be a calibrating tool, i.e., only
well defined altitudes such as 2°, 5°, 10°, and 15° could be observed. [10]

Back in 1973 when I was with the Data Institute of Fundamental Research of
India in Bombay (currently Mumbai), I would charter “Dhows” (lateen rigged) on
various occasions out of Mumbai (18° N, 70° E) to learn from the descendants of
those ancient sailors more about the use of the Kamal and about low altitude
navigation. Some of my findings showed that the classical methods of celestial
navigation for determining refraction and dip for low altitude observations proved
to be highly inadequate. For instance, I found that by assuming that the dip depends
only on the height of the observer, one could end up several miles off the true
position of the vessel. Later in 1984, when I was in Nigeria, I had the opportunity to
sail in the Gulf of Guinea (4° N, 4.5° E) and to try and test what I had already found
when I has sailed in the Arabian Sea back in 1973.

After having pointed out that there are alternatives to the use of a sextant and
also that there still exist serious problems associated with the use of one, I would
like to mention methods available for navigating without a sextant or substitute for
it all together.
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#I ZENITH STARS
The most obvious method for determining the position at sea is to observe an
overhead Zenith Star and, with the help of a plumb, noting the time when it is
exactly overhead. This is not always possible in practice due to the pitching and
movement of the deck, but it may produce an approximation that may suffice for the
purpose of navigation. Unfortunately, it is not always possible to select a suitable
Zenith Star from the about 1,500–2,000 stars that can be seen under normal con-
ditions with the naked eye. Also it may be problematic to observe the actual transit
of the star from the deck of a moving vessel as well have the necessary ephemeris
for proper navigation at sea.

#II OBSERVATION OF TWO OR MORE HORIZON STARS
Another more practical and accurate method is based on the exact timing of the
rising or the setting of two stars that can be identified and classified in accordance
with our table (see Sect. 2.4). By employing formulae (9)–(14) of Sect. 2.4, which
simplify by using the values a1 = a2 = 0, we can then find the exact position of the
observer. Alternately, two lines of position can be established by the approximate
method described in Sect. 2.6.

#III TIMING OF SUN RISE/SETTING
Recalling the results of Sect. 2.14, one can also determine longitude by timing
sunrise or sunset provided that the latitude is known. The latter may also be
determined if the azimuth of the rising or setting Sun can be ascertained fairly
accurately.

#IV THE STAR OF DESTINATION
Among the various methods for navigation without a sextant, I have always pre-
ferred the method of following the star of my destination. For this particular
method, the navigator needs to select a bright star that passes directly over or near
the destination and then use the proper ephemeral data.

For example, let us assume that we identify a Zenith Star over our destination
O′ = (u, k) at Greenwich Sidereal Time—GST = T. Furthermore, our known

position has the coordinates O = (u0, k0). We now assume that we have only one
instrument, namely as “Sidereal Clock” at our disposal (or alternatively a solar
mean time clock, our never failing wristwatch chronometer) that shows
GMT = UTC, and a simple calculator with the formula for converting GMT into
GST (see second part of this book). Alternatively, one can look up the GHA ♈
(Aries) in the NA and extract the UTC for this particular value of GHA ♈ that is
given by:

(1) �k ¼ GHA♈þ SHA�. i.e., GST ¼ �k�SHA�

15 ¼ T:

Then we proceed simply by following the azimuth of this star at GST = T.
About 24 h later (all sidereal time) we arrive at position P = (k1, u1)—highly

exaggerated in Fig. 2.20.1 for clarity—which because of Loxodrome—bearing,
drift, leeway, etc., does not lie on the great circle route O ! O′, in general.
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Again, exactly at T, we take another bearing at the Zenith Star and then proceed
on this course for another day—24-h SMT. Repeating this procedure until we arrive
at our destination.

The reader should be aware that the SHA* of the star changes continuously and
therefore T as defined by (1) has to be recomputed every day or, at least, at intervals
of three days. It should also be obvious that on long voyages, i.e., 15 days or more, it
would be necessary to choose a Zenith Star that passes over the destination after
about 21h LMT at the observer’s position at O, in case this criterion is not observed,
the Zenith Star may finally pass over the destination during daylight since in 15-days
the star will show up over the destination approximately 1-h earlier than when the
observer was at O relative to LMT. Therefore, on any long voyage, it is always
recommended that one should select several Zenith Stars and employ the formulae in
Sect. 1.4 to establish WAYPOINTS along the great circle route O ! O′.

2.21 On Finding Time and Longitude at Sea, the Equation
of Computed Time (ECT), and Being
Completely Lost

Until the era when precise and reliable clocks became available to the seafarer, the
plight of timekeeping at sea and restoring exact time when lost were serious and
sometimes difficult problems. When chronometers and radio receivers became
available, the sailors who did not have the financial resources to acquire this type of
equipment still had to depend on methods that did not require any type of expensive
equipment.

One of the more popular methods for correcting time at sea has been a simplified
version of the Lunar Distance Method. Even among seamen who had the means to
buy expensive chronometers and radios, it had become rather fashionable to be
familiar with the application of this method. Although seldom recognized that this
method has its own limitations, in that it requires a fairly good approximation to the
exact GMT as well as a functional clock, this method became a longstanding
navigational standard.

It is still possible for a navigator to lose time at sea. By that I mean exact time
and under special circumstances. The possibility is there, but it is remote. With the
advent of reliable quartz watches, any sailor who can afford to buy him or herself

Fig. 2.20.1
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the basics for sustaining life can afford to acquire such a watch. In addition to the
indispensable wristwatch, any sea-going vessel should also carry a stationary quartz
watch which can also serve as a substitute for a more expensive chronometer. In
addition to the above, the navigator might also consider a radio-controlled watch
that is synchronized with an Atomic Clock and shows the exact UTC. In addition to
all this, there are also inexpensive Single Side Band Receivers that receive time
signals transmitted by a world-wide network of Atomic Time Signal transmitter
stations.

As you can see, the probability of losing time completely nowadays should be of
the same order as losing all other navigational equipment at the same time. The
probability is low, but it is there. A solar flare; a terrorist attack; a knockdown at sea
and a dead battery—any number of things may contribute to the navigator losing
exact time.

In order to cover any of these remote possibilities, I have decided to include
several computational procedures for determining approximate time and longitude
without resorting to the use of the Lunar Distance Method (LDM). These proce-
dures cover the circumstances where a navigator has lost time, dead reckoning
position, date and, perhaps, the boat’s only clock, also.

Admittedly, it is quite the challenge to address the above mentioned circum-
stances and the critical situation where a navigator has lost time, dead reckoning
position, date and perhaps the craft’s only clock. Based on what the navigator
specifically has available in such a situation, we need to distinguish between the
following four cases:

CASE I: Latitude and Longitude are known, but time has been lost.
CASE II: Time has been lost and only a crude estimate for the longitude and the

exact latitude are known.
CASE III: Exact time and longitude are lost, but approximate time together with

exact latitude are known.
CASE IV: Time, position and perhaps the only watch is lost.

We will first examine cases I and II and then treat case III and IV in detail.
In order to provide mathematical solutions to I and II, it is necessary to derive a

differential formula for calculating the change in the altitude as a function of the
changes in declination and hour angle. Therefore, let’s look again at our naviga-
tional triangle PSZ as depicted below:

As previously explained, the application or COS-TH. to z yields:
cos z ¼ sin d � sin uþ cos d � cosu � cos t. Then we ask how a change of z,

i.e., dz, can be expressed in terms of the changes dd and dt. Of course, the resulting
relationship between these three differentials are only valid in the infinitesimal
sense.

The above equation is basically the form F(z) = G(d, t). We may, therefore,
apply the implicit differential expression according to the formula of Sect. 4.2 and
obtain:
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dz ¼ 1
F0ðzÞ dG, with dG ¼ Gd � ddþGt � dt:

Substituting for F(z) = cos z and Gðd; tÞ ¼ sin d � sin uþ cos d � cosu � cos t,
we find that:

dz ¼ 1
sin z ½ðcos d � sinu� sin d � cosu � cos tÞdd� cos d � cosu � sin t � dt� If

we now ask for the infinitesimal changes in dd and dt that result in zero changes in
z, i.e., for dz = 0, we may conclude that:

(1) dt ¼ cos d � sin u� sin d � cosu � cos t
cos d � cosu � sin t dd ¼ tanu

sin t
� tan d

tan t

� �
dd

Equation (1) gives us the change in the local hour angle t in terms of the change
dd of the declination. In actual applications, these differentials will be approximated
by the differences Dt and Dd respectively. We can now turn our attention to the
solution of case I.

CASE I: Latitude and longitude are known but time has been lost.

Solution:
By using a Sun sight at maximum altitude-Meridian passage. Suppose that the

Sun is EAST of the observer. We can then extract the time of LAN from the
ephemeris—NA—and denote the corresponding GMT or LAN by T0. Our watch
now shows the time T0. Then we readily deduce that:

(2) Dt ffi tanu� tan dð Þ
sin t

Dd ffi b � tanu� tan dð Þ
sin t

DT: in arc minutes.

Here we have made use of the fact that t is a very small angle and therefore cos
t = l. Furthermore, we also have made use of the definition of the change of d,
namely the relation Dd ¼ b � DT. Note that b is also given in arc min/h. From
(2) we may also deduce that:

sin t ¼ b � tanu� tan dð Þ DT
Dt ¼ b � tanu�tan d

900

� 	
, since Dt

DT ¼ 15�=h ¼ 9000=h.

However, since t is very small and of the order of arc minutes, we may use the
approximation sin t = t � sin l′ and conclude that:

Dt� ¼ b � tanu�tan d
900 � sin 10
� 	

¼ 3:819722 � b � tanu� tan dð Þ:
Because Dt° is actually the change of the local hour angle of the Sun at the time

T ¼ TMA, we may conclude that:
Dt� ¼ 15 � DT � 60 ¼ 15 � ðTMA � LANÞ � 60 and therefore:

DTMA ¼ 3:819722 � b � ðtanu�tan dÞ
15 � 60 ¼ 0:254648133 � b � ðtanu�tan dÞ

60 , and
hence:
(3) TMA ¼ LAN + 0:254648133 � b � tanu� tan dð Þ=60: [1]
This formula clearly shows that if the latitude and longitude and therefore the LAN
are known, then the time of maximum altitude is also known by virtue of (3) and
hence the navigator’s watch can be reset.
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On the other hand, if an accurate watch is available, the LAN and subsequently
the longitude can be found by using formula (8) Sect. 2.15.

Now, let’s consider a numerical example.

Numerical Example
Date: 03/23/08

CO: Sun
Latitude: 23°.48′.94 = 23°.7824107 N
Longitude: −110°42′.5 = 110°.70816 W

Problem: Find the accurate time for resetting your chronometer.
Solution:

By inspecting the NA, we find LAN (Greenwich) = 12h 06m and hence
LAN = 12h.1 + 110.708161/15 = 19.48054407. i.e., LAN = 19h 28m 50s.
From the NA, we also extract the declination d = 1°.4083 and b = 1′.
Substituting these values in Eq. (3) yields:
TMA = 19.48054407 +0.254648133 (tan 23.7824105711 − tan 1.4083)/

60 = 19h.48231006 = 19h 28m 56s.
In the case where the position of the vessel is known with a high degree of

accuracy, the navigator observes the passage of the Sun over the imaginary
meridian (for on a vessel, the true meridian is never known exactly), and when his
or her sextant registers maximum altitude, resets the chronometer to TMA.

An alternative method for finding the exact time is based on measuring the
altitude of the Sun at time fT1 when it is close to the fictitious meridian and to the
EAST of the observer. The altitude of the Sun is noted at this instant and then the
Sun is observed again when it is WEST of the observer. At the instant fT2 when the
altitude of the Sun has reached the same value as noted at fT1, the instant is
recorded. With the help of those two values, fT1 and fT2, and the formula for the
noon, the exact time can be ascertained and the incorrect clock time T can be
adjusted. Of course, this method only works if a functional watch that shows the
incorrect time is available.

Next, let’s develop the “FORMULA FOR NOON” in terms of the formula for
TMA above.

By employing the relation (2) again we readily derive an expression for the rate
of change for the local hour angle, namely:

Dt
DT

¼ b � tanu� tan dð Þ
sin t

, t 6¼ 0, t 6¼ 180.

Since “t” stands for the local hour angle, we can no longer approximate it as in
the case of the formulae for the time of maximum altitude. We therefore define:

DTm ¼ T2�T1
2 , and tm ¼ 15DTm. Next we put t = tM and deduce from the above

expression that:
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Dt ¼ b � ðtanu� tan dÞ
900 � sin t0M

� t0M. Converting this expression into time units yields

the Equation of Noon, i.e.:

(4) DTEN ¼ 0:254648133 � b � tanu� tan dð Þ tM
sin tM

� sin 10�

By making use of the expression (3) for the correction of the time for the
maximum altitude TMA, we deduce:

(5) DTEN ¼ DTMA � sin 10 � 60 � tM
sin tM

It follows then from (5) that for small values of tM;DTEN ¼ DTMA.
Once we have computed DTEN, we find the L~AN that is based on the incorrect

times fT1 and fT2 by the formula:

(6) L~AN ¼
fT1 þfT2

2
� DTEN: [1]

Next we calculate the exact LAN by employing the exact longitude and the
values given in the NA to determine the error of our clock”:

(7) DT ¼ L~AN� LAN

Next let’s consider those cases where no exact longitude is known, including the
extreme case in which no clock is available at all.

CASE II:

Here, let’s consider the problem where the navigator has lost time completely,
maybe even the date of the month, but does have a crude estimate of the longitude
at hand. Let’s consider two possible solutions.

The first solution is an approximate method for its validity depends again on
parameters that are only true in the approximate sense and therefore, the final
quantities like computed longitude constitute, at best, a sensible approximation
provided that the initial estimate is close to the true longitude.

The second method is based on the exact formulae for the longitude when the
exact latitude is known and is basically an iterative method that converges, but not
necessarily, to the true solution unless all the data being used is correct.

Both methods employ a Moon-Sight and require highly accurate ephemeral data
for the Moon and also an accurate latitude. The second method is the same method
as outlined in CASE III.

First Method:
A method for determining longitude when time is lost but an estimate for lon-

gitude is available.
Firstly, you may want to determine the date of the month by using the last entry

in your log and then measuring the distance of the Moon from a Planet, Star or the
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Sun without applying all the necessary corrections, as, for instance, parallax,
semi-diameter, etc., i.e., obtaining merely a good estimate for the true distance.
Then by calculating the distances for the consecutive days by using your ephemeris,
you should be able to arrive at the correct date.

Another way of determining the calendar day consists in noting the phase of the
Moon and measuring the meridian altitude of the Sun and then extracting the date
from the NA.

Secondly, you get your only timepiece going again. (Replace the batteries or
rewind, etc.) Again, we are discussing the case of a proud vessel owner who goes to
sea with only one timepiece… not a good idea.

Next by selecting two suitable COs, you take two sights simultaneously and
calculate the latitude as explained in Sect. 2.14. You now have the choice of setting
your timepiece to local mean time LMT either by observing the local Sun rise/set,
or the meridian passage of the Sun. The LMTs for these events are listed in the NA.
Suppose you choose the LMT of meridian passage of the Sun, then your timepiece
shows the correct local time from then on.

Next you extract from the NA the Greenwich Hour Angle of Aries denoted by
x = GHA (12h UTC). Since you are ±k degrees in longitude away from

Greenwich, the Greenwich Hour Angle or Aries at 12h LMT is given as:
GHA♈ð12hLMTÞ ¼ GHA♈ð12h � k=15UTCÞ
¼ GHA♈ð12hUTCÞ � k=15 � 1:002737916 � 15 and therefore, the local hour

angle of Aries at 12h LMT is given by:

LHA♈ 12hLMT
� � ¼ GHA♈ 12h � k=15

� �þ k ¼ �1:002737916
15

� kþxþ k:

Here we have used the facts that k is negative WEST and that the Earth rotates
with an angular velocity of 15° � 1.002737916/h. By using the same symbol for the
local hour angle as before, we deduce that:

H 12hLMT
� � ¼ �0:002737916 � kþx:

It follows directly that an error of Dk results in an error in the local hour angle of
Aries that is merely equal to 0.002737916 � Dk. This implies that we can safely
replace k by k′ in the above expression.

Fig. 2.21.1
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Next we observe the Moon at a convenient local time T0 12h. Then the local hour
angle of Aries is: H ¼ H T0ð Þ ¼ Hð12hLMTÞþ ðT0 � 12Þ � 15 � 1:002737916, i.e.,
(8) H ¼ x� 0:002737916 � k0 þ ðT0 � 12Þ � 15 � 1:002737916:

We have now procured a very good approximation to the local hour angle of
Aries and therefore will consider that the value provided by expression (8) repre-
sents the true value. In addition, we have also procured a Moon-Sight at T0 (LMT).
We now proceed to determine the error Dk in our longitude by employing the rate
of change b of the declination and also the rate of change c of the right ascension of
the Moon. However, first we need to derive an estimate for the Greenwich Mean
Time of our observation by using the relation GHA ♈ (T1) = −k′ + H. Here “k′”
stands again for our initial estimate of our longitude and T1 is now reckoned in
UTC. Then we extract T1 from the NA. If “a” denotes the RA of the Moon and “t”
the local hour angle at the exact time T, we have a ± t = H.

But since we still don’t have the exact time T(UTC) of the event, we have to
approximate the local hour angle by using d(T1) instead of d(T), resulting in the
value t1, found by the expression (9):

(9) t ¼ cos�1 sin H� sin d � sinu
cos d � cosu

� �
This formula follows directly from the first equation of this section corre-

sponding to Fig. 2.21.1.
In order to maintain equilibrium in the above relation, we define a value a1, an

approximation to the RA, in degrees by: a1 ± t1 = H, minus (−) if East of the
observer, plus (+) if WEST.

By computing a1 and then consulting the NA, we extract a value T2 corre-
sponding to a1. We also extract GHA ♈ (T2) from the same publication. Next we
define a new and better approximation to k which we denote by:

(10) k″ = −(GHA ♈ (T2) − H), West of Greenwich.

By definition we have: Dk = k − k′, Dk′ = k − k″ and we deduce that:
Dk ¼ GHAcðT1Þ � GHA♈ Tð Þ, and

Dk0 ¼ GHAc T2ð Þ � GHAc Tð Þ ¼ �15 � ðGST Tð Þ � GSTðT2ÞÞ ¼ �15DT: Here
“GST” denotes Greenwich Sidereal Time. Next, by defining Dt and Da according
to: (a1 + Da) ± (t1 + Dt) = H, we conclude that we must have Da = ± Dt, where
Dt has been found previously by formula (1) of this section. We therefore may
write: Dt = a � Dd with “a” defined by:

(11) a ¼ tanu
sin t1

� tand1
tant1

�

The value for d1 = d(T1) is taken from the NA and t1 is computed by using
formula (9).

If we now apply the hourly rates of changes b and c, obtainable by interpolation
from the NA, we can also use the definitions: Da = c � DT, and Dd = b � Dk/15.
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Hence we deduce that DT ¼ � a � b � Dk
c � 15 with plus (+) if WEST and minus (−) if

EAST. Substituting this expression in the above expression for Dk′ yields:

Dk0 ¼ � a � b � Dk
c

. Next we use the equation of equilibrium: k ¼ k0 þDk ¼

k0 þDk ¼ k00 � a � b
c

Dk and deduce that:

(12) Dk ¼ k00 � k0

1� b
with b ¼ a�b

c , plus (+) if WEST and minus (−) if EAST.

It should be clearly understood that Eq. (9) is subject to an initial error of
0.002737916 � Dk and can be valid only if Dk is relatively small since it is based on
the infinitesimal expression (1). In order to provide an approximate range for the
validity of (12), k′ has to lie in a range of | k − k′| � 30′. Therefore if the navigator
knows that their longitude falls between two values one full degree apart, i.e.,
k0 � k � k0 + 1, they can take the midpoint as an approximate value for their
longitude k thereby assuring that they are no more than 30′ off the true longitude,
i.e., Dk � 30.

Numerical Example On 06/19/08 at T0 = 22h 36m LMT, the Moon was observed
from a location on latitude u = 23° 44′.73 N = 23°.7455 and its altitude was
cleared to H0 = 54° 03′.59 = 54°.05979243. The longitude was estimated to be
k′ = −99° 30′ = 99°.5 W. The Greenwich Hour Angle of Aries at 12h GMT was
x = GHA ♈ (12UTC) = 88° 05′.1 = 88°.085.

Find a better approximation to the true longitude and reset your watch to nearly
the exact UTC.

Solution:
Step #1: Calculate H (T0) by using formula (8) to obtain: H (T0) = 247°.7927573.
Step #2: Calculate GHAcðT0Þ ¼ �k0 þH ¼ 347�:2927573
Step #3: Extract T1 (UTC) from the NA by using linear interpolation to obtain:

T1 = 5h 14m 0s.4 = 5h.233445171 on 06/20/08.
Step #4: Extract d1 = d (T1) from the NA to find: d1 = 25° 23′.6 = 25°.3933.
Step #5: Calculate the hour angle t1 by employing formula (9) to obtain:

t1 = 39°.62088448.
Step #6: Calculate a1 = H + t1, plus (+) since Moon is North East of observer to

get: a1 = 287°.4136358.
Step #7: By interpolating the NA data, extract the value T2 that corresponds

to the RA a1 resulting in T2 = 5h 12m 9s = 5h.2024928.
Step #8: Extract GHA ♈ (T2) = 346°.82833 and calculate:

k00 ¼ GHAcðT2Þ �H ¼ �99�:03558203:
Step #9: Extract the rate of change b in the declination of the Moon from the

NA to find: b = −5′.8/hour = −0.096666/h.
Step #10: Extract the rate of change in RA from the NA to find c = 0°.7491/h.
Step #11: Calculate a using formula (11) to obtain: a = 0.11646599, and

calculate b employing formula (12), i.e., b ¼ a�b
c ¼ �0:015029103:
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Step #12: Calculate Dk using formula (12) to find: Dk = 0°.457541531 and
hence: k = k′ + Dk = −99°.04245847 = 99° 02′.55 W and also the
UTC at the instant of observation: T = T0 − k/15 = 5h12m12s on 06/20/08.
Again, the user of this method should always be aware of what has already been

said, namely that the accuracy of this method is limited by the narrow range for the
choice of an estimate k′ for the longitude that appears to be Dk � ±30′. This,
however, is to be expected since the underlying mathematics is based on a set of
infinitesimal quantities than cannot be extrapolated to a set of finite values without
jeopardizing the accuracy.

Next let us consider another method (my own) that has a much wider scope of
applicability.

CASE III (and the SECOND METHOD)

A method to determine time when only an estimate for time and exact latitude
are available.

Similarly, as in the previous cases, this method is also based on observing the
Moon and a star simultaneously. Here, it is also assumed that the exact latitude and
ephemeral data are known. Now, we must investigate the possibilities for mini-
mizing the effect of erroneous data on the numerical results and provide a method
for checking the validity of the approximation so obtained.

If we assume that all ephemeral data, the observed altitudes and given latitude,
are correct, then the exact time T of the observation and exact longitude must satisfy
Eq. (16) Sect. 2.1, namely:

(13) kDðTÞ ¼ �GHADðTÞ � cos�1 sin HDðTÞ � sin dDðTÞ � sinu
cos dDðTÞ cosu

� �
, plus (+) if

WEST

k�ðTÞ ¼ �GHA�ðTÞ � cos�1 sin H�ðTÞ � sin d�ðTÞ � sinu
cos d�ðTÞ cosu

� �
, minus (−) if

EAST.
kDðTÞ ¼ k�ðTÞ: * Star, D Moon. [44]

Resulting in the Equation of Computed Time (ECT):

(14) F Tð Þ ¼ ðGHA � Tð Þ � GHAD Tð ÞÞ � tD Tð Þ � t� Tð Þð Þ ¼ 0, with tD and t�
representing the second terms of Eq. (13) above.

Therefore, the abstract mathematical problem of finding the exact time consists
in solving the transcendental Eq. (14) with an exact set of parameters.

The continuity and convexity or concavity of the function F(T) in the vicinity of
a root T assures that the iterative process defined by the equations of Sect. 2.6 will
converge to the unique solution proved that the initial approximation satisfies the
criteria. Hence, we may conclude that T ¼ limk!1 Tk:

Although in theory everything is straight forward, in actual practice, i.e.,
application to navigation, the solution of the ECT poses some serious problems for
the following reasons:
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(i) The exact values for altitudes HD and H� are seldom known.
(ii) The exact ephemeral data as for instance d(T) and GHA(T) may not be

available.
(iii) The functions d(T) and GHA(T) are not given analytically, but only

numerically for discrete values of T and therefore F(T) is not given analyt-
ically as a function of T, but only approximately by a set of pairs {Tk, Fk} of
numerical values.

(iv) The limitations in the accuracy of evaluating (14) on a calculator also limits
the accuracy of the final numerical results.

All of this amounts to saying that in actual applications, we don’t try to solve
(14) but rather a similar equation, i.e., the same relation as (14) but with a different
set of parameters, i.e., eFðeTÞ ¼ 0. Therefore, if eT is a solution of this equation it
follows that in general eT is not a solution of (14), i.e., eFðeTÞ 6¼ 0. It also follows
then that in practice where it is not possible to determine the exact altitudes, it is
also not possible to find the exact time of observation by computation but only a
approximation. However, we may reason that whenever it is possible to minimize
the value of DFj j ¼ ~Fð~TÞ � Fð~TÞ

 

, so that it is more or less of the same magnitude

as the error in the numerical solution of Eq. (14), the root of eFðeTÞ ¼ 0 will con-
stitute an acceptable and probably a good approximation to T, i.e., to the solution of
(14).

These conclusions are in agreement with conclusions drawn in other applications
where an exact formula is available but where the input data is subject to errors as in
the case of the application of the exact equations to the problem of finding your
position at sea or in the air. (Review Sect. 2.4.) Therefore, the results of this section
also have to be viewed as approximations and not as exact solutions. This makes it
necessary to use additional information and/or calculations to assure that those
approximations are sufficiently close to the true solutions. (See the Robinson
Crusoe Example #4 in CASE IV.)

Next let us look at conditions that will optimize the error in the numerical
calculations. According to (i)–(iv), we must assure that the following requirements
are met:

(a) The values of HD and H� must be highly accurate with an error of less than plus
or minus one arc minute. This implies that the Moon is high enough to assure
that the error in parallax is minimal.

(b) If and whenever necessary interpolate the ephemeral data.
(c) Choose the approximate time of observation so that it falls in a range of time for

which the change in declination of the Moon is maximal. Also choose a star so
that its azimuth is close to the azimuth of the Moon or 180° apart. Furthermore, if
possible, choose the time of observation so that the Moon is on or near the prime

meridian since according to expression (6) Sect. 2.8: dt ¼ dH
15 � cosu � sin Zn
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(d) By evaluating the expressions for tD and t�, i.e., by computing

cos�1 sin H� sin d � sinu
cosu � cos d

� �
use the highest degree of precision possible.

Now we can develop an algorithm for calculating approximations to the
Equation of Computed Time (ECT). In Sect. 2.6, we had derived a procedure that is
based on the mathematical method of the “Regual Falsi” (RF) and applied it to the
same Eq. (14) but with the only difference that we interpreted the function F as a
function of the latitude u, i.e., we actually solved F(u) = O by using the RF or
secant method to generate a sequence ukf g ) u�. [18, 35]

Accordingly we may now use the same formulae for solving F(T) = 0, thereby
establishing the existence of a solution of this equation once we have found two
values, T0 and T1, satisfying eFðT0Þ � eFðT1Þ\0, and therefore by the continuity of F
the Mean-Value Th. of calculus guaranties the existence of a solution t between T0

and T1. However, the efficiency of this method is questionable since it basically
requires two initial values and also entails checking for the convexity or concavity
of F. Because of these shortcomings, we are going to develop another iterative
method that turns out to be even more suitable for solving the problem under
consideration.

In order to be able to treat CASE III and CASE IV by the same iterative
procedure, we must reduce CASE IV to CASE III by showing how an initial
approximation can be found. The additional requirement consists of having
obtained a good approximation to the azimuth of the Moon at the time of obser-
vation. We will therefore assume that Zn as used in our method does not deviate
from the true azimuth by more than half a degree.

By using the approximate value for the azimuth of the Moon, the navigator will
then be able to calculate the parallax of the Moon (see Sect. 3.3) and subsequently
establish the observed altitude HD of the Moon. Then by employing the formula…

(15) d ¼ 90� � cos�1 sinu � sin H + cos u � cos H cos Azð Þ.

Here Az ¼ Zn if Z1 � 180� or
Zn � 189� if Zn [ 180�

�
(This formula follows directly from the application of the COS_TH. to our

navigational triangle—see Fig. 2.21.1.)

…the navigator finds edD, an approximation for the declination of the Moon.

Entering the daily pages of the NA with edD, the navigator will find the corre-
sponding time T0, i.e., the required initial approximation for T. At this point, the
navigator should verify that the initial approximation for the parallax of the Moon
still holds and if necessary adjusts the HD.

As has been previously mentioned, the key to an efficient iterative method is that
the initial values have to be sufficiently close to the solution in order to assure the
convergence of this process. Evaluating F(T) at several points numerically may
prove to be a very tedious process for finding the two required values T0 and T1

sufficiently close to the true solution and also satisfying the additional condition that
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FðT0Þ � FðT1Þ\0. This is particularly true when the given initial value is too far
away from the true solution—also see Examples #3 and #4 of this section.

For the aforementioned reasons, I am going to develop a method for finding a
value T0 that may come sufficiently close to the solution. I have also reasoned that
any efficient iterative method that also generates the required initial values for the
secant method may also turn out to be another independent iterative method for
actually finding a suitable approximation to the true solution.

In order to develop the proposed algorithm let “T0” denote the given or com-
puted initial value. We can then calculate the corresponding values kDðT0Þ and
k�ðT0Þ by using formula (14) and thereby obtaining the value
Dk0 ¼ kDðT0Þ � k�ðT0Þ. It follows then that we have actually computed
FðT0Þ ¼ Dk0, i.e., the value of the ECT. The latter follows directly from the
identity:

(16) F(T) ¼ DkðT) ¼ kD Tð Þ � k� Tð Þ.
Next we will try to find another value T1 to T0 by means of an increment DT0 (to

still be determined) satisfying T1 = T0 + DT0. Again we may then compute the
corresponding longitudes kDðT1Þ and k�ðT1Þ, thereby evaluating FðT1Þ ¼ Dk0 and
subsequently, DT1 and T2 ¼ T1 þDT1. Repeating this process over and over again,
we obtain the following sequence of real numbers:

(17)
ði) Tkf g : Tkþ 1 ¼ Tk þDTk; k ¼ 0; 1; . . .
ðii) kDðTkÞf g : k�ðTkÞf g andFðTkÞ ¼ Dkk ¼ kDðTkÞ � k�ðTkÞ:

It still remains to be shown how the quantities DTk are to be related to the values
Dkk ¼ F(TkÞ in order to have an algorithm.

By employing definition (9) and formulae (14), we deduce that:
Dkk ¼ GHA�ðTkÞ � GHADðTkÞþDtk ¼ SHA�ðTkÞ � SHADðTkÞþDtk, where

Dtk ¼ �ðtDðTkÞ � t�ðTkÞÞ. Expressing the sidereal hour angles by their right
ascensions (RAs), we can now write the above expression as a function of time T
and obtain the relation:

DkðTÞ ¼RADðTÞ � RA�ðTÞþDt
Differentiating this equation with regard to T and taking in consideration that:
dRA�

dt
¼ 0, and

dt�

dT
¼ 0 since t* does not depend on T, we obtain the expression:

dDk
dT

¼ dRADðTÞ
dT

� dtDðTÞ
dT

�
Denoting the hourly change of the right ascension of the Moon by “c”, to be

extracted from the NA, and denoting the hourly change of the declination of the

Moon by “b”, we deduce from Eq. (1) that:
dtDðTÞ
dT

¼ aðTÞ � dd
dT

¼ jðTÞ.

With (11) aðT) ¼ tanu
sin tDðTÞ �

tan dDðTÞ
tan tDðTÞ and hence F0 Tð Þ ¼ dDk

dT ¼ c� a � b ¼
jðTÞ. This relations suggest that the linear relationship between Dkk and DTk, that
we are about to establish, should be: �Dk ¼ c� a � bð Þ � DTk ¼ jðT) � DTk and
hence:
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(18) DTk ¼ � Dkk
jðTkÞ: jðTkÞ ¼ c� aðTkÞ � b, k = 0, 1, …

plus (+) if Moon is WEST of observer; minus (−) if Moon is EAST of observer.
Therefore, we may conclude that our iterative process (17) and (18) is now well

defined and it merely remains to be shown subject to in which conditions it will
converge to the solution of (14).

First we note that by expressing the quantities occurring in Eq. (18) in terms of
the ECT and its derivative, Eq. (18) assumes the form:

DTk ¼ � F(TkÞ
F0ðTkÞ

or Tkþ 1 ¼ Tk � F(TkÞ
F0ðTkÞ

¼ Tk þDTk:

It therefore turns out that our iterative procedure is equivalent to the well-know
NEWTON-RAPHSON iterative method [35]. This method converges to the solu-
tion provided that the initial value of T0 is sufficiently close to the true solution T
and that the first and second derivatives of F(T) satisfy additional conditions. (See
Sect. 4.2.) Since the probability that a navigator will have that information at hand
is minimal, we need to rely on other, more readily available material to hand.

With the information we have on hand, namely the longitudes kDðTkÞ and
k�ðTkÞ, we can then compute Dkk at each step of our iteration. In addition, we also
know from the general theory that the ECT function is continuous and either
convex or concave in the neighborhood of a root of F(T) = 0. Therefore, we may
establish the necessary and sufficient conditions for the convergence of this iterative
process.

It should be obvious that the necessary conditions for the convergence of the
sequence Dkkf g is that limk!1 Dkkj j ¼ 0. However, this is by no means sufficient
for the convergence of the sequences kDkf g and k�kf g to k. Without going too
much into the abstract aspects of mathematics, those conditions are namely:

(19)

ði) Dkkþ 1j j � Dkkj j;Dkk ¼ kDÞðTkÞ � k�ðTkÞ for all k�m� 0

ðii) kkþ 1 � kk if CO approches from theWEST

kkþ 1 � kk if CO approches from the EAST

To avoid an misinterpretation of the possible results, the reader should be aware
that (19) does not imply that ALL members of the corresponding sequences have to
satisfy conditions (i) and (ii), but only those members of these sequences for which
the indexes satisfy k � m. However, we don’t know before hand what “m” might
be. Therefore, we must always look for the sequences for which m = 0 and if it
turns out that m � 2, we must abort the iterative process and start over again with
a new initial value. (See Example #4, below.)

It is also important that the readers know that they cannot expect to find a value
Tn so that Dkk ¼ F(TnÞ ¼ 0, only by accident when this might happen. This is
because of the finite numeric involved that only permits that approximate solutions
are obtainable. Accordingly, in order to terminate the iterative process a realistic
error bound, i.e. DkNj j � 10�M0

;M� 0 should be used.
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Next, let’s look at some relevant numerical examples and finally solve the
“ROBINSON CARUSOE” problem, i.e., completely lost… no latitude nor longi-
tude… no clock, watch, chronometer, etc., and no DRP.

Numerical Problems:

Example #1 Date: 06/20/08 Latitude u: 23° 44′.73 N = 23°.7455
Celestial Objects observed: Moon HD = 27°.72076631 SE

VEGA H� ¼ 59:3678133 NE
Approximate time of observation: T0 = 05h 00m 00s UTC
Approximate azimuth of Moon Zn ¼ 139�:5

Find the time of observation and longitude.

Solution:
Step #1. From the NA extract b = 5′.8/h = 0°.09666/h.

extract c = 0°.7491/h.
Since the moon is EAST of the observer, we must use the (−) sign in
formula
(18), i.e., j ¼ c� a � b.
Furthermore, from the NA we take:
GHAD(T0) = 56°.5233
GHA*(T0) = 64°.4683
dD(T0) = −25°.37
d*(T0) = 38°.79
SHA* = 80°685

Step #2. Using formula (9) calculate:
tD(T0) = 39°.5535079
t*(T0) = 31°.52043343

Using formula (11) calculate:
a(T0) = 1.264974986
j = 0.62682757

Using formula (13) calculate
kD(T0) = −96°.07680791
k*(T0) = −95°.98873343

Evaluate Dk0 = −0.08807448, and hence Dk0j j[ 10�2.
Step #3. Employing formula (18) calculate T1 to obtain DT0 ¼ 00h � 08m � 26s.

Therefore: T1 ¼ T0 þDT0 ¼ 5h � 08m � 26s.
Step #4. Repeat steps #1 to #3 by substituting T1 for T0 and note that it is no longer

necessary to calculate t*(T) at each step since d* = constant. Also note
that
whenever a(T) varies only slightly, the change in j is insignificant and
one
can use a(T0) throughout the process of iterations.
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We now have the following data:
GHAD(T1) = 58°.5600 GHA*(T1) = 66°.58166 dD (T1) = −25°.3566
tD(T1) = 39°.57045228 t*(T1) = t*(T0) kD(T1) = −98°.13045228
k*(T1) = −98°.10209943 Dk = −0.02835285, and hence:
DT1 = 2m 43s and T2 = 5h 11m 9s.

Note that: Dk1j j[ 10�2; Dk1j j\ Dk0j j; k�ðT1Þ\k�ðT0Þ; kDðT1Þ\kDðT0Þ
Step #5. Since Dk0j j[ 10�2 continue. (Youmay choose your own error bound 10−n.)

You now have:
GHAD(T2) = 59°.2183 GHA*(T2) = 67°.2633 dD (T2) = −25°.3576
t*(T2) = t*(T0) kD(T2) = −98°.79507158
k*(T2) = −98°.78373343 Dk2 = −0.01133815

Note that Dk2j j[ 10�2 but Dk2j j\ Dk1j j\ Dk0j j, and k�ðT2Þ\k�ðT1Þ; kD T2ð Þ
\kD T1ð Þ.
Since Dk2j j[ 10�2 we calculate DT2 = 1m 5s and T3 = 5h 12m 14s.
Because the criteria for accuracy still has not been reached, go back to steps #1
through #5 and arrive at:

GHAD(T3) = 59°.4783 GHA*(T3) = 67°.5350 dD (T3) = −25°.35
tD(T3) = 39°.57879339 t*(T3) = t*(T0) kD(T3) = −99°.05709339
k*(T3) = −99°.05543343 Dk3 = −0.00165996

Note that Dk3j j\10�2 Dk3j j\ Dk2j j\ Dk1j j\ Dk0j j, and k�ðT3Þ\k�ðT2Þ; kD T3ð Þ
\kD T2ð Þ. Hence the criteria for accuracy and convergence have been reached and
we compute DT3 = 10s and arrive at the approximate time of observation: T = 5h

12m 24s, and k = −99° 03′.32 = 99° 3′.32 W.
Our chronometer registered T = 5h 12m 30s UTC.

Example #2 Same data as in Example #1, but here, the initial approximation for
the time of observation is: T0 = 5h 24m 30s.

Find the exact time of observation.
Solution:

Again by following the iterative procedure outlined in the previous example and
computing steps #1 through #5, we find:
kD(T0) = −102°.0473509 k*(T0) = −102°.1304334
Dk0 = 0.08308253 DT0 = −7m 57s and T1 = 5h 16m 33s.
Subsequently:
kD(T1) = −100°.1072578 k*(T1) = −100°.1370334 Dk1 = 0.02977563
Dk1j j[ 10�2 Dk1j j\ Dk0j j and k�ðT1Þ[ k�ðT0Þ; kDðT1Þ[ kDðT0Þ
DT1 = −2m 51s and T2 = 5h 13m 48s.
Because Dk1j j[ 10�2, we must continue with the iterations.
kD(T2) = −99°.43754136 k*(T2) = −99°.44876343 Dk2 = 0.01122207
Dk2j j[ 10�2; but Dk2j j\ Dk1j j\ Dk0j j and k�ðT2Þ[k�ðT1Þ;kDðT2Þ[kDðT1Þ
DT2 = −1m 5s and T3 = 5h 12m 43s.
Again because Dk2j j[ 10�2 we must continue the iteration process.
kD(T3) = −99°.17379339 k*(T3) = −99°.17703343
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Dk3 = 0.00324004 and hence |Dk3| < 10−2.
DT3 = −18s and therefore our exact time of observation has been found to be:
T = 5h 12m 25s.
The results of these examples encourages us to tackle the ultimate problem never

before solved, namely to determine our position at sea or air without prior
knowledge of an approximate position and time, maybe even without having a
watch.

It should be pointed out that the proponents of the “Time Lost At Sea” problem
always assume that they have a vague idea of where they are and also imply that
they still have an approximation of the true time at hand. In particular, they imply
that the still have a functional time piece, even if only a defective alarm clock, in
their possession. Perhaps they should refer to their case as “Exact Time Lost At
Sea” in order to avoid misunderstandings.

CASE IV:

Now let’s consider the real problem of time lost, namely, TIME COMPLETELY
LOST which means that no approximate time, nor approximate longitude is known
and perhaps there is no watch at hand. However, it is always safe to assume that the
latitude of the observer is known since it can be found without knowing the exact
time or even the need of having a clock (Sect. 2.10). The following example will
illustrate how to proceed in such an extreme case.

Example #3 Same data as in Examples #1 and #2, but now, no estimate for the time
of observation is available. Instead, we make use of the measured azimuth of the
moon: Zn = 139°.5.

Solution:
The initial problem consists in narrowing the interval of time 0h < T < 24h to an

interval of about 1 h. This can be done if the measured azimuth has an error of less
than 0.5°. Then, by assuming a value for the HP of the Moon, taking into account
that it may changed by no more than 0′.3 on the day of observation, the observed
altitude can be determined.

With the date now available, an approximation of the declination dD of the Moon
at the time of observation can readily be computed by employing formula (15). The
result of said calculation is: dD ffi �25°.39370758 = −25° 23′.62.

Next by entering the corresponding pages of the NA, we extract a crude estimate
(here we have not interpolated) for the time that corresponds to dD. (The reader is
advised to interpolate in order to find a refined T0.) Here we choose:

T0 = 4h 12m 30s, 06/20/08.
Following the procedure previously outlined in the preceding examples, we find:
GHAD(T0) = 45°.0500 GHA*(T0) = 52°.6100 dD(T0) = −25°.445
d* (T0) = 38°.79 tD(T0) = 45°.0301551 t*(T0) = 31°.52043343 kD(T0) =
−90°.0810551 k*(T0) = −84°.13043334 Dk0 = −5°.95062167
a(T0) = 1.097081608 b = 0°.0966 c = 0.7491
j = c − a � b = 0.643056091 since the Moon is east of the observer. Finally,
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D(T0) = 9h.2536588837, T1 = 13h 27m 43s.
Reiterating with T1 yields:
GHAD(T1) = 179°.1983 GHA*(T1) = 191°.7950 dD(T1) = −24°.4833
tD(T1) = 40°.34846080 t*(T1) = t*(T0) k*(T1) = −223°.3154334 kD(T1) =
−219°.8467608 Dk1 = 3°.46867253, hence:
Dk1j j\ Dk2j j; kDðT1Þ\kDðT0Þ; k�ðT1Þ\k�ðT0Þ;DT1 ¼ �5h23m39s� Note:

we have approximated a1 by a0. However, the reader would be advised to
recompute a1(T1) = a1.

We now have: T2 = 8h 04m 04s. Because our requirement for accuracy has not
been met, we must again iterate to obtain:

GHAD(T2) = 100°.9933 GHA*(T2) = 110°.6616 dD (T2) = −25°.0633
tD(T2) = 39°.9382 t*(T2) = t*(T0) kD(T2) = −140°.9315
k*(T2) = −142°.1820334 Dk2 = 1°.2505334, DT2 = −1h56m41s and hence
T3 = 6h 07m 23s. Note that; Dk2j j\ Dk1j j\ Dk0j j; kDðT2Þ[ kDðT1Þ; k�ðT2Þ
[ k�ðT1Þ; And again because Dk2j j[ 10�2, wemust iterate oncemore obtaining:

GHAD(T3) = 72°.8016 GHA*(T3) = 81°.3616 dD (T3) = −25°.26
tD(T3) = 39°.69223239 t*(T3) = t*(T0) kD(T3) = −112°.4938324
k*(T3) = −112°.8820334 Dk3 = 0°.38820103 DT3 = −36m13s and hence
T4 = 5h 31m 23s. Note that Dk3j j\ Dk2j j\ Dk1j j\ Dk0j j; kDðT3Þ[ kDðT2Þ
[ kDðT1Þ[ kDðT0Þ; k�ðT3Þ[ k�ðT2Þ[ k�ðT1Þ[ k�ðT0Þ But still Dk3j j[ 10�2.

Therefore we must iterate again arriving at:
GHAD(T4) = 64°.105 GHA*(T4) = 72°.3350 dD (T4) = −25°.32
tD(T4) = 39°.61666912 t*(T4) = t*(T0) kD(T4) = −103°.7216691
k*(T4) = −103°.8854334 Dk4 = 0°.1337643 Note again that:
Dk4j j\ Dk3j j\ Dk2j j\ Dk1j j\ Dk0j j;
kDðT4Þ[ kDðT3Þ[ kDðT2Þ[ kDðT1Þ[ kDðT0Þ;
and k�ðT4Þ[ k�ðT3Þ[ k�ðT2Þ[ k�ðT1Þ[ k�ðT0Þ But again Dk4j j[ 10�2.

Therefore we must continue with our iterative process, calculating DT4 = −12m 12s

having used the approximation a(T4) ffi a(T3) and hence T5 = 5h 18m 34s.

The next iteration yields:
GHAD(T5) = 61°.0083 GHA*(T5) = 69°.1233 dD (T5) = −25°.34
tD(T5) = 39°.59142562, t*(T5) = t*(T0), kD(T5) = −100°.5997256
k*(T5) = −100°.6437334 Dk4 = 0°.04400783 DT5 = −4m 6s.
T6 = 5h 14m 28s.Note again that: Dk5j j\ Dk4j j\ Dk3j j\ Dk2j j\ Dk1j j\ Dk0j j;

and kDðT5Þ[ kDðT4Þ[ kDðT3Þ[ kDðT2Þ[ kDðT1Þ[ kDðT0Þ;
and k�ðT5Þ[ k�ðT4Þ[ k�ðT3Þ[ k�ðT2Þ[ k�ðT1Þ[ k�ðT0Þ But again

Dk5j j[ 10�2.
Therefore we must iterate again.
GHADðT6Þ ¼ 60�:0233 GHA � ðT6Þ ¼ 68�:095 dDðT6Þ ¼ �25�:3466
tD T6ð Þ ¼ 39�:58308913 t� T6ð Þ ¼ t� T0ð Þ kD T6ð Þ ¼ �99�:60638913
k�ðT6Þ ¼ �99�:61543343Dk6 ¼ 0�:009044296 DT6 ¼ �52s: Note again that:
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Dk6j j\ Dk5j j\ Dk4j j\ Dk3j j\ Dk2j j\ Dk1j j\ Dk0j j; and kDðT6Þ[ kDðT5Þ[
kDðT4Þ[ kDðT3Þ[ kDðT2Þ[ kDðT1Þ[ kDðT0Þ;

and k�ðT6Þ[ k�ðT5Þ[ k�ðT4Þ[ k�ðT3Þ[ k�ðT2Þ[ k�ðT1Þ[ k�ðT0Þ But
again Dk6j j[ 10�2. Since we require more precision, we must iterate again using

T7 = 5h 13m 16s.
GHAD T7ð Þ ¼ 67�:7933 GHA � T7ð Þ ¼ 59�:7283dD T7ð Þ ¼ �25�:3483
tDðT7Þ ¼ 39�:58094136 t�ðT7Þ ¼ t�ðT0Þ kDðT7Þ ¼ �99�:30924136
k�ðT7Þ ¼ �99�:31373343Dk7 ¼ 0�:004492076 DT7 ¼ �26s: Note again

that: Dk7j j\ Dk6j j\ Dk5j j\ Dk4j j\ Dk3j j\ Dk2j j\ Dk1j j\ Dk0j j; and kDðT7Þ
kDðT6Þ[ kDðT5Þ[ kDðT4Þ[ kDðT3Þ[ kDðT2Þ[ kDðT1Þ[ kDðT0Þ;

and k�ðT7Þ[ k�ðT6Þ[ k�ðT5Þ[ k�ðT4Þ[ k�ðT3Þ[ k�ðT2Þ[ k�ðT1Þ[
k�ðT0Þ But again Dk7j j[ 10�2. However, our desired accuracy still has not been
reached. Therefore, we iterate again using: T8 = 5h 12m 50s.

GHADðT8Þ ¼ 59�:6216 GHA � ðT8Þ ¼ 67�:685 dDðT8Þ ¼ �25�:35
tDðT8Þ ¼ 39�:57879336 t�ðT8Þ ¼ t�ðT0Þ kDðT8Þ ¼ �99�:20039339
k�ðT8Þ ¼ �99�:20543343Dk8 ¼ 0�:005040046 DT8 ¼ �28s:2: T9 = 5h

12m 22s. Because Dk7j j[ Dk7j j we must abort the process of iteration and either
accept T9 as the final approximation or refine the procedure. (See next example.)

After having applied formula (20) as a final check, we may conclude that we can
accept the above result and state the so obtained approximation as:

T ¼ 5h12m22s, and k ffi k�ðT9Þ ffi �99�:09 ffi 99�050:4W

COMPLETELY LOST—ROBINSON CRUSOE

Example #4 It started off as a friendly argument over a pint and soon degenerated
into something more. Tiburon Tristan was on his third single-handed,
circumnavigation of the globe. He put into Gibraltar to resupply and
refit his sailboat. Tossing back a couple of ales at the Lord Nelson, he
began talking sailing as sailors often do and eventually made the
statement that, “If Robinson Crusoe were alive today, all he would
need is this manual…” he tapped a book on the bar… “a
programmable calculator, a nautical almanac and a sextant to know
exactly where he was.”
“… and a good chronometer,” said a well-to-do looking man a few
seats down from him.
“Wouldn’t need one,” Tiburon Tristan said.
“He could find his longitude without a watch or chronometer of some
kind?” the well-to-do man asked.
“Exactly,” Tiburon Tristan said.
“Even the British Admiralty can’t do that,” the well-to-do man said.
“Then they are behind the times,” Tiburon Tristan said.
“You mean that I could drop you anywhere in the world with just that
manual, your calculator, a nautical almanac, and a sextant and you
could figure out where you were?”
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“Yep.”
“I’ll bet you a million dollars that it can’t be done,” the well-to-do
man said.
“It would be like taking candy from a baby,” Tiburon Tristan said.
He thought the matter was settled. He finished his drink and left the
pub. However, the next day, as he was inspecting the new bottom
paint on his boat, two men walked up to him, threw a bag over his
head and injected something in his arm. When he awoke on a strange
bed in some kind of boat, he found the well-to-do man sitting next to
him.
“Time to put up or shut up,” the man said. “There are your books and
sextant. I’ll give you a million dollars if you can tell me where you
are.”
Tiburon Tristan stood up and walked to the cabin door. He opened
the door and stepped out into the bright sunlight. He was on a boat,
anchored off a distant shore. He turned back to the well-to-do man.
“Piece of cake,” he said.

THE PROBLEM: Tiburon Tristan is completely lost. He has no idea where in the
world he is.

The Solution: The first thing he does is to use his sextant to determine true north
and the Sun’s altitude at approximately Local Apparent Noon in
order to compute its declination. Later that night, after observing
several stars and Moon, he computes his latitude by using this book
and the Nautical Almanac and determines his latitude to be:
u = −33°.68, and the date to be 12/14/08.
Since the night is clear, Tristan decides to use BETELGEUSE for
his calculations. Next he measures the azimuth and altitude of the
star and Moon within seconds of each other using the counting
method Mrs. Dranguinis taught him in the first grade:
one-hippopotamus; two-hippopotamus; three-hippopotamus… for
seconds. Using the methods outlined in Sects. 3.1–3.3, and
Algorithm D, which he had preprogrammed into his calculator, he
determines that the altitude of the Moon is H = 18°.82, and its
azimuth Zn = 40°. He then concludes that the observed altitude of
BETELGEUSE should be H� ¼ 41�:95.
Smiling, Tiburon Tristan computes the approximate declination of
the Moon by using formula (13) from the manual to obtain
dD = 25°7′.2. Then by consulting the daily pages of the NA, he
finds that this declination corresponds to approximately T0 =
03h 23m 00s UTC on 12/14/08.
Next he verifies that he had used a value for the horizontal parallax
of the Moon that was consistent with the approximate value of T0.
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With an approximation T0 for the time of observation so procured,
he follows the exact steps of the iterative procedure as described in
the manual’s Examples #1–#3 to obtain:
SHA* = 271°.0766 d* = 7°.41 b = −0.11333 c = 0.68666
dDðT0Þ ¼ 25�12 GHADðT0Þ ¼ 29�:37166 GHA � ðT0Þ ¼
133�:87
By inspecting and interpolating the data listed in the 2008 NA and
by using formula (9), he finds: tD (T0) = 42°.21604252 and
t� (T0) = 26°.2650431. By employing expression (11), he finds
a0 = a (T0) = 0.4750025, and by means of expression (18), he
computes
j = 0.740498033. Finally, by using the formulae (13) he finds:
kD(T0) = −71°.58770252 and k�ðT0Þ ¼ �71�:2117031. Hence
Dk0 = −0.37599942, and again by using expression (18), he finds:
DT0 = 0.507765589 = 30m 28s, resulting in T1 = 5h 53m 28s.
But his criteria for accuracy has not been reached; therefore, he
iterates again finding:
GHADðT1Þ ¼ 36�:63833 GHA � ðT1Þ ¼ 52�:6416
dDðT1Þ ¼ 25�:06233833 tDðT1Þ ¼ 42�:30289709
t� ðT1Þ ¼ 26�:2650431 a1 ¼ aðT1Þ ¼ 0:476269214
j ¼ 0:740643018 kDðT1Þ ¼ �78�:94122709
k�ðT1Þ ¼ �78�:9066431 Dk1 ¼ �0:03458399
DT1 = 0.046691546 = 2m 48s, resulting in T2 = 5h 56m 16s.
But still |Dk1| > 10−2, therefore Tristan iterates one more time to
obtain:
GHADðT2Þ ¼ 37�:30660 GHA � ðT2Þ ¼ 53�:34332667
kDðT2Þ ¼ �79�:60949709k�ðT2Þ ¼ �79�:60836977
Dk2 = −0.00112732. Hence DT2 = 5s.5, resulting in T3 = 5h 56m

22s.
Because now |Dk1| < 10−2, Tiburon Tristan accepts his T3

approximation and concludes that:

T ¼ 5h56m22s and k ¼ 79�360:5W

Confident with his results, Tristan double checks himself. He takes
the manual and using the latitude check, the one based on the
principal that if the computed time and longitude are correct, then
formula (20)21 (Sect. 2.12) must yield the correct latitude.
Using d� ¼ 7�:41;H ¼ H� ¼ 41�:95 and t ¼ t� ¼ 26�:2650431 he
computes:

21
u ¼ � sin�1 sin d

C

� �
� a; a ¼ tan�1 cosAz

tanH

� �
;with Az ¼ sin�1 sin t cosd

cosH�

� �
C ¼ 1� cos2 H sin2 Az

� �1
2 and t ¼ � kþGHAð Þ or t ¼ t�ðT0Þ:

.
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Az ¼ 36�:15974; a ¼ 41�:93195783, and C ¼ 0:98570847
C = 0.898570847. Hence:
u ¼ �33�:68 ¼ 33�410 � S
Walking into the boat’s chart room, Tiburon Tristan looks for a
specific chart and checks his latitude and longitude.
“Well?” the well-to-do man asked.
Tristan smiled and pointed to the island off their port beam. “It
appears that not much has changed on the Islands of Juan
Fernandez since Lt. Alexander Selkirk was marooned here back in
1704.”
The well-to-do man looked to his own captain who nodded in
confirmation.
“I’ll take my winnings in Pounds Sterling,” Tiburon Tristan said.
“I’m not fond of Euros.”

Conclusions:

Headlines

1. NSA reveals North Korea hack
January 19, 2015, 6:33 PM. Officials say that U.S. intelligence knew North
Korea was trying to infiltrate America’s computer systems years before the Sony
hack. according to the New York Times, the NSA was tracking North Korean
computer activity as far back as 2010…

2. U.S. Cracked North Korea’s Computer Systems … same date. NBC News.
3. North Korea’s Internet Down Again…

December 27, 2014… It could have been China, through which North Korea’s
Internet activities flows. It could have been US government hackers—part of
what President Obama declared would be a “proportional” response to the Sony
hack, which the FBI says it traced to North Korea. Or it could have been what
one expert told CNN is an amateur teen hacker working out of his bedroom
—“More like a 15-year-old in a Guy Fawkes mask.” Christian Science Monitor

4. U.S. Air Force Confirms Boeing’s Electromagnetic Pulse Weapon
May 26, 2015… Known as the “CHAMP,” or Counter-electronics
High-powered Microwave Advanced Missile Project, the American military
project is an attempt to develop a device with all the power of a nuclear weapon
but without the death and destruction to people and infrastructure that such a
weapon causes. Theoretically, the new missile system would pinpoint buildings
and knock out their electrical grids, plunging the target into darkness and
general disconnectedness. Digitaltrends.com

It’s not a question of IF our GPS systems will be hacked, but when. And when
they are, ships at sea and aircraft in flight will be helpless to determine their
positions unless they are carrying cumbersome nautical almanacs, trigonometric
tables, and astronomical tables… helpless, that is, unless, they have a copy of this
book tucked into a cubby or into the cargo pocket of their pants.
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As a mathematician, I conceived the idea to write about the scientific part of
navigation long before GPS became available to the general public. From the
outset, it was meant to be invariant with regards to the fast changing technology. It
was also meant to be a manual for the navigator that would make him less
dependent on the availability of other ephemeredes.

Even the most casual observer must admit that we have achieved a level in our
general education that renders anyone who does not know how to operate a per-
sonal computer illiterate. Today, the average student aged twelve or above should
be able to handle the algebraic symbolic language as employed in all advances
calculators without even understanding the underlying mathematics of the formulae
used in navigation.

This book also does not rely on the use of any special calculator or PC. Nor does
it depend on any other algorithms than the generally accepted mathematical algo-
rithms. In theory, this amounts to saying that in the event where no calculator is
available, a navigator can solve his positioning problem by using the provided
formulae and the old, standby Logarithmic Tables.

However, the reader should be aware and alerted to the fact that the computa-
tional method for finding time crucially depends on the availability of precise
altitude measurements. Errors should be less than one arc minute, which calls for
considerable accuracy. Strictly from the mathematical point of view, the underlying
problem of proving the existence and finding a approximate solution of the ECT is
straight forward. But it is imperative that the user fully realize that only the exact
Eq. (14) with the true parameters has a unique solution based on the formulae of
spherical trigonometry. therefore, whenever those true parameters are substituted by
approximate values, i.e., by measured altitudes and ephemeral data, the resulting
equation may or may not have a solution and even if these equations possess a
solution, it will not be the exact solution that we are seeking only a more accurate
approximation.

Similarly, in all cases where all attempts to find a convergent sequence of
iterations fail and no definitive conclusions can be reached, the user has to fall back
on finding two values, T0 a nd T1, so that F(T0Þ � F(T1Þ\0 to establish the existence
of a solution to the “perturbed” ECT, i.e., of eFðeTÞ ¼ 0, and subsequently try to find
this value by using another method.

Appendix

It is only for the sake of completeness that we need to review the simplest
approximation of the Lunar Distance Method (LDM) in order to provide us with
another alternative for correcting our watches. The first truly simplified LDM is
probably due to the work of Nathaniel Bowditch and here we refer to the version
provided (without proof) by John S. Letcher, Jn. [2]. In this particular approxi-
mation, the oblateness of the Earth, augmentation of the Moon’s semi-diameter,
parallax of the Sun, and contraction of the Sun and Moon’s semi-diameter by
refraction have been neglected, resulting in essentially one formula for the
correction/CLEARENCE of the measured distance between the Moon and the Sun
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or another CO due to refraction. The other formula provides a
correction/CLEARENCE for the parallax as it affect the distance between those two
bodies.

The formula as stated in the aforementioned literature for the correction of
refraction is:

(21) R0 ¼ 1:9 � x� cosDSð Þ
sinDS

, with x ¼ 0:5 � sin h1
sin h2

� sin h2
sin h1

� �
, where “Ds”

denotes the sextant distance between the two COs and “h1” and “h2” the
sextant altitudes respectively.

The corresponding formula for the parallax correction is given by:

(22) P0 ¼ HPDðyþ 0:000145 � HPD � cot D0 � ðcos2 hD � y2ÞÞ, with:
y ¼ ðcosD0 � sin hD � sin h
Þ=sin D0, where “HPD” denotes the horizontal

parallax of the Moon in minutes of arc, “D0” the sextant Lunar distance corrected
for semi-diameter of the Sun and Moon, i.e., D0 ¼ Ds � SDD � SD
; hD the
Moon’s altitude corrected for semi-diameter, i.e., hD = hSD ± SDD, h
 the other
body altitude corrected for semi-diameter, i.e., h
 = hS
 ± SD
. Then the true
Lunar Distance D is:

(23) D ¼ D0 þR0 þ P0.

Note that the Lunar Distance Method requires an approximate time in order to
determine the HP* of the Moon and also required the azimuth ZD of the Moon in
order to find the parallaxP = HP of it when it is not on the meridian. Moreover, the
monthly tables, if available, would have to be interpolated, thereby introducing
additional errors. Therefore, the LDM can only be classified as an “approximate”
method subject to systematic errors.

CAVEAT

As the inventor of the concept of Computed Approximate Dynamic Time (CADT),
I would like to point out that in theory, any pair of COs could be used to find this
time, i.e. for instance, a star and a planet or even two stars could be substituted for a
star and the Moon, since the solution for the system of transcendental equations
(Sect. 2.21) exists provided that all the parameters are exact and round-off errors are
negligible.

However, since in any type of application to navigation some or all parameters
are subject to finite errors and all calculations and computers have a finite arith-
metic, it is possible that these equations do not have a solution for those given
parameters or they are Ill-Conditioned and hence cannot be solved numerically.
Therefore, I suggest that the reader employ the Moon-Sun combination whenever
possible because the Moon changes its position relatively quickly with reference to
the position of all stars.

To consider those pathological cases mentioned above, first consider cases
where those two equations do not have a solution at all. These are the cases where
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the erroneous parameter no longer prescribe spherical triangles. The reader may
recall the example given in a previous section where the three sides a, b, and c no
longer prescribe a plane triangle since c > a + b. The case where the system of
those equations is Ill-Conditioned corresponds to erroneous parameters that result in
tangent lines at the point of the intersecting solution that are almost parallel.
Therefore, the solution, although it exists, cannot be found numerically by
employing approximate methods.

In conclusions, if the reader arbitrarily chooses two stars, he or she will find out
that the system of those equations will in all likelihood be Ill-Conditioned since the
declination of those stars remains almost constant over a period of one day as does
their SHAs which change at nearly the same rate.
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Chapter 3
Methods for Reducing Measured Altitude
to Apparent Altitude

3.1 Navigational Refraction that Includes Astronomical
Refraction for Low Altitude Observations

In the previous chapters, exact mathematical methods have been provided always
assuming that the parameters entering the calculations were correct. However, as has
been pointed out on various occasions, the latter is hardly the case. We now need to ask
ourselves a very important question, namely, what are the parameters that can cause the
greatest errors in determining our position at Sea or Air by way of astronavigation? The
answer becomes obvious once we look at the magnitudes of all parameters which enter
our calculations. Besides the exact time, exact ephemeral data, the altitude h0 is one of
the crucial parameters needed for finding the position of a vessel.

The so-called “observed altitude (h0)” is composed of six elements, namely:

(i) The measured altitude by sextant (hs).
(ii) The index error of the sextant (I).
(iii) The dip of the horizon (D).
(iv) The semi-diameter of the Sun, Moon, and Planets (SD).
(v) The horizontal parallax (HP) of those COs … and most importantly,
(vi) The atmospheric refraction (R).

Relative to the others, the dip of the horizon and the refraction are, in magnitude,
together with the measured altitude (hs) the crucial element of observed altitude. How
the measurements of the sextant altitude can be made as precise as possible will be
explained in Sect. 3.5 in great detail where it will also be shown that the dip of the
horizon depends primarily on refraction so that the most important component in the
calculation of h0 is indeed the atmospheric refraction which may give rise to variations
in altitude measurements of almost a full degree. Therefore, it is not only important to
explain what refraction is in mere physical terms, but also to describe this phenomenon
quantitatively in terms of mathematical formulae. [4, 5, 22, 23, 29, 30, 41]
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For centuries, fishermen have known that they could not spear a fish if they
aimed at what they actually saw. Instead, they learned to aim at a point somewhat
closet to their position. They recognized that the rays of light were broken when
they entered the water. This led to the discovery of the laws of refraction, culmi-
nating in “Snell’s Law” that quantifies refraction.

Although the ancient Moors knew that light which comes from a CO gets bent
once it enters the atmosphere and appears to follow a curve rather than a straight line,
it took many centuries before mathematical formulae and tables became available to
aid in navigation. However, despite the great effort on the part of astronomers,
physicists, and mathematicians, many aspects of the real atmosphere are still not fully
understood and all the available models for quantifying refraction still do not give
satisfactory results in all practical situations. It should be clearly understood that
without a better understanding of the physics of gases in boundary layers, we can not
expect to be able to develop the theory of refraction to an extent that it becomes an
infallible tool in the hands of the navigator. Until that time comes, we will have to
rely on what is already at hand and on experimental results as they become available.

It is generally accepted that the basis for a model of the Earth’s atmosphere
should be a spherically symmetric atmosphere [1]. Depending on how we describe
the atmosphere physically, we will obtain different models for refraction and the
mathematics is of secondary concern only. However, if we opt for a mathematical
method for computing refraction by employing experimental data, we will be
concerned with numerical methods of approximation as for instance Chebyshev’s
or Padé’s and Max-Min approximation by functions in order to derive suitable
formulae for the practical navigator. Because of this, we need to classify the
available results into three main categories:

I. Analytic Methods based on analytical models of the atmosphere.
II. Numerical Methods based on analytical descriptions of the atmosphere.
III. Numerical Approximations based on experimentally obtained data.

As has been stated before, the base for a quantitative description of refraction is
Snell’s Law that relates the indices of refraction of medium one and medium two to
the angles H1 and H2 of the refracted light as follows:

(1) l1 � sin H1 ¼ l2 � sin H2, where the index of refraction is defined by l ¼ c
v,

“c” denoting the speed of visible light in a vacuum and “v” denoting the speed
of light in the respective other medium. For instance, l = 1 in the upper
atmosphere and l0 = 1.00029 in the region closest to the surface of the Earth.
If we then divide the atmosphere surrounding the Earth into shells1 of arbitrary
thickness but distinct indices lk, k = 0, 1, … n and apply Snell’s Law, then we
can readily see that the light coming from a CO follows a curved path as the
thickness of the shells approach zero and arriving at a fixed angle to the zenith
of the observer on the Earth (see Fig. 3.1.1).

1At a later time, it may become necessary to adopt a more realistic model of the atmosphere that
departs from the assumption of shell symmetry.
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Definitions

H ¼ AbQQ; H0 ¼ AbQP0

c ¼ AbP0B; DH ¼ H0 �H

r ¼ OQ; r0 ¼ OP
0

Dr ¼ r0 � r; D/ ¼ /0 � /
DR ¼ a� a0 Refraction.

We may then conclude that DR ¼ �c; a ¼ /þH; a0 ¼ /þH; DR ¼
�ðD/þDHÞ; and also dR = − (d/ + dH). ro: Radius of the Earth.

By applying Snell’s Law to the two shells with index of refraction l0 and l
respectively, we find that l0 � sin/ ¼ l � sinW and by applying the SIN-TH of

plane trigonometry to the triangle QOP0 we find that
sin /
r0

¼ sin W
r

. By eliminating

sin W on the right hand side and by employing the first Eq. (1), we deduce that:
l � r � sin / ¼ r0 � l0 � sin /0:
This equation hold for any contiguous layers independent of their height above

the Earth’s surface. Hence we obtain the important expression:

(2) l � r � sin/ ¼ lo � ro � sin f, the so called “Invariant Relation”.

In this formula “lo” denotes the index of refraction at the surface of the Earth and
“f” is the zenith distance of S measured by the observer at Z. Moreover for small
values of Dr q dr and DH q dH, we deduce from the plane of triangle Q0QP0 that:

tan / ¼ r �DH
D r ffi r dH

dr ; or

(3) dr
r ¼ cot/ � dH.

By taking the total differential of the invariant relation (2), we find that
l � sin/ � drþ r � sin/ dlþ r � l � cos/ d/ ¼ 0, since the right hand side of (2) is

Fig. 3.1.1
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a constant. Hence we can deduce that drr þ dl
l þ cot/ � d/ ¼ 0, and by employing

expression (3) and dR = −(d/ + dH) from the expression above, we conclude that
dl
l ¼ � cot / � ðdHþ d/Þ ¼ cot/ � dR, or

(4) dR
dl ¼ 1

l � tan /, the Differential Equation of Refraction that is based on our

shell model.

By integrating (4), we find the Integral Representation of Refraction, namely:

(5) R ¼ R lo1 tan / dl
l . Although the integrand is known only according to the

invariant relation (2), approximations can be obtained by describing the
physical state of the atmosphere quantitatively. This is the same as saying that
once the dependence of l on r is known analytically, we shall be able to
integrate (5) and find an explicit expression for R as a function of f or ho, and
some physical parameters such as temperature, pressure of the air and water
vapor, height of the observer above the water level, wavelength of visible light,
and even the latitude of the observer. Therefore, the entire physical state of the
atmosphere rests with the function l = l(r), that also depends on the afore-
mentioned parameters. Any attempt to approximate (5) without this vital
information is bound to fail, as we shall see promptly.

If we express the factor tan / in the integrand in terms of sin / and use the
invariant relation (3), we find that:

(6) R ¼ lo � ro sin f
Z lo

1

dl

lðl2 � r2 � l2o � r2o sin2 fÞ1=2
:

Although the integrand has a singularity at r = ro; f = 90°, the integral still
exists.

Since all meteorology is built in the formula for l(r), we must look for a
relationship between the index of refraction and the density of the atmosphere. Such
a relationship is provided by the Law of “Gladstone and Dales” that states
explicitly:

(7) l = l + cq with c = 0.226, qo = density at the Earth’s surface, cqo = 0.00029.
So far as the theory of refraction has been laid down in very general terms,
however, it should be clear from those formulae that any realistic quantitative
analysis must entail an accurate description of the physical state of the atmo-
sphere and must therefore include the meteorology of the boundary layers on
the surface of the Earth in order to yield results for low attitudes, i.e.,
−2° � ho � 5° that are compatible with the experimental results.

Now, let’s consider two independent analytic methods for calculating atmo-
spheric refraction.
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I. Analytic Methods Based on Analytic Models of the Atmosphere.

Laplace Formula

For more than two centuries, mathematicians and astronomers have tried unsuc-
cessfully to integrate the physics away from refraction, leaving the navigator with
erroneous data to compute the observed altitude of COs near the horizon. As
recorded in the relevant literature, authors like Lambert, Laplace, and later,
Newcomb, Wooland and Clemence have attempted to integrate (6) by using Taylor
series expansions for the integrand truncating the semi-convergent series after
several terms and integrating them term by term and ignoring meteorology by
merely using the unrealistic concept of mean atmosphere, or standard atmosphere at
sea lever defined by T = 10° (C°) P = 1010 (mb). This mean refraction is com-
monly denoted by “R0” and the temperature and pressure adjustment is simply
made by introducing the meteorological factor M(T, P) that depends on the most
important physical parameters.

Let us consider the concrete case that results in an inadequate approximation of
refraction as it applies to CO observations that are close to the horizon, known in
most of the text books and manuals on Celestial Navigation as the “Laplace
Formula.” Here, the underlying mathematical concept is that the integral in (6) can
be evaluated approximately by introducing a small parameter “s” defined by:
r
r0 ¼ 1þ s, r and r0 defined as before.

Since it is assumed that beyond 65 km above sea level the atmosphere no longer
contributes to the integrand, for r0 = 6,378,390 m and it follows that 0 � s �
0.0102. Hence, by expanding the integrand in powers of s and then neglecting the
terms containing s2, s3, …, yields essentially only two terms that can be integrated
by employing Eq. (7) in its differential form: dl = c dq, resulting in the expression
known as “Laplace Formula”, namely: R0 = A � tan f + B � tan3 f + ���.

The constants A and B corresponding to the mean refraction, i.e., to
T = 10° (C°) and P = 760 (mm), are to be found by astronomical observations and
are: A ¼ 5800:16, B ¼ 000:067, so that the above formula becomes:

(8) R0 ¼ 5800:16 � tan f� 000:067 � tan3f; f ¼ 90� � hs.

This formula is said to constitute an adequate approximation for all zenith dis-
tances of up to 0 � f � 75°, hs � 15°.

In case readers would like to refine the above formula by taking terms of higher
than s2 into consideration, they will obtain formulae of the type:

R0 = A � tan f + B � tan3 f + C � tan5 f + D � tan7 f + ��� [7], [30]
However for low altitudes, these formulae will also fail to provide reliable results

for the navigator for the aforementioned reasons. The authors mentioned above and
others then account for the variations in refraction due to changes in temperature
and pressure by employing the law of Mariotte-Gay-Lussac that states:
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qT;P
q0

¼ P
760 � 1

1þmT, where m ¼ 1
273 if T: (C°), P: (mb), at 10° (C°), 1010 (mb),

thereby obtaining the refraction R at temperature T and pressure P by the expression:

(9) R = M(T, P) � R0 with M T; Pð Þ ¼ 0:28P
273þT

, P (mb), T (C°), and R0 as above.

Cassini’s Model

Here we consider a slightly more realistic approach to quantitative refraction that is
based on a fairly simple model of the atmosphere and results in less complicated
formulae. This model is due to Giovanni Domenico Cassini, an Italian astronomer
[4]. Cassini simply treated the atmosphere as a uniform one, i.e., he assumed that
the light gets refracted only once at the boundary layer between the so called
“ether”-vacuum and the homogeneous atmosphere (see Fig. 3.1.2).

Obviously he simplifies things considerably but, at least, consistently so far as
the application of Mariotte-Gay-Lussac’s Law is concerned. On the other hand,
what is it good for if one uses the shell model and then applies Mariotte-Gay-
Lussac’s Law only to the boundary layer of Earth’s atmosphere? Nice mathematics,
but poor physics.

By applying Snell’s Law, Cassini deduced:
l � sin z1 ¼ sin z2 and using the SIN-TH. to OPZ he obtained:
sin z1
r0

¼ sin f
r0 þH

, i.e., sin z1 ¼ r0
r0 þH

� sin f; and from the first equation, he then

deduced:

sin z2 ¼ l � r0
r0 þH

� sin f. He also concluded that R0 = z2 − z1, and hence:

(10) R0 ¼ sin�1 l�r0
ðr0 þH) � sin f
h i

� sin�1 r0
ðr0 þH) � sin f
h i

:

r0 = 6,378,390 m; H − 65,000 m.

Surprisingly, Cassini’s formula (10) derived from a slightly oversimplified
model of our atmosphere, produces results even more favorable than Lagrange’s
formula, since it may give a better approximation of to 80° zenith distance. Even
more surprisingly, Cassini’s formula does not appear in text books on Celestial
Navigation with one exception where a formulae is being presented without proof
and reference to the author. Explicitly, this formula is: [27]

Fig. 3.1.2
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(11) R ¼ P
273þT

ð3:430289 ðz� sin�1ð0:9986047 � sin 0:9967614 � z))
�0:01115929 � z),z ¼ 90� � hs:

Next, let us look at another class of approximations that produce acceptable
results even for low altitude observations, i.e., h0 < 5°, and which employs
numerical methods for computing refraction.

II. Numerical Methods Based On Analytic Descriptions Of The Atmosphere.

Here we assume that a realistic physical description of the atmosphere–troposphere,
stratosphere and boundary layers—is available, i.e., we assume that the function
l = l(r), depending also on the other parameters mentioned above, together with its
derivative, has been found. Those two functions don’t have to be continuous
throughout, but should be, at least, piecewise continuous. Subject to these condi-
tions, we will be able to compute the integral (5) by employing the invariant
relation (2). [4]

The first step in this approach consists in transforming the integrand in (5), so
that it can be computed later by using numerical quadrature formula (Sect. 4.1).

Recalling that
d
dl

ln l ¼ 1
l
, we deduce that:

(12) R0 ¼
R ln l0
0 tan/ d(ln lÞ:

Next taking the logarithm of Eq. (2) and differentiating it with regard to l, we
find:

d
dl

lnðl � r) ¼ � d
dl

ln sin / ¼ � d
d/

ln sin /
d/
dl

¼ � 1
tan /

� d/
dl

; i:e:;

tan / � dðln lÞ ¼ � dðln lÞ
dðln r � lÞ d/. Hence :

(13) R0 ¼ �
Z f

0

d(ln lÞ
d(ln l � r) d/ ¼ �

Z f

0

d(ln lÞ=d(ln r)
1þ d(ln lÞ=d(ln r)d/ ¼ �

Z f

0

r
l � dldr

1þ r
l � dldr

d/.

It should be noted that the integrand in the last integral is a well-behaved
function of d and is known numerically because of the invariant relation (2), i.e.,
l(r) � r � sin d =

= l0 � r0 sin f, which for any given d can be evaluated numerically for r by
iterative methods, as for instance, by the well-known Newton-Raphson method as
follows:

By defining the function:

fðrÞ ¼ lðrÞ � r � lo � ro � sin f
sin /, we have: f 0ðrÞ ¼ lðrÞþ r � dldr. The Newton-

Raphson method then consists in computing the sequence of values {rk}, k = 1,
2, … for r corresponding to d, i.e., r = r(d), by the formula:

(14) rkþ 1 ¼ rk � f(rkÞ
f 0ðrkÞ

, k = 1, 2, …. With r1 as the initial approximation.
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Recalling that l varies between 1 and 1.00029 we may use

r1 ffi r0 � sin f
sin /

as an initial value in our iterative method defined by (14). Having

calculated the value r ¼ lim
k!1

rk, approximately, we know l(r) = l(/) and also dl
dr

and therefore, the integrand in (13) is know at discrete points dk, satisfying
0 < dk < f, k = 1, 2, …, N. The latter enables us to use a suitable quadrature
formula, as for instance, a Newton-Cotes formula [35] to compute the integral
(13) numerically.

It should be noted that the lower limit of integration, i.e., / = 0 corresponding to
r = ∞ can be replaced by a value of /0 6¼ 0 corresponding to a value of l(/0)

2 for
which the integrand differs distinctly from zero. However, by not using / = 0 in the
numerical calculations, this is not necessary.

The numerical method described herein does not constitute something entirely
new and only becomes a practical, viable method for computing refraction if a
realistic model of the atmosphere is available. Depending on how one describes the
atmosphere and, in particular the troposphere in and near the boundary layers, one
obtains one or the other concrete method with the necessary formulae for com-
puting refraction.

One method for treating the atmosphere more realistically can be found in a
publication by the authors Lawrence H. Auer and E. Myles Standish [5] who divide
the atmosphere into only two shells, namely the troposphere (0 � 11,019 m) and
the stratosphere (>11,019 m). For the two distinct regions, distinct analytic
descriptions—formulae for the dependence of the density on the height above sea
level—are being used and the physical parameters are adjusted according to the
prevailing meteorological conditions.

One hopes that different and even more realistic models of the atmosphere will
become available to the navigator in the near future. Until then, we will have to rely
more on results obtained by astronomical observations if we want to include low
altitude observation in the scope of practical navigation. [6]

My personal experience with low altitude observations goes back to the year
1973 when I held an appointment with the Data Institute of Fundamental Research
in Bombay (now Mumbai), India. During my stay there, I frequently chartered local
“Dhows” to take me out into the Arabian Sea, away from landmasses in order to
practice low altitude navigation using the simple Arabic “Kamal” (described in
Sect. 2.20). I had previously devised a formula for low altitude refraction based on
tables of experimental data; however, my initial experiments with that formula
frequently put me ten nautical miles off with my navigation. Repeated experiments
showed that the given values had to be adjusted drastically for higher temperature,
abnormal pressure, and, in particular, for the vapor pressure in the boundary layers.
After making those adjustments, I was able to reduce my “fix-error” to about three
NM. But I wasn’t the only one who needed to make adjustments. I discovered that

2Such a value can be found by computing with (2), putting r = 12,000 m.
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the local navigators also empirically adjusted the calibration of the Kamals to
account for low altitude refraction.

Because of our rather limited knowledge of the physical state of the atmosphere,
the experimental data obtained from astronomical observations is invaluable for the
navigator and it makes perfect sense to condense that data into mathematical for-
mulae that can be easily evaluated with a pocket calculator. Therefore, let’s take a
closer look at the numerical methods based on observational data.

III. Numerical Approximations Based On Experimentally Obtained Data.

As before, the starting point for the development of an analytic formula is the
integral of refraction (5). Although the integrand has a singularity at / = 90°, we
know that the integral itself exists. By replacing d with a defined by / = 90° − a,

we find that: R0 ¼
R l0
i cot a � dl

l
, where a depends on l in a manner we don’t really

know. By taking the properties of the integrand into consideration, we may replace
the integrand cot a

l by a mean value cot �a � a thereby obtaining the relation:

(15) R0 ¼ a � cot �a, where �a is still unknown by satisfies 0\�a� 90.

The approach used here consists in approximating �a by a simple rational
function:

(16) �aðh) ¼ PnðhÞ
Qmðh)

þEn;mðh)

“En,m(h)” denotes an error term to be determined later. Note that Pn (h) and
Qm(h)—in many applications n = m + l—are corresponding polynomials of degree
n and m respectively. The ration of the two polynomials, i.e., the rational function,
is expressed in terms of continued-fractions, as for instance:

�aðhÞ ¼ hþ a1
hþ a2
hþ a3

hþ a4

hþ a5

hþ a6
and so on:

. . .. . .. . .

If “R0” denotes the mean refraction and “M(T, P; p, H, k)” denotes the mete-
orological factor that depends on the temperature, the barometric pressure P, the
pressure of water vapor p, the height of the observer at sea level H, the wavelength
of visible light k, and perhaps, the latitude of the observer, then the refraction is
assumed to be related to R0 by:
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(17) R(h) = M(T, P; p, H, k) � R0(h).

The numerical methods described here differ radically from the previously
described methods because in these methods, the coefficients a1, a2 … are deter-
mined by matching the resulting numerical values with the experimental data
obtained by astronomical observations and denoted by:

Rk
0 ¼ R0ðhkÞ; k ¼ 1; 2;. . .; n + 1: 9; 18; 35½ �

In the case of the approximation defined by (15), we are actually approximating

cot�1ða�1R0ðh)) by the rational function Pnþ 1ðh)
Qnðh)

, for from (15) and (16) we

deduce that:

(18) cot�1ða�1R0ðh)) = Pnþ 1ðh)
Qnðh)

þEnþ 1ðh), where “h” is the independent variable.

Depending on how the requirements on the error function Enþ 1ðh) are specified,
you obtain one or the other type of approximation. For instance, by using a Padé
approximation [18] for a given set of values Rk

0, you can obtain a specific set of
coefficients a1, a2, a3, … an+1, and by employing a Chebychev approximation, for
instance, you obtain another set of coefficients �a1;�a2. . .�anþ 1. However in all cases
where R0(h) is not known analytically, but only for discrete values of Rk

0, we will
have to solve at least a linear system of equations for the n + 1 coefficients a1, …
an+1. The resulting formulae for the refraction then become:

(19) R0ðh) ¼ a � cot Pnþ 1ðh)
Qnðh)

, with “a” as a suitable scaling factor still to be chosen.

The meteorological factor M(T, P; p, H, k) is generally found by applying the
laws of the theory of gases as they apply to well-defined layers in the troposphere
and stratosphere and/or by utilizing the experimental data available. This permits
adjusting those parameters so that the numerical results account for the actual
physical state of the atmosphere.

Before we consider specific examples of this type of approximation, I would like
to point out that from the mathematical point of view, the transition from the
definite integral (5) to the approximation (15) could be completely ignored if we
just take (15) as an a priori approach for the construction of an approximation of the
desired type.

(The reader should understand that the scope of this book does not leave space
for deriving explicit formulae for the above described approximations. Each
specific approximation for a particular rational function in (16) and (19) and par-
ticular set of experimental data constitutes a major undertaking. Therefore in this
context, I only refer to those concrete cases where the coefficients have already been
computed and merely state the actual results as they can readily be used by the
navigator.)
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Explicit Formulae

Case (i) a ¼ 5800:2; n ¼ 0; a1 ¼ 0; corresponding to �a ¼ hs,

R0ðhsÞ ¼ 5800:2 � cot hs; 45� � hs � 90�; M(T,P) =
0:372P
273þT

:

7; 41½ �

Case (ii) a ¼ 0�:0167; n ¼ 1; a1 ¼ 7:32; a2 ¼ 4:32

R0ðhsÞ ¼ 0�:0167 � cotðhs þ 7:32
hs þ 4:32

Þ; 5� � hs � 90�;

M T; Pð Þ ¼ 0:28P
273þT

; RðhsÞ ¼ M T; Pð Þ � R0ðhsÞ: 55½ �

Case (iii)
a ¼ l0; n ¼ l; a1 ¼ 7:3l a2 ¼ 4:4; M T; Pð Þ ¼ 0:28P

273:15þT

R0ðhsÞ ¼ 10 � cotðhs þ 7:31
hs þ 4:4

Þ; R(hsÞ ¼ M(T,P) � R0 ½44�
and the improved formula is

R0ðhsÞ ¼ R0ðhsÞ � 0:06 sin ð14:7 � R0 þ 13Þ; M(T,P,R0Þ ¼
ðP� 80Þ

930
� 1
1þ 8 � 10�5 � ðR0 þ 39ÞðT� 10Þ ; �20� �T� 40

970� P� 1050 mb; 0� hs � 90�; RðhsÞ ¼ M(T,P,R0Þ � R0

Case (iv)
a ¼ 1�

620:6
; n ¼ 2; a1 ¼ 5:459; a2 ¼ 19:272; a3 ¼ 6:942

−0°.3258 � hs � 90°.
Case (v) a ¼ 1�

62:97411 ; n ¼ 4; a1 ¼ 3:86653 a2 ¼ 6:24727 a3 ¼ 8:56113
a4 ¼ 22:89592 a5 ¼ 7:15359 with the formulae for M(T, P, p, H)—
too complicated for the practical navigator. [5]

Note in all the formulae above “hs” denotes the sextant altitude cleared for Index
error, Dip, Semi-diameter and Parallax.

Aside from the formulae stated above, there still exists another class of formulae
for practical applications that are based on direct approximations of the physical
data obtained by astronomical observations. These types of approximations that are
being use in direct approximations are either polynomial approximations, as for
instance Chebychev approximation, or rational approximations of the Padé type or
even Min-Max approximations [10]. Here I would like to draw attention to one
particular formula for low altitude refraction as it appears in the “Refraction
Calculator” by Google. This particular formula is claimed to be valid for altitudes
below 15° and gives R(hs) as follows:

Case (vi): RðhsÞ ¼ Pð0:1594þ 0:0196hs þ 0:00002 � h2s Þ
ð273þTÞð1þ 0:505hs þ 0:0845h2s Þ

14½ �
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where, again “T” denotes the temperature in degrees C°; “P” the barometric
pressure in mb; and “hs” the sextant altitude in degrees; the refraction “R(hs)” is
then also given in degrees.

In all those direct methods, the physical data is obtained by inspecting accurate
tables, as for instance, the Pulkovo Refraction Tables [34], or the Greenwich Obs.
Tables—or perhaps, even your own tables. [15]

In conclusion, it can be said that with the present state of our knowledge of the
physical structure of the atmosphere, and in particular, the theory of boundary
layers, none of the approaches employed for calculating refraction accurately for all
regions of the atmosphere is completely satisfactory. Therefore, the direct or
indirect use of experimental data is imperative. However, it is hoped that progress is
being made in the physics of our atmosphere that will result in even more accurate
methods for calculating astronomical refraction.

For practical navigators, the nine explicit formulae provided in this section
should give them the option of choosing the most suitable method for their par-
ticular applications.3 Furthermore, the user now has the possibility of comparing
several methods with regards to accuracy and efficiency.

Advisory for Aviators

The pilot and/or navigator of an airplane who wants to use a sextant in the dome or
cockpit has to apply an additional refraction correction that is due to the refraction of
the visible light on the plexi or safety glass of the dome or cockpit window. Anyone
wishing to do so is advised to consult the manufacture of those windows to obtain the
index of refraction and measure this refraction directly while on the ground.

Formulae for Conversions

ði) Celsius C	b c , Fahrenheit F	b c
C	 ¼ 5

9
� F	 � 32	ð Þ

F� ¼ 9
5
� C� þ 32�

50 F�b c ffi 10 C�b c

ðiiÞ mm Hgð Þ , mbð Þ , Pascalð Þ
1 mm Hgð Þ ¼ 1:33 mbð Þ¼ 1:333 � 102 Pascalð Þ
760 mm Hgð Þ ¼ 1:01308 barsð Þ ¼ 1:01308 � 105 Pascalð Þ
1 Atmosphereð Þ ¼ 1:01308 barsð Þ ¼ 760 mmð Þ

3Another formula for the astronomical refraction that uses Chebychev polynomial of up to the order
nine is also available to the navigator [27]. However, I chose not to include it in this section because
1., I have not introduced those polynomials and 2., the author of this formula has not stated upon
which analytical approximation this particular Chebychev polynomial expansion is based.
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3.2 The Dip of the Horizon as a Function of Temperature
and Pressure

It is generally recognized that the two most limiting elements to the accuracy of
astronavigation are the determination of valid approximations for REFRACTION
and DIP. In this section, I am chiefly concerned with finding a realistic approxi-
mation to the dip of the horizon, although dip cannot be analyzed without dealing
with refraction as well which is the reason for not having been able to arrive at more
satisfactory results before.

In most of the relevant literature, including the Nautical Almanac, the formula
for calculating dip is:

(1) D ¼ 0:97 � ffiffiffi
h

p
, where “h” is the height of the observer above sea level mea-

sured in feet and “D” is given in arc minutes.

I want to clearly show that this expression for D is strictly an empirical formula
based solely on geometry. Mathematically speaking, formula (1) implies that at any
given height of the eye above sea level, dip is merely a constant which contradicts
experimental results and also defies logic, since dip obviously also depends on
refraction and therefore on temperature and pressure. It is all too often one hears a
sailor ask, “Why should I be concerned about nonstandard low altitude corrections
if I only select COs of higher altitude for my particular type of navigation?”

I want the reader to understand that the main reason for employing Eq. (1) is that
no other simple expression or set of tables are available for computing
dip. However, by using (1) because nothing else is available, navigators should be
aware that the probable error can amount up to 20:5, and under extreme atmospheric
conditions of up to 300. [8]

Fig. 3.2.1
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At this point, our first task should be to analyze the hypotheses upon which
formula (1) is based, and to derive some formulae that encompass the dependence
of the dip on temperature and pressure.

In order to analyze formula (1), let’s look first to Fig. 3.2.1 to understand the
underlying geometry.

In the triangle OCT, we find that a + b + d = 180°, with a = 90° − (D + c),
b = 90°− c′.Then the two major assumptions made by the authors of formula (1) are:

(2) c0 ¼ c; and
(3) ɤ = jd. (Note that all of this is geometry and no physics.)

Next by applying the SIN-TH. of plane geometry to OTC we find that:
sin b
Rþ h

¼ sin a
R

. By substituting the expressions for a, b, and ɤ into the last

equation and also in the previous one for the sum of the tree angles of OTC, we
find:

(4) D ¼ d � ð1� 2 � jÞ, and
(5)

cosðj � dÞ
cosð1� jÞd ¼ 1þ h

R
. By taking into account that jd is of the order of arc

minutes, we derive from (5), by using the Taylor-approximation
cos x ¼ 1� x2

2 sin2 10, x = jd, that:

(6) d ¼ cosec 10 � 1ffiffiffiffi
R

p �
ffiffiffiffiffiffiffiffiffi

2
1�2�j

q
� ffiffiffi

h
p

. Next by suing the third assumption:

(7) j ¼ 1
13 and the numerical values cosec l0 ¼ 3437:749237 and R = 20968800,

we find:
(8) d ¼ 1.15

ffiffiffi
h

p
, and D ¼ 11

13 d ¼ 0:97 � ffiffiffi
h

p
, i.e., formula (1).

Note that d of expression (6) stands for the distance of the observed horizon in
nautical miles.

Although it may be argued that the first assumption, namely c0 ¼ c, is a suffi-
ciently close approximation for all values of, say h < 10 m, or so, the second
hypothesis, namely (3), cannot be true for a wider range of temperature and pres-
sure since the law of Maritotte-Gay-Lussac cannot be eliminated by using
trigonometry. Therefore, I propose to modify the expression (3) treating it in the
same manner as standard refraction. Standard refraction and non-standard refraction
are related. Accordingly, the Eq. (3) now should read:

(9) c ¼ M T; Pð Þ d13, with M T; Pð Þ ¼ 0:28 P
273þT

according to Boyle-Mariotte.

Again by using some trivial approximations, we arrive at:

(10) D ¼ 1:15
ffiffiffi
h

p � 1� 2
13

� 0:28 P
273þT

� �
, h (ft), P (mb), T (C°), D (arc min).

Of course, formula (10) is also bound to fail in extreme atmospheric conditions
where the hypothesis of continuous dependence of density on temperature and
pressure no longer holds. For such conditions where the theory of boundary layers
and temperature inversion prevails, navigators still can only rely on experimental
data compiled in tables, if available.
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The approach chosen above may be considered, by some, to be more empirical
than analytical and therefore proves unsatisfactory in context of our investigations.
Therefore, I will present a strictly theoretical approach that is based on the gas laws
of Gladstone and Dales and Mariotte-Gay-Lussac and, of course, Snell’s Law of
refraction. [7]

The starting point for this approach is based on our model of refraction in
Sect. 3.1. If we apply the invariant relation, i.e., Eq. (2.) Sect. 3.1, (see Fig. 3.2.1) to
a shell of height h bounded by the surface of the earth from below, we have:
l � (R + h) � sin/ ¼ R � l0 � sin f, and according to Fig. 3.2.1, we also have f ¼ 90,
since H0 = 0. Hence, the fundamental equation for our terrestrial refraction is:

(11) cos D =
R

RþH
l0
l
. Note that according to Fig. 3.2.1 / = 90° − D.

Now what remains to be done is to express the indices of refraction in terms of
densities and subsequently in terms of temperature and pressure. However, first let’s
consider the trivial case where refraction has been ignored, i.e., lets put l = l0 in
Eq. (11), and also let’s denote the resulting Geometric Dip by “D0”. Then we

conclude that cosD0 ¼ R
R + h ¼ 1� h

R + h ffi 1� h
R, and since sin D0 ¼

1� cos2 D0ð Þ12, we deduce that:

(12) D0 ¼ 1
sin 10

�
ffiffiffiffiffi
2h
R

r
¼ 1:06 �

ffiffiffi
h

p
. Here we have used that cos2 D0 ffi 1� 2h

R
.

The reader should also notice that the value of D0 differs only slightly from the
value obtained by using the standard dip given by (1).

Next, let us take the important laws of physics into consideration. firstly, there is
the law by Gladstone and Dales that states:

(13) l = 1 + cq, where c = 0.226 and cq = 0.00029 on the surface of the Earth.
Hence with the help of (13), we deduce that:

(14)
l0
l

¼ ð1þ c � q0Þ
1

1þ c � q0
¼ 1þ c � q0 1� q

q0

� �
, since cq0 
 1

Equation (14) expresses the ratio of indices of refraction in terms of ration of
density—q0at the surface and q at height h above it. Substituting (14) into Eq. (11)

yields: cos D ffi 1� h
R

� �
� 1þ c � q0ð1� q

q0
Þ

� �
, and hence:

(15) sin D ¼ 2h
R � 2 � c � q0ð1� q

q0
Þ

� �1
2
. This equation is know as the Laplace

Formula.

Next we apply the well-known law by Boyle-Mariotte that states:

(16) q
q0
¼ p

p0
� 1
1þ e s�s0ð Þ ffi p

p0
1� e � s� s0ð Þð Þ, with e = 0.0036438, and with b,

b0 measured in (C°), and p, p0 in (mb).
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Finally, substituting (16) in (15) yields:

DT;P ¼ 1
sin 10

� 2h
R

� 2 � c � q0 1� p
p0

ð1� e � ðs� s0ÞÞ
� �� �1

2

¼ D0 � 1� 2cq0
p0 sin

2 D0
ðp0 � pð1� eðs� s0ÞÞÞ

� �1
2

where “D0” is defined by (12).
Hence:

(17) DT;P ¼ D0 � 1� 1
D2

0

� 2
p0�e � C p0 � p(1� e s� s0½ �Þ½ �

� �1
2

; where C ¼ c�q0�e
sin2 10 ¼,

¼ 12:48823085 ¼ 12:49:

The assumption that has been implicitly made about the density is:
c � q ¼ 0.00029, e ¼ 0.0036438, s; soðC�Þ, p, p0 (mb), DT.P (arc min)

(18) 1 � q
q0

[ 1� h
cq0R

, i.e., p
1þ e s�s0ð Þ [ p0 � p0�h

c�q0�R

Any attempt to lineralize the approximation (17) would require the additional
assumption that the temperature differential s − s0 would have to be of the order
10−4, which is not a realistic hypothesis.

In actual applications either at sea or in the air, the skipper of the vessel hardly
has the means to determine the pressure and temperature gradients sufficiently
accurately and therefore the formula (17) is of very limited value to the navigator.
However, it is of great value for the purpose of evaluating the error committed by
using formulae (1), (10) and (12), above.

In conclusion, it can be said that similar to the results obtained in the previous
section on refraction, the results for dip are also subject to further developments and
can only be viewed as approximations. Therefore, the navigator will still have to
depend on tables that are based on experimental data to determine dip under
extreme, non-standard atmospheric conditions.

Because of some of the uncertainty in determining dip in general, other means
and techniques have been conceived to eliminate dip all together as part of mea-
suring the altitude of COs. Here are the five most popular ones:

Method One Use a stable platform and a plumb away from big mountains.
Comment This method works fairly well for the astronomer but is unsuitable

for the navigator.
Method Two This method employs an artificial horizon that consists of a tray

that is filled with mercury, heavy oil, or water.
Comment When used with shades and roof, altitudes of more than 15° can be

measured fairly accurately, provided that the surface of the liquid
remains stable. Again, this method is of very limited use since a
relatively stable platform is hardly available at sea or in the air.
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Method Three Consists in employing an artificial horizon that incorporates a
water-level spirit and can be mounted directly on a conventional
marine sextant.

Comment Since the water-spirit level (bubble) is subject to rapid changes due
to accelerated motions of the vessel, like rolling and pitching.
Great care must be exercised when sights are being taken on a
moving vessel and then only by taking a sequence of successive
sights. The average of those sights will then represent a suitable
approximation
(I have personally used an artificial horizon on two of my sextants
with a degree of success and enjoy the freedom of being able to
take sights at any time of night.)

Method Four This method consists in employing a special type of sextant that
incorporates a bubble-spirit level device that is generally known as
a Bubble Sextant. This sextant is the first choice for most
air-navigators, but can also be adapted for use at sea. Some of the
military-type bubble sextants have even incorporated an averaging
device.

Comment Again, what has been said about the artificial horizon attachments
to a standard marine sextant also applies to the Bubble Sextant
(I own a World War II British Mark IX and have been quite
satisfied with the overall results subject to a prudent application of
this instrument.)
One other type of Bubble Sextant that also utilizes the sea horizon
is the U.S. Navy Mark V aircraft sextant that has all the features of
a true marine sextant.

In addition to the errors introduced due to rolling, pitching and yawing, there
occurs an additional error in Air-Navigation due to the relative high speed of the
aircraft relative to a ship moving at sea. This error is due to the reflection of the
vertical in a Bubble Sextant and is caused by the CORIOLIS FORCE that displaces
all moving objects on the rotating Earth to the right of their paths if the moving
object is in the northern hemisphere and to the left if it is in the southern hemi-
sphere. The force expressed in vector form is:

(19) ~c ¼ �m ~x x~vð Þ. Here “~x” denotes the vector that coincides with the direction
of the Earth axis and which is in length equal to the angular velocity of the
Earth. The vector “~v” denotes the velocity of the moving object. If one
applies this force to the hydrostatics of the bubble inside the Bubble Sextant,
the deflection Zc of the vertical is found to be: [44]

(20) Zc ¼ 2:62 � v � sinuþ 0:146 � v2 � sin C � tan u� 5:25 DC
D t and the observed

Bubble Sextant altitude must be corrected by:
(21) DZC ¼ ZC � sinðAz � C) 2½ �
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The parameters in the last two expressions are:

Zc Deflection of the vertical (arc min);
v ¼ ~vj j of the aircraft (knots � 10−2);
u Latitude of the observer (°);
C Track or course angle (°);
DC
D t

Change of track/course angle (°/min);

ΔZc Altitude correction (arc min);
Az Azimuth angle of observed CO (°).

For low speed aircraft only the first term of (20) is applied.
With a lot of practice and prudent application of averaging procedures, satis-

factory results can be obtained in Air and Marine navigation. If used in small
airplanes, those acceleration forces like rolling, pitching, and yawing can be as
forceful as in the case of a sailboat.

Method Five This method used by some sailors (and by me on occasion) utilizes
reflectors—reflecting tape or similar material—that are strategically
mounted on the stanchions of the vessel. Once the navigator
determines the sea horizon under ideal meteorological conditions, he
or she can determine the exact position of the sextant so that the line
of sight of the reflected light from the reflectors coincides with the
actual line of sight of the natural horizon. A more sophisticated
technique consists in utilizing a laser beam as used in modern type
of sprit water levels.

Comment The major handicap of this method consists in aligning the vessel so
that a particular star can be aligned so that the star, reflector, and
observer lie on the same plane that also passes through the center of
the Earth. If all the other measurements are correct, a fairly high
degree of accuracy can be obtained.

Appendix

The reader will also find reference to the co-called dip of a shoreline or waterline of
another vessel Ds in relevant literature. however, this type of dip has only limited
usefulness since it requires accurate distances that, in the case of landmasses, can be
ascertained by accurate charts or distance measuring devices. Nevertheless, for the
sake of completeness, I have included the relevant formula below. The derivation
follows directly from the application of plane trigonometry to the triangles in
Fig. 3.2.1.

Denoting the distance of the observer from the shoreline or waterline of the other
vessel by “d” in nautical miles, and the height of the observer’s eyes above sea level
by “h” in feet, the shore-ship-line dip in arc minutes is:

(22) Ds ¼ 0:565 � hd þ 0:423 � d: 1½ �
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3.3 Planetary Parallax and Semi-diameter
of the Sun and Moon

In what now follows, it is necessary to distinguish between what Navigators
observe and what Astronomer, who provide the necessary data for determining the
position of a CO, employ in their calculations. Both use their eyes and some kind of
optical instrument. Navigators use sextants and astronomers use telescopes.
Navigators determine the “Visual Position” (VP) of a CO; astronomers employ the
“Apparent Position” (AP) in their calculations.

Next, we need to understand what is meant by “Apparent Position” of a CO.
Since, for the purpose of positional astronomy, it is necessary to use only geocentric
distances, it is necessary to reduce all distances to actual distances between the
center of the Earth and the center of the CO, and also to reduce the measured
altitude hs to the actual altitude h with reference to an horizon parallel to the true
horizon and passing through the center of the Earth. Furthermore, all these mea-
surements have to be independent of the atmosphere and possible instrument errors.
All this translates into requiring that the observer is to be positioned in the center of
the earth and the surrounding space is to be void of an atmosphere. In addition, the
observer’s instruments are assumed to be free of errors.

Accordingly, the Apparent Position of a CO is defined as the position deter-
mined by an observer at the center of the Earth with reference to the center of the
observed CO and void of atmospheric refraction, dip and instrument error.

It follows then that in order to reduce the visual position, determined by the
observer to the apparent position, it is necessary to add some corrections to the
visual, i.e., sextant altitude hs. These corrections are:

(i) Instrument Error ±I (see Sect. 4.1)
(ii) Dip −D (see Sect. 3.2)
(iii) Refraction −R (see Sect. 3.1)
(iv) Parallax +PA (see Sect. 3.3)
(v) Semi-diameter ±S (see Sect. 3.3)
(vi) Coriolis Correction +Zc (see Sect. 3.3)—For Air-Navigation only.

Hence:

(vii) h = hs ± I − R − D + PA ± S.

In this section, I will derive exact and approximate formulae for calculating PA
and S as well as for the augmentation of the semi-diameter S0 of the Moon.

Until now, we have always assumed that the shape of the Earth is a sphere, but in
order to develop accurate formulae for the planetary parallaxes, it is necessary to
take into account that the approximate figure of the Earth is the GEOID and for our
purpose it is sufficient to approximate its shape by a SPHEROID of revolution (see
Fig. 3.3.1). [26, 29, 31, 41]
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It can be shown that:

(1) v ¼ u� u0 ffi 69500:66 � sin 2u� 100:17 � sin 4uþ � � � [1]

This expression for v is called the “Equation of the Vertical”. Similarly, q—the
distance of the observer O from the center of the spheroid can be found to be:

(2) q ffi ð0:99832005þ 0:00168349 � cos 2u� 0:00000355 � cos 4uÞ � a:
The quantities “v” and “q” are required in the formulae for the parallax p. In

order to derive these formulae, we proceed as follows: (see Fig. 3.3.2)
First let us define the parallax PA with reference to the Earth conceived as a

sphere. Then according to Fig. 3.3.2, we have:

(3) sin PA ¼ a
r0 � sin f ¼ a

r0 � cos hs ¼ sin HP � cos hs; i:e:; PA ¼ HP � cos hs:
the equatorial horizontal parallax HP per definition corresponds to h0 = 0, and
is:

(4) HP = a
sin 100 � 1

r0, per expression (3) where “r0” denotes the geocentric distance of
P from the center of the Earth. If we define “�r0” to be the “Mean Distance” of P
from the center of the Earth, we find that the “Mean Equatorial Horizontal
Parallax” (HP) to be:

(4′) HP¼ a
sin 100 � 1

�r0. In the case of the Moon, for instance, �r0 ¼ 60:2682 � a km ¼
60:2682 � 6:37816 km; i:e:; 60:2682 times the radius of the Earth.

Fig. 3.3.1

Fig. 3.3.2
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HPD ¼ 1
sin 100 � 1

60:2682 ¼ 300:42255 103 ¼ 570:04:
Next let us now take the true shape of the Earth into account. Then according to

Fig. 3.3.2, for Az = 0, i.e., in the meridian plane, the triangle POC permits the
application of the SIN-TH. of plane trigonometry, resulting in:

sin p
q

¼ sin z0

r0
¼ sinðf� vÞ

r0
¼ 1

a
� a
r0
sinðf� vÞ ¼ 1

a
sinHP � sin(f� v)

i.e., sin p ¼ q
a � sin HP � sin(f� v), or explicitly:

(5) p ¼ q
a � HP � sin(f� v) ffi HP � sin(f� v), with v and f known because of

(1) and (2).

For the purpose of navigation it is customary to express “p” in terms PA.
Therefore, an additional approximation is to be applied in order to arrive at a simple
formula. Taking into consideration that “v” is a relatively small quantity relative to
f, we may employ the Taylor Expansion:

sinðf� v) ¼ sin f� cos f � v � sin100 � sin f � v2

2 � sin2 100 þ � � � to obtain:

p ¼ q
a
� HP � sin(f� v) ffi q

a
HP � sin(f� cos f � v sin100 � sin f

v2

2
� sin2100Þ

ffi HP � cos hs � ðsin hs � v � sin100 + coshs � v
2

2
� sin2 100Þ � HP since

q
a
¼ 1:

If we now define the correction OB to be:

(6) OB ¼ �ðsin hs � v � sin100 + cosh00s
v2

2 sin2 100Þ � HP, and approximate “v”
according to expression (1) by v = 695″.66 sin 2u, we find that a suitable
approximation for OB is:

(7)
OB ffi �0:00337265485 � sin hs � sin 2u � HP
p ffi HP � coshs þOB

Next, let’s consider a numerical example to demonstrate that the required cor-
rection (OB) is, indeed, extremely small in the case of the Meridian Parallax.4

Numerical Example

CO: Moon
Latitude of Observer u ¼ 45�

Sextant altitude hs = 33°

Problem: Find the correction accounting for the oblateness of the Earth.
Solution:

First we approximate q by �q; the mean distance Earth-Moon and deduce that
HPD ffi HPD ¼ 570:04. substituting those values into the first part of expression
(7) yields

4See appendix to this section.
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OB ¼ �0:00337265485 � sin 33 � sin 90 � 570:04 ¼ 00:104775605: Of par-
ticular interest to the navigator is the horizontal parallax of the Sun which has been
determined by astronomical observations to be: [30]

(8) HPʘ ¼ a
RH

1
sin 100 ¼ 800:794; andRH ¼ la.u. ¼ 149;597;900 km:

If we express the geocentric distances of any of the other planets in astronomical
units, i.e., if we put r0 = d � Rʘ and also employ expression (8), we find that:

(9) HP = HPʘ 1
d ¼ 800794

d :

It follows then that HP < l′ holds for all the navigational planets. For example, in
the case “s” of Venus and Mars, HP varies between 00:1 and 00:2.

Next we still have to find formulae for computing the semi-diameters of the Sun,
Moon and the Navigational Planets in order to find the apparent position of these COs.
In other words, we have to find the remaining corrections to the sextant altitude hs.

According to Fig. 3.3.2, we have:

(10) sin S = R
r0 ¼ R

a � sin HP, or S = R
a � HP. Similarly, we deduce:

(11) sin S0 ¼ R
r ¼ R

a sin HP r0r ¼ r0
r � sin S, or S0 ¼ S � r0r .

In the above formulae, “R” stands for the semi-diameter (radius) of the Planet or
Moon; and “S′” is commonly referred to as the augmented semi-diameter; and “r0r ”
as the augmented factor. This factor is known whenever “z” and “z0′” are known.
However only z0 = f − v can be readily found by employing the Equation of the
Vertical (1). The evaluation of “z” is a little more complicated and for our purpose,
we will only approximate “z” in order to derive a fairly simple approximation for
the augmented semi-diameter.

Again, let us look at the triangle POC (see Fig. 3.3.2) and apply the SIN-TH to it
obtaining:

(12)
sin z0

r0
¼ sin z

r
or

r0
r
¼ sin z0

sin z
, which when substituted into (11) yields:

(13) S0 ¼ S � sin z
0

sin z
¼ S � 1

sin z= sin z0
. In order to find a suitable approximation for

“z”, we assume that the augmentation take place in the Meridian Plane, i.e.,
for A0

z ¼ 0 (see appendix to this section). We then readily deduce from the
plane triangle POC that zþ 180� � z0 þ PA ¼ 180� and hence:

(14) z ffi z0 � HP � sin z0. By employing this approximation, we deduce that:

sin z
sin z0

ffi ðsin z0 � cosðHP � sin z0Þ � cos z0 � sinðHP � sin z0ÞÞ
sin z0

q 1� cos z0 � HP � sin 100 ffi 1� sin hs
d

; with d ¼ r0
a
:

194 3 Methods for Reducing Measured Altitude to Apparent Altitude



Then, it follows that:
1

sin z= sin z0
ffi 1þ sin hs

d
, and therefore, by substituting in Eq. (13), we obtain

the desired result:

(15) S0 ffi S � (1 + sin hs

d ). This formula can also be found in The Almanac For

Computers, 1987, Nautical Almanac Office, United States Naval
Observatory, Washington, D.C. [44]

Note that in the case of the Moon SD = 0.272476 � HP.
Appendix

It should be clearly understood that the formulae developed so far for the Earth as a
figure of a spheroid are based on the assumption that the planet, Sun or Moon is
observed on the Observer’s meridian. [26]

However, in general cases where those COs are observed at any instant when
their azimuths are different from zero and 180°, the underlying geometry is quite
different since the position of the CO no longer lies in the plane of the meridian.
Therefore, in this case, the geometry is now three-dimensional (see Fig. 3.3.3).

Although in principle not difficult to treat, from the mathematical point of view it
is nevertheless very tedious to derive the corresponding equations and therefore, I
prefer to omit that part of the mathematical derivations which have already been
known since the times of Olbers and Chauvenet. [13]

Basically the three-dimensional case involves that we introduce two different
coordinate systems, one at the point 0 of the observer, and the other at the center C
of the Earth. Then by setting up the equation that transforms one coordinate system
into the other, and by performing the tedious task of eliminating the unknowns by
employing various approximations, we then arrive at the following two equations
which enable us to find the correction OB to be applied to the parallax PA:

(16) sinðf� f0Þ ¼ q
a � sin HP � sinðf� cÞ, and

(17) c ¼ ðu� u0) � cos Zn ¼ v � cos Zn, where “Zn” denotes the azimuth and “f”
denotes the zenith distance as observed at 0. Since p ¼ f� f0 is the

ζ


z : Unit vector in direction of the 

astronomical zenith Z.


'z :  Unit vector in direction of the 

geocentric zenith Z’.


p :  Unit vector in direction of the CO.

Fig. 3.3.3
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correction due to parallax that has to be added to the sextant altitude (hs) in
order to find the apparent altitude (h), we merely have to develop a formula
for expressing this correction p in terms of PA and a term OB that is to be
added to PA. But this follows exactly the same steps that have already been
employed in deriving formulae (6) and (7) from expression (5).

In the case of expressions (16) and (17), the resulting approximations are:

(18) P ¼ q
a � HP � cos hs þOB, where

(19) OB ¼ � q
a
� HP � ð69500:66 sin l00 sin hs sin 2u � cos Zn

þ 69500:662 � sin2 l00 1
2
cos hs sin2 2u � cos2 ZnÞ

Since q
a ffi 1, we obtain the simplified approximation:

(18′) P ffi HP � cos hs þOB, where

(19′) OB ¼ �0:00337265485 sin hs � sin 2u � cos Zn � HP
� 0:568740038 � 10�5 � cos hs � sin2 2u � cos2 Zn � HP

In most practical applications, the second term can be neglected and thereby
reducing (190) to:

(20) OB ¼ �0:0033726548 5 � sin hs � sin 2u � cos Zn � HP
Of course, formulae (18)–(20) have to coincide with the formulae (6) and (7) if

we put Zn = 0, which again confirms the correctness of our derivations.
Furthermore, the results obtained by using the exact formula (16) differ only
insignificantly from the results of the approximations (18′) and (20).

Advisory

The reader will notice that in all the previous sections I have used the symbols “a”,
“h0”, and “H0” to denote the apparent altitude h, and I have also used the terms “true
altitude” and “observed altitude” synonymously. Therefore, unless it is not the sextant
altitude hs, it is always meant to be the apparent altitude h (see also Algorithm D).

3.4 Time and Timekeeping

The concept of time is based on our brains ability to differentiate between the before
and the after of any particular event. Prehistoric men had already used the diurnal
movement of the Sun (Solar Time), and the stars (Sidereal Time), to develop a more
rational concept of time based on the rotation of the Earth about its axis. The
forerunners of our clocks were the Nocturnal of the sky and the Sundial. [37, 46]

With the advent of the invention of mechanical clocks and Chronometers,
timepieces became available to the Astronomers and later to the ocean-going
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Navigators. The basics of measuring time have changed very little since the 1600s.
The rotation of the Earth is still used as the “base line” by the majority of current
timepieces. The primary reason for this is that the angular velocity of the Earth’s
rotation about its axis was perceived to be of a constant value. It was not until the
advent of quartz and Atomic clocks that it became obvious that the rotation velocity
of the Earth was by no means invariant.

From a theoretical point of view, this was by no means a new discovery. During
the last century, it was also established that the concept of time as conceived
intuitively was no longer a physical reality. According to the Theory of Relativity,
time is a relative concept depending on the frame of reference, i.e., NO
MOTION = NO TIME.

However, even prior to the invention of the Atomic clock, a more accurate
method for determining time had already been conceived. This method was based
on the same concept of time as used in Celestial Mechanics and, in particular, on
the dynamical theory of the motion of celestial objects such as the Moon. The
motion of COs provide a more uniform concept of time and has been referred to as
EPHEMERIS TIME (ET).

In this context, the reader is also reminded of the concept of COMPUTED TIME
(as conceived by me) and applied to find the position of an observer without prior
knowledge of an approximate position or an approximate time and without a proper
timepiece. The reader may also recall that aside from having this manual, a cal-
culator, sextant and ephemeris of the Moon or Nautical Almanac, nothing else was
required to find the observer’s position by computation (see Sect. 2.21).

Next, let us define the aforementioned concepts of time by beginning with the
Sidereal Year.

Definitions

I. A SIDEREAL YEAR (SY) is equal to the time required by the Sun to
complete a circuit of the ecliptic.

II. A TROPICAL YEAR (TY) is the average time required by the Sun to make
two consecutive passages through the moving equinox.

Since the precessional motion of the equinox is 5000:3 per tropical year, it follows
that:

SY
TY

¼ 360�

ð360� � 5300:3Þ ; and
(1) SY = 365.2564 MSD, TY = 365.2422 MSD.

MSD: Mean Solar Day of Universal Time. Here I am using the approxi-
mation MSD q ED (Ephemeris Day).

III. SIDEREAL APPARENT TIME (SAT) is equal the local hour angle of the true
equinox expressed in hours. Therefore, it is variable due to the nutation of the
Earth and it is quantitatively expressed by the Equation of the Equinoxes (EE).

IV. SIDEREAL MEAN TIME (SMT) is equal the local hour angle of the mean
equinox, i.e., of Aries (♈) expressed in time. Therefore, it is regulated by the
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constant effect of precession on the Earth and it can be approximated by a
regulated SIDEREAL CLOCK as used by Astronomers. Hence:

(2) SAT = SMT + EE.
V. APPARENT SOLAR TIME (AST) is equal to the local hour angle expressed

in time plus 12h of the true Sun.
Because the Earth orbits about the Sun, the orbital velocity of the gyro-Earth
varies according to Kepler’s Second Law. Therefore, the length of a solar
day is variable, up to about ±15 min per month, making the solar day
unsuitable for time measurements.

VI. MEAN SOLAR TIME (MST) is equal to the local hour angle expressed in
hours plus 12h of a fictitious mean sun that travels along the equator at a
constant rate, terminating a complete revolution at the same time as the true
Sun, implying that the RA of this fictitious sun is Equal to the Sun’s mean
longitude. The MST, therefore, can be determined by a suitable timepiece
such as a Quartz watch, Atomic clock, or a Chronometer.
The AST differs from the MST due to the eccentricity of the Earth’s orbit and
can be expressed by the Equation of Time (ET) that is defined as the dif-
ference between the hour angle of the True Sun and the Mean Sun, i.e.,
ET = (HA ʘ − HA ��/15). Hence:

(3) AST = MST + ET.
VII. UNIVERSAL TIME (UT) is equal to the Greenwich hour angle (expressed in

time) of the fictitious mean sun that moves around the mean equator but with a
rate that is directly proportional to the angular velocity of the Earth and therefore
is non-uniform. Hence, it can only be approximated with a timepiece.
Before it was discovered that the angular velocity of the Earth is non-uniform,
Universal and Greenwich Mean Time (GMT) were the same thing.

VIII. LOCAL MEAN TIME (LMT) is equal to the local hour angle of the mean
sun expressed in hours, plus 12h. Hence:

(4) LMT ¼ GMTþ k
15, k � 0 if East and k � 0 if West.

IX. COORDINATED UNIVERSAL TIME (UTC) is time based on the Atomic
Time Scale and is broadcasted by time signals (TS). For navigational pur-
poses, it is being used as an approximation to UT and GMT. It has been
established that |UTC − UT| � 0s.9

It merely remains to explain how the different concepts of time can be related
quantitatively. From the very definitions of these and their magnitudes, it follows that:
GMT ≅ UT; UT = UTC + DUT ≅ UTC; and ET = UT + DE. However, the
extremely small quantities DUT and DE that only play an important role in astronomy
cannot be predicted precisely. For the navigator who relies chiefly on a chronometer
or watch that shows GMT, it suffices to know that UT ≅ UTC = GMT + DTS,
where DTS is being broadcasted.

In order to convert GMST into GMT or conversely, the navigator must either rely on
the NA or use the formula provided in the second part of this book to calculate GMST ¼
GHAc ♈ =15 ¼ GMTþRA�� �12h ¼ GMT � 12þRA ʘ + ET� 12h.
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Here I will derive a simple formula that enables the navigator to convert GMT to
GSMT for the most relevant interval of 24ʰ, thereby avoiding the process of looking
up the GHA of Aries ♈ more than once every 24-h.

Recall that once every year, the mean sun and the equinox coincide and after
every tropical year, this happens again. during this period, the Earth has rotated
about its axis 365.2422 times relative to the mean sun and once more with regards
to the mean equinox. Therefore:

365.2422 MSD = 366.2422 SMD, i.e.,

(5) 24hGMT ¼ ð1þ 1
365:2422Þ � 24hSMT = 24h + 3m 56s.556 SMT

(5′) 24hSMT ¼ ð1� 1
366:2422Þ � 24hGMT ¼ 24h � 3m55s:910 GMT

From these relations, we can readily deduce that:

(6) 1hGMT = 1h þ 9s:8565 SMT, 1hSMT = 1h � 9s:8296GMT

1mGMT = 1m þ 0s:1643 SMT, 1mSMT = 1m � 0s:1638GMT

1sGMT = 1s þ 0s:0027 SMT, 1sSMT = 1s � 0s:0027GMT

With reference to the date or day of the year, we still depend on our
CIVIL CALENDAR since the dates used in the NA correspond to this standard
measure. However, as we will discover in the second part of this book, the civil
calendar is unsuitable for astronomical purposes and it will be replaced by the day
count know as JULIAN DATE.

Now, let’s turn our attention to the physical task of time-keeping or monitoring
time. To keep track of accurate time, highly accurate clocks or chronometers are
employed on board ocean-going vessels. With the advent of Quartz watches the
accuracy and reliability of timepieces has markedly increased and the prices have
been reduced drastically. Some of those watches and calculators are
SOLAR POWERED and the more sophisticated ones are automatically regulated
by broadcast signals that are synchronized with the Atomic Clock. They are aptly
known as “Atomic Watches”.

Once a new watch has been acquired, its “rate”, i.e., the accumulated error, has
to be determined by the navigator. My personal suggestion is for navigators to use
the signals broadcast worldwide as points of reference. For that, you would need a
simple SINGLE SIDEBAND RECEIVER. As regards to watches, I would also
suggest that you never leave the dock even on the smallest sea-going vessel with
anything less than THREE WATCHES—(one wrist watch worn by the navigator,
one stationary timepiece mounted inside the vessel, and one emergency watch
tucked away in the emergency navigation kit.) This is independent of the stationary
equipment on the vessel which may be highly sophisticated.

By now, it should be obvious that the most important tools for the practical
navigator are the watch, the calculator, compass, and sextant. By carrying these
basic navigational gear on board a vessel, the probability of losing time completely
is less than the probability of losing the entire vessel. But if you do lose time
completely, you can always refer to (Sect. 2.21) of this manual and re-set your
clocks by using my concept of COMPUTED TIME.
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3.5 On the Minimization Procedure for the Random
Errors in Determining Altitude and Time

In Sect. 2.4, I developed the exact formulae for finding a position at sea or in the air
and referred to it as the “exact” solution. However, this is only true provided that
ALL parameters are accurate, which is seldom the case. The latter becomes obvious
if the navigator takes more than one set of observations into consideration and
consequently arrives at several distinct positions. It should be obvious that the most
probable position so obtained is the CENTROIDAL POINT of the set of individual
positions.

One of the crucial parameters in those exact equations is the Apparent Altitude
(AA) that is found by computation only and is given by: h = hs ± I − D −
R ± S + P.

As previously noted, I have used the notations H0, h0, and H in previous sections
and also terms like “observed altitude”, but actually always meant the same thing,
namely, APPARENT ALTITUDE.

In the above expression “hs” denotes the measured sextant altitude that is subject
to RANDOM ERRORS that may vary considerably depending on the experience of
the navigator, sea and weather conditions, and the motion of the vessel. Therefore,
it is imperative to minimize these types of random errors by devising methods for
calculating and assessing these error. In order to do this, we must first define the
underlying quantities that are being used.

Definitions

I. STANDARD ERROR (r) of a set or measurements {xi} indicates the
precision or the measurements relative to any other set of measurements.

(I′) r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
v2

i

n�1

r
, where the deviations are defined as vi ¼ xi � �x, with

�x ¼
Pn

i¼1
xi

n .
II. PROBABLE ERROR (E) of any set of measurements {xi} and given by:
II′ E = 0.67456 � r.
III. STANDARD ERROR OF THE MEAN of a set of like measurements rM:

III′ rM ¼ rffiffiffi
n

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
v2

i

nðn�1Þ

r
IV. PROBABLEL ERROR OF THE MEAN defined as:
IV′. E0 ¼ 0:67456 � rM.
V. ACCURACY is the closeness of the measurements of observations to the

true value of the quantities being measured.
VI. PRECISION refers to the closeness with which the measurements agree

with each other.

These definitions can be used to carry out an error analysis of the random errors
that are always present in the measurements of sextant altitudes and universal time.
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In order to understand the significance of standard and probable errors, it is nec-
essary to employ some of the basic concepts of the Theory of Probability.

For the sake of brevity, let’s start by referring to the curve that can be obtained
by plotting the frequency of the occurrence p(v) of an error the size of v. This curve
is also referred to as the “Normal Distribution Curve” or “Gauss Curve”, and the
function:

p(v) = 1
r
ffiffi
p

p � e� 1
2r2

�v2 (see Fig. 3.5.1) is called the “Probability Density Curve

satisfying:
R þ1
þ1 p(v)dv = 1.

Then the function F xð Þ ¼ R þ x
�x p(v)dv (see Fig. 3.5.2) represents the probability

that an error e is less than or equal to x in magnitude, i.e., |e| � x. In other words,
the quantity F(x) � 102 expressed in percentages are the errors which are less than or
equal to x in magnitude. It is now easy to see what the significance of r, rM, E and
E0 are. In particular one can easily verify the following results:

(i) The standard error corresponds to the probability of 0.6828, i.e., 68% of all
errors |e| are less or equal to r.

(ii) E, the probable error, corresponds to the probability of 0.5, i.e., 50 % of all
the errors are less than E (see Fig. 3.5.1). [13, 19, 30]

With the help of the above definitions and explications, we can readily assess the
precision of a one-dimensional set of observations. However, in our case where we
are dealing with a two-dimensional set of observations—observed altitude and
observed time—, the underlying mathematics is different. In our particular situation,
we can either reduce the two-dimensional problem to an one-dimensional one, or
we can introduce another measure for precision and accuracy. In either case, we will
require the concept of REGRESSION and, in particular, the concept of LINEAR
REGRESSION that can be applied to all situations where it is assumed that there
exists a linear dependency of the two variables x and y of the given set {xi, yi}; in
our particular case, time and altitude. At this point we need to make use of the
approximation derived in Sect. 2.9, formula (4) that reads, if z is expressed in terms
of hs:

Fig. 3.5.1
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(1) hsðtÞ ¼ hsðt0Þþ 15 � cos u � sin Zn � ðt� t0Þ, for all t� toj j � 5m.

This is the equation to use when assessing accuracy.
For now, let’s assume that we are given a set of n pairs of measurements

fxi,yig; i = 1,. . .,n and let us assume that there exists a linear dependency between
x and y. Then according to the Theory of Probability, the most probable straight
line representing this dependence is the line given by the expression:

(2) Lr : yr ¼ a + b � x and subject to the condition that the sum of the squares of
the errors between (2) and the points (xi, yi) assumes a minimum. Therefore, we
must determine a and b in (2) from the given set {xi, yi} so that:

Pða,bÞ ¼
Xn
i¼1

ðyi � yriÞ2 ¼
Xn
i¼1

ðyi � ðaþ b � xiÞÞ2 ¼

¼
Xn
i¼1

y2i � 2a
Xn
i¼1

yi � 2b �
Xn
i¼1

xi � yi þ 2ab
Xn
i¼1

xi þ b2
Xn
i¼1

x2i þ na2

i.e., we have two equations to determine a and b, namely

(3)
@P
@a

¼ �2n � �yþ 2naþ 2nb � �x ¼ 0; i:e:

ðiÞ aþ b � �x ¼ �y

@P
@b

¼ �2 �
Xn
i¼1

xi � yi þ 2an � �xþ 2b
Xn
i�1

x2i ¼ 0; i:e:

ðiiÞ an � �xþ b �
Xn
i¼1

x2i ¼
Xn
i¼1

xi � yi; with �x ¼
Pn

i¼1 xi
n

and �y ¼
Pn

i¼1 yi
n

This linear system of equations for a and b has a unique solution:

(4) a ¼ �y
Pn

i¼1 x
2
i � �x

Pn
i¼1 xiyiPn

i¼1 x
2
i � n � �x2 and b ¼

Pn

i¼1
xiyi�n��x �yPn

i¼1
x2

i �n��x2 .

Fig. 3.5.2
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We also define the CENTROIDAL POINT C to be:

C : �x; �yð Þ ¼
Pn

i¼1
xi

n ;

Pn

i¼1
yi

n

� �
, and conclude from Eq. (3)(i) that C lies on the

line of regression (2).
Next we use the linear transformation, X ¼ x� �x; Y ¼ y� �y, to transform the

centroidal point into the origin of our new system of coordinates (X, Y). In this new
system, the equation of the line of regression (2) becomes:

(20) Y = b � X.
By straight forward calculations we find that:

Pn
i¼1 xiyi ¼

Pn
i¼1 Xi � Yi þ n � �x�y

and
Pn

i¼1 x
2
i ¼

Pn
i¼1 X

2
i þ n � �x2. Substituting these expression into the second

equation of (4), we find that:

(5) b =
Pn

i¼1
Xi�YiPn

i¼1
X2

i

¼
Pn

i¼1
ðxi��xÞðyi��yÞPn

i¼1
ðxi��xÞ2 , the most important indicator for accuracy.

Suppose, now, that we know that the exact dependence of y on x can be
expressed by the linear equation:

(6) ya ¼ �yþ a � ðx� �xÞ, a: parameter. Then, yai ¼ �yþ aðxi � �xÞ represents the
exact value of y at xi and the centroidal point C lies on (6) (see Fig. 3.5.3).

In Fig. 3.5.3, the set {xi, yi} is scattered along L
r and La, just about evenly which

indicates that precision and accuracy are about the same. But suppose we have a
second set of values, f~xi; ~yig very close to Lr but further away from La. In this case
we have higher precision than accuracy.

Next let us consider the actual problem of measuring precision and accuracy as
applied to navigation. Again, from the viewpoint of the Theory of Probability, the
deviations of the points xi, yi from the line of regression Lr provides a suitable
criteria for the precision if it can be quantified. Again, the measure to be used is the
sum of the squares of all individual deviations from the corresponding points on the
line of regression. Therefore, the actual measure to be employed is:

Fig. 3.5.3
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r2
p ¼

Xn
i¼1

yi � yri
� �2
ðn� lÞ ¼

Xn
i�1

yi � �yð Þ � yri � �y
� �	 
2

ðn� lÞ ¼

Xn
i�1

yi � �yð Þ2
n� lð Þ þ

Xn
i¼1

yri � �y
� �2
n� lð Þ � 2 �

Xn
i¼1

yi � �yð Þ yri � �y
� �

n� lð Þ ¼

r2
y þ b2r2

x � 2 � b �
Xn
i¼1

yi � �yð Þ xi � �xð Þ
n� lð Þ :

Because b is given by (5), we find that: r2
p ¼ r2

y � b2r2
x � 0.

The quantity:

(7) rp ¼ ðr2
y � b2r2

xÞ
1
2, with b given by Eq. (5), and rx and ry defined as s-

tandard errors of the respective sets, is a suitable measure for the precision of a
given set of observations.

In order to find a measure for the accuracy, we need to employ the exact or
approximate linear dependence … that is to say, we must compute:

r2
a ¼

Pn
i¼1

ðyi�ya
i Þ2

ðn�1Þ ¼ r2
y þ a � r2

xða� 2 � bÞ. Minimizing this expression with

respect to a yields again (7), i.e., raðbÞ�rp, and Min. ra ¼ rp.
Hence the quantity:

(8) ra ¼ ðr2
y þ a � r2

xða� 2 � bÞÞ12 is the measure to be used or accuracy.

As I pointed out at the beginning of this section, one method for assessing the
error consists in replacing the set of pairs of altitude and time by only a set of single
values {zi}. By doing this, you reduce the two dimensional problem to a one
dimensional one. The latter can be accomplished by defining the reduced set {zi} as
follows:

(9) zi ¼ yi � aðxi � �xÞ. Again (9) implies that �z ¼ �y. Then it follows that
zi � �y ¼ yi � �y� ðxi � �xÞ and hence
ðzi � �yÞ2 ¼ ðyi � �yÞ2 þðxi � �xÞ2 � 2 � ðyi � �yÞðxi � �xÞ:

It follows that:

(10) r2
0 ¼

Pn
i¼1

ðzi�rÞ2
ðn�1Þ ¼Pn

i¼1
ðzi��yÞ2
ðn�1Þ ¼ r2

y þ a � r2
xða� 2 � bÞ� 0, and in par-

ticular that:
(11) r0 ¼ ra the simple relation between the accuracy of fxi; yig and the pre-

cision of {zi}.

Again from Fig. 3.5.3, it is obvious that what really matters is how close the line
of regression is to the lines of “exact” values La. This we can quantitatively assess
by evaluating (5), i.e., by comparing b to a.
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Finally, by applying the results of this section to navigation, we merely have to
identify the following quantities:

(12)

a ¼ 15 � cos u � sin Zn; �t ¼
Pn

i¼1
ti

n ; �hs ¼
Pn

i¼1
hs

i

n ; C ¼ �t; �hs
� �

rhs ¼
Pn

i¼l
hs

i��h
s� �2

n�1

 !1
2

; rt ¼
Pn

i¼l
ti��tð Þ2

n�l

� �1
2

;

rp ¼ r2
hs � b2 � r2

t

� �1
2; ra ¼ r2

hs þ a � r2
t a� 2 � bð Þ� �1

2

r0 ¼ ra; b ¼
Pn

i¼l
ti��tð Þ hs

i��h
s� �Pn

i¼l
ti��tð Þ2

A quick reminder—the formulae for ra and r0 are only valid for values of t that
satisfy the condition ti ��tj j � 5m. Furthermore, the probable errors are obtained by
multiplying the standard errors by the factor of 0.67456. Also note that “hs” stands
for the sextant altitude denoted in the previous sections by “hs”.

Contrary to the belief of some that rhs serves as a measure for accuracy, the
numerical example below will illustrate that by merely using standard errors of the
given set of observations, not much can be said about the accuracy of the computed
results.

Suppose now that there are m � 2 observers at the same place at the same time
with the same equipment. Every observer takes exactly n observations of the same
CO during an interval of 5 min and employs the same average azimuth Zn. Then,
we will have m different sets of observations ftk; hskgi i = 1,. . ., m. How can we then
determine which of the m sets of observations is the best?

It should be obvious that by merely evaluating the quantities rhs , and rt we can
say nothing about the precision nor the accuracy of each set since the rhs are simply
a measure for the mean deviations of the altitudes for the mean �hsk that is different
for each set in general. Therefore, in order to answer the above question, we must
first evaluate the bks by using formula (12)(vii) and then employ formulae (12)(iv
and v) to find the quantities rp and ra that represent precision and accuracy of the
m distinct sets. Before we can compute (12)(v), we must calculate a by using
formula (12)(i) and employ an approximate value for the azimuth of the observed
CO. Therefore, we have found the measures for precision and accuracy for com-
parison of the m sets of observations.

Another and simpler method for comparing accuracy of distinct sets of obser-
vations consists in calculating the bks, and by using the absolute value of the
deviation of the bks from a, we have another measure for accuracy. By employing
the values ek ¼ bk � aj j, we can then establish a scale for the proficiency of the
navigator.

As we have done before in most cases of theoretical analysis, let’s also consider
an actual numerical example:
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Numerical Example:

Given the following sets of pairs of observation of altitude and time of the Sun,
together with the azimuth and latitude, estimate the precision and accuracy of the
navigator.

i ti ti ��t ðti ��tÞ2 hsi hsi � �h ðhsi � �hÞ2 ðti ��tÞðhsi � �hÞ
1 7h 35m 13s −1.3669 1.8684 16°45′.5 10′.5 110.25 −14.3526

2 7h 35m 54s −0.6832 0.4667 16°40′.5 5′.5 30.25 −3.7576

3 7h 36m 36s 0.0257 0.0006 16°34′.5 −0′.5 0.25 −0.0128

4 7h 37m 16s 0.6834 0.4670 16°30′ −5′.0 25.00 −3.4171

5 7h 37m 56s 1.3488 1.8193 16°24′.5 −10′.5 110.25 −14.1624

�t ¼ 7h36m35s R ¼ 4:6220 �hs ¼ 16�350 R ¼ 276 R ¼ �35:7025

Zn ¼ 229�450; u ¼ 38�580:53N

By employing formula (12), we find that:

a ¼ �8:89998 ¼ �8:9; r2
hs ¼ 69; r2

t ¼ 1:1555; b ¼ �7:7245;
rp ¼ 00:23; Ep ¼ 00:16825; ra ¼ 10:301 ¼ r0; and Ea ¼ 00:981125:

We also find that e = |b − a| = 1.17548.
These results show that the set of observed quantities is a very good one and that

the sextant altitude and time should be approximated by:

�hs ¼ 16�350 and �t ¼ 7h36m35s

The above error estimate describes the precision and accuracy of the final result.
In cases where the navigators like to rate themselves, they should compute the
values for e for each set of observations they take. This record will then reflect their
proficiency.

Algorithm D

The Reduction of the Sextant Altitude hs to the Apparent Altitude h.

1. Compute hs ¼ �h ¼Pn
i¼1

hs
i
n , and �t ¼Pi¼1

ti
n. If necessary or desired, access

precision and accuracy of the set of measurements fti; hsig by using formulae
I.3.5 #12. hs =

2. Determine the index error by consulting the manual of your sextant.
See I.4.2. I +

3. Calculate dip D by employing one of the three formulae depending on the
atmospheric conditions near the surface of the ocean.
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(i) D ¼ 0:97 � ffiffiffi
h

p
, h: height above sea level in feet.

(ii) D ¼ 1:15 � ffiffiffi
h

p � 1� 2
13

� 0:28 � P
273þT

� �
. Non-standard conditions.

(iii) D = I.3.2. (7). Extreme non-standard conditions. D = 

4. Calculate atmospheric refraction by using one of following formulae:

(i) R0 ¼ 0� � 0167 � cot hs þ 7:32
hs þ 4:32

� �
; M T; Pð Þ ¼ 0:28P

273þT
R = M(T, P) � R0 for all: 5 � hs � 90°.

(ii) R ¼ MðT; P;R0Þ � �R0;MðT; P;R0Þ ¼ ðP�80Þ
930 � 1

1þ 8�10�5ðR0 þ 39Þðt�10Þ

R0 ¼ R0 � 0:06 � sinð14:7 � R0 þ 13Þ; and

R0 ¼ 10 � cot hs þ 7:31
hs þ 4:4

� �
for all: 0� hs � 90�; 970� P� 1050 mb, � 20�T0 � 40

(iii) R = I.3.1 (iv) R=

5. Extract the equatorial horizontal parallax HP from the NA or other ephemeris or
employ I.3.3 (4), i.e.

(i) HP = 1:315385814�109
r0 , where “r0” denotes the geocentric distance of the CO

from the center of the Earth.
Then compute the parallax PA = P by using I.1.3. (3)

(ii) PA = HP � cos hs.
The distance r0 can be computed by using the corresponding formulae in
Part II. Alternatively, r0 can be extracted from a suitable ephemeris.
In the case of the Moon, the oblateness of the Earth has to be taken into
account resulting in a correction to the above expression and given by
I.3.3. expressions (6) and (7).

(iii) OB = − 0.0033726548 � sin hs � sin 2u � HP, with u: latitude.
PA = HP � cos hs + OB.
Strictly speaking, the above formulae are valid only while the CO is being
observed on the meridian. In all cases where a higher degree of accuracy
is required, a slightly different correction is necessary expressing the
dependence on the azimuth of the CO that is now different from 0° and
180°. Then you have to compute:

(iv)
OB ¼ �0:00337265485 � sin hs � sin 2u � cos Zn � HP,
PA ¼ HP � cos hs þOB

Zn: azimuth of

CO.
The formulae (4) can be approximated by employing the mean distances
�r0 in lieu of r0, resulting in the following simple expressions:
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(v) Sun: HP ¼ 800:794
Moon: HP ¼ 5700:04
Planets: HP = 800:794

d , with d ¼ �r0=Rʘ. Rʘ ¼ 1:495979 � 108 km
P = PA =

6. Compute the semi-diameter and augmented semi-diameter of the Moon, Sun,
and Planets as it may apply by employing I.3.3., expressions (10) and (15).

(i) SD ¼ R
a � HP, R: radius of those COs; a: radius of Earth.

(ii:) SD0 ¼ SD � 1þ sin hs
d0

� �
, d0 ¼ r0

a , with “r0” and “a” defined as above.

SD =

7. Finally, compute the apparent altitude by using:
h = hs ± I − D − R + P ± SD h = 

Advisory

Make sure that all six quantities in 7. are expressed in either arc minutes or arc
seconds.

For Air Navigation Only

8. Whenever a Bubble Sextant is used in an aircraft, the bubble sextant altitude has
to be corrected to compensate for the effect of the Coriolis Force on the bubble.
The necessary correction is given by formulae I.3.2 expressions (20) and
(21) as:

(i) DZC ¼ ZC � sinðA� CÞ, with
(ii) ZC ¼ 2:62 � v � sin uþ 0:146 � v2 � sin C � tan u� 5:25 � DC

Dt

ZC Deflection of the vertical (arc min)
v ¼ v!�� �� of aircraft (Knots 10−2)
u Latitude of aircraft (°)
C Track or course angle (°)
DC
Dt

Change of track/course angle (°/min)

Az Azimuth angle of observed CO (°)
DZC Altitude correction (Arc min)

9. Furthermore, the calculated refraction has to be corrected for the refraction of
the light as it passes through the window or dome of the aircraft. Consult the

aircraft manual for correction.
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Chapter 4
Some of the Instruments and Mathematics
Used by the Navigator

4.1 Some of the Formulae and Mathematics Used
by the Navigator

This section is not meant to be a manual of elementary mathematics but is merely
intended to show the reader how the formulae employed in the previous sections
can be deduced by employing some of the concepts of the aforementioned
discipline.

(a) Plane Euclidian Geometry and Trigonometry.

First let us consider the two dimensional rectangular triangle—Fig. 4.1.1.
By definition of the trigonometric functions we have:

sin a ¼ b
c, cos a ¼ a

c, tan a ¼ b
a, and cot a ¼ a

b. Then the Theorem of Pythagoras

(Py.-TH.) yields:

(1a) c2 ¼ a2 þ b2 and can be proven readily. From this theorem, it follows that:
sin2 aþ cos2 a ¼ 1:

Next let us consider the oblique triangle with angles a; b; c and sides a, b, c—
Fig. 4.1.2.

By making use of the properties of the angles obtained by intersecting two
parallels by an arbitrary straight line, we deduce that:

(2a) aþ bþ c ¼ 180
�
. Further we may also readily deduce that sina ¼ h

b,

sin b ¼ h
a, hence

sin a
a ¼ sin b

b . Similarly, we may deduce that sin b ¼ h0

c ,

sin c ¼ h0

b, hence
sin b
b ¼ sin c

c , and the SIN-THeorem has been established.

(3a) SIN-TH. sin aa ¼ sin b
b ¼ sin c

c .
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By employing the Py.-TH. to triangle ABA′, we deduce that
a� b � cos cð Þ2 þ b � sin cð Þ2¼ c2, and hence:

(4a) c2 ¼ a2 þ b2 � 2 � a � b � cos c, the COS-TH. and therefore the COS-TH. of
plane trigonometry has been established.

(b) Vectors and scalar products of vectors.

Here I would like to reintroduce the very useful concept of vectors. The vector is
defined in the most natural way as a quantity that comprises direction and length
depicted by a segment of a straight line with an arrow attached to its pointed end
and usually denoted by a letter with an arrow above it—Fig. 4.1.3.

It should be noted that the concept of vectors is more simple, i.e., less abstract,
than the concept of real numbers. Besides many important physical quantities can
be easily described by vectors such as velocities, forces, torques, and others. So far
as the navigator is concerned, the position vector, the vector of velocities of vessels,
current and wind are some of the most important vectors in navigational

Fig. 4.1.1

Fig. 4.1.2

Fig. 4.1.3
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applications. Anyone who wants to calculate the effect of current and wind on the
course of a vessel or airplane has to know how to add vectors. The sum of two
vectors, ~aþ~b, is defined as the vector that coincides with the diagonal of the
parallelogram spanned by ~a and~b and pointing away from the origin of these
vectors—Fig. 4.1.4.

By defining the vector �~a as the vector obtained from a by reversing its
direction, it follows that~aþ �~að Þ ¼ 0. We also define the difference of two vectors

by ~a�~b ¼~aþ �~b
� �

. It follows then that the equation ~aþ~x ¼~b has the unique

solution: ~x ¼~b�~a. Here we have made use of the associative and commutative
law of addition since it can be easily shown that the laws of vector addition are the
same as the laws of the addition of real numbers.

Since in many applications it is necessary to find the angle a subtended by
~a and~b (see Fig. 4.1.4), it is advantageous to define the Scalar Product by:

(5b) ~a �~b ¼ ~aj j � j~bj � cos a, where “~aj j” denotes the length or magnitude of~a, and
“j~bj” denotes the length or magnitude of ~b.

Although for practical applications to sea and air navigation where most prob-
lems merely involve vector additions and calculating the angle between those
vectors, it suffices to use graphical methods, i.e., plotting sheets, plotting boards, or
flight computers-MB-4A. However, for more precise evaluations, it is necessary to
resort to the uses of mathematical formulae. In order to describe a vector~x in three
dimensions, for instance, it is necessary to use three scalars, I.e., real numbers,
namely the length ~xj j and two directional angles a and b. However, a much simpler

Fig. 4.1.4

Fig. 4.1.5
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scalar representation can be achieved by employing three base vectors~i;~j and~k of
unit length that are mutually orthogonal. Hence

��~i �� ¼ ��~j �� ¼ ��~k�� ¼ 1;~i �~j ¼~i �~k ¼
~j �~k ¼ 0 (Fig. 4.1.5).

Next we define the product of any vector~x and a scalar real number z as a vector
z~x of direction~x and magnitude zj j ~xj j, i.e., by z~xj j ¼ zj j~xj j. Then if “~x ” denotes a
vector with components x1; x2; x3, meaning that ~x ¼ x1~i + x2~j + x3~k, it follows
then form the application of the Pythagorean Theorem that:

(6b) ~xj j2¼ x12 þ x22 þ x32:

It also follows from the definition of the sum of the vectors and the product of a
scalar and vector that~x � ðzþw) ¼ z �~xþw �~x, where “z” and “w” are scalars. By
employing these results to the vector~c ¼~a�~b (see Fig. 4.1.4), we deduce that with

the help of the COS-TH.: ~cj j2¼ ~aj j2 þ ��~b��2 � 2 � ~aj j � ��~b�� � cos a. By expressing~a and
~b in terms of their components, we find ~a ¼ a1~iþ a2~jþ a3~k, and hence ~c ¼
a1 � b1ð Þ �~iþ a2 � b2ð Þ �~jþ a3 � b3ð Þ �~k. By applying the above formula for the
square of the length of~c, we deduce that ~cj j2¼ a1 � b1ð Þ2 þ a2 � b2ð Þ2 þ a3 � b3ð Þ2:

Substituting these component expressions into the above equation for cos a we
find:

(7b) ~aj j � ��~b�� � cos a ¼ a1b1 þ a2b2 þ a3b3 ¼~a �~b, the equation for the scalar pro-

duce in terms of the components of ~a and~b. It follows then, that the scalar
produce satisfies some of the laws of the product of real numbers, i.e., we have
~a �~b ¼~b �~a; and ~a � ð~bþ~cÞ ¼~a �~bþ~a �~c:

Next let us consider two important applications of the Scalar Product, namely, the
derivation of the ADDITION THEOREM for trigonometric functions and the
COS-TH.> of Spherical Trigonometry. Let “~a” and “~b” denote the two dimensional
unit vectors expressed by ~a ¼ ax~iþ ay~j; ~b ¼ bx~iþ by~j, with a2x þ a2y ¼ 1;

and b2x þ b2y ¼ 1 (see Fig. 4.1.6).
Then by applying the COS-TH. of plane trigonometry to the triangle subtended

by~a and ~b, we find that:

Fig. 4.1.6
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~c 2 ¼ 2 � l� cos b� að Þð Þ ¼ �
~a�~b

�2 ¼ j~aj2 þ j~bj2 � 2~a �~b ¼ 2 � �l�~a �~b �. Since
the scalar product expressed by the components of~a and ~b is~a �~b ¼ axbx þ ayby,
we obtain from the above expressions that cos b� að Þ ¼ axbx þ ayby. Next we

express the components of~a and~b by the cosines of the respective angles a and b,
deducing that:

ax ¼~i �~a ¼ cos a; ay ¼~j �~a ¼ cos 90
� � a

� � ¼ sin a; and

bx ¼~i �~b ¼ cos b; by ¼~j �~b ¼ cos 90
� � b

� � ¼ sin b:

By substituting these expressions into the above equations for cos b� að Þ, we
find that:

(8b) cos b� að Þ ¼ cos b � cos aþ sin b � sin a:
Replacing a by −a, we deduce cos bþ að Þ ¼ cos b � cos a� sin b � sina, since

cosð�aÞ ¼ cos a, and sinð�aÞ ¼ � sin a:
Subsequently, we deduce that

sin b� að Þ ¼ cos 90
� � ðb� aÞ� ¼ cos aþð90� � bÞ� �

¼ cos a � cos 90
� � b

� �� sin a sin 90
� � b

� �
and hence:

(8′b) sinðb� aÞ ¼ sin b � cos a� cos b � sin a. Replacing a by −a, we finally
obtain:
sinðbþ aÞ ¼ sin b � cos aþ cos b � sin a:

In the derivation of the second expression above, we have made use of the
following obvious identities:

cos 90� � að Þ ¼ sin a; sin 90� � að Þ ¼ cos a; cosð�aÞ ¼ cos a; and

sinð�aÞ ¼ sin a:

Next, let us derive the King-Pin of Spherical Trigonometry, namely the
COS-TH. of said discipline. Once these formulae have been established, the rest of
spherical trigonometry is just “algebra”, i.e., all the other relevant formulae, as for
instance the SIN-TH., the ANALOGUE-FORMULAE, and the FOUR-PARTS
FORMULA, as well as numerous others, can be deduced from the COS-TH. by
merely using algebraic manipulations.

By selecting three arbitrary points A, B, C on a unit sphere of radius one, and
then connecting these point to the origin of the sphere by the use of three unit
vectors ~a;~b;~c, one has subtended a spherical triangle by these three vectors (see
Fig. 4.1.7).

Noting that ~aj j ¼ ��~b�� ¼ ~cj j ¼ 1, we deduce that ~b �~c ¼ cosA; a � c ¼
cos B; and~a �~b ¼ cos C: The unit tangent vectors at A are denoted by “~tB” and “~tC”
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respectively. Since these vectors are tangent vectors, we conclude that ~a �~tC ¼ 0,
and~a �~tB ¼ 0. We also note that~tB �~tC ¼ cosA, where we have, as before, denoted
the angle at A by the same symbol. Furthermore, since~tC lies in the plane spanned
by~a and~c, we may write~tC ¼ a~aþ b~b, with a, b � 0, and~tB ¼ c~aþ d �~b, with c,
d � 0. Note that a, b, c, and d are scalars.

Next we deduce that ~tC
�� ��2¼ a2 þ b2 þ 2a � b � cos c ¼ 1, and ~tB

�� ��2¼ c2 þ d2 þ
2 � c � d � cos b ¼ 1. We also have: ~tC �~a ¼ aþ b � cos b ¼ 0, and ~tB �~a ¼ cþ
d � cos c ¼ 0. It follows then that ~tC

�� ��2¼ b2 � sin2 b ¼ 1, and ~tB
�� ��2¼ d2 � sin2 c ¼ 1,

i.e., we deduce that 1
b�d ¼ sin b � sin c. On the other hand, the scalar product of the

two tangent vectors yields:

~tB �~tC ¼ b � d � cos b � cos c� bd � cos b � cos c� bd � cos b � cos cþ bd cos a
¼ cosA:

The last expression yields:

(9b) cos a ¼ cos b � cos cþ sin b � sin c � cosA
And by interchanging the angles and sides, one finds the other two equations:
cos b ¼ cos a � cos cþ sin a � sin c � cos B
cos c ¼ cos a � cos bþ sin a � sin b � cos C

With the help of the COS-TH., we may now deduce another very important
formulae, namely, the SIN-TH. Employing the first of the above expressions in
(9b), we find:

sin b � sin c � cos A = cos a − cos b � cos c, from which it follows that

Fig. 4.1.7
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sin2 b sin2 c cos2 A = cos2 a − 2 � cos a � cos b � cos c + cos2 b � cos2 c, hence,
sin2 b sin2 c sin2 A = 1 − cos2 a − cos2 b − cos2 c + 2 cos a � cos b � cos c.

Next we define a positive number X > 0 by X2 � sin2 a � sin2 b � sin2 c =

= sin2 b � sin2 c � sin2 A, resulting in X = sinA
sin a , since X � 0. Using the second

equation of (9b), we deduce that sin a � sin c � cos B = cos b − cos a � cos c. Taking
again the square of the left-hand side of this equation and substituting “cos2 B” by
“1 − sin2 B”, we arrive at:

sin2 a � sin2 c � sin2 B = 1 − cos2 a − cos2 b − cos2 c + 2 cos a � cos b � cos c =
= sin2 b � sin2 c � sin2 A. Hence sin2 B

sin2 b ¼ sin2 A
sin2 a ¼ X2 and therefore, X = sinB

sinb,

resulting in sinB
sinb ¼ sinA

sin a . By employing equation three of (9b) and going through the

same steps, we conclude that:

(10b)
sin A
sin a

¼ sin B
sin b

¼ sin C
sin c

SIN-TH.

Other very useful formulae are the ANALOGUE-FORMULAE which can be
readily deduced from the COS-TH. by applying this theorem twice. For instance, if
we replace in the first expression of (9b) cos c by the third expression, we obtain
sin c � sin b � cos A = cos a sin2 b − sin b � sin a � cos b � cos C and therefore
arrive at:

(11b)

sin c � cosA ¼ cos a � sin b� sin a � cos b � cos C�

sin a � cos B ¼ cos b � sin c� sin b � cos c � cosA
sin b � cos C ¼ cos c � sin a� cos a � sin c � cos B

1

From the first expression by cyclic permutations of the letters we obtain the other
two expressions. These three equations constitute the ANALOGUE-FORMULAE
of spherical trigonometry. [41]

Similarly we can deduce the FOUR-PARTS formulae of spherical trigonometry
by employing the COS-TH. twice and the SIN-TH. once. For, from the first
expression of (9b) and the third, we can deduce that:

cos c = cos b(cos b � cos c + sin b � sin c � cos A) + sin a � sin b � cos C. Therefore,
0 = −cos c � sin2 b + sin b � cos b � sin c � cos A + sin a � sin b � cos C. Next by
dividing this expression by sin b � sin c, we obtain: 0 = −cot c � sin b + cos b �
cosA +

sin a
sin c

cos C. At this point, by employing the SIN-TH., we find that

sin A
sinC

¼ sin a
sin c

, and hence:

1And also sin a � cos C = cos c � sin b = cos b � sin c � cos A, and similarly for the other
expressions.
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0 = −cot c � sin b + cos b � cos A + sin A � cot C, i.e.,

(12b)

cos b � cosA ¼ sin b � cot c� sinA � cot C
cos c � cos B ¼ sin c � cot a� sin B � cot A
cos a � cos C ¼ sin a � cot b� sin c � cot B

And again by cyclic permutation of the letters in the first equation, we obtain the
other two. Other additional formulae of this type can be generated by cyclic per-
mutations of the letters.

Although used less frequently in navigation, another set of formulae referred to
as the COS-TH. of angles, can be obtained by employing the concept of the
POLAR-TRIANGLE and then applying the COS-TH. to it. The results are:

(13b)

cos A ¼ � cos B � cos Cþ sin B � sin C cos a

cos B ¼ � cos A � cos Cþ sin A � sin C cos b

cos C ¼ � cos A � cos Bþ sin A � sin B cos c

COS-TH. for ANGLES [36]

(c) Trigonometry and Trigonometric Functions.

In some applications to navigation, one frequently encounters the problem of
solving an equation of the type:

(14c) a � sin aþ b � cos a ¼ c, where a, b, and c are real numbers
and “a” denotes an angle.

First let us consider the simple case where c = 0. In this case, we assume that
a 6¼ 0 and b 6¼ 0, otherwise we have a trivial case. We conclude that:
a
b � tan a ¼ �1; or tan a ¼ � b

a resulting in a ¼ tan�1 � b
a

� �
¼ � tan�1 b

a; c = 0.

In the case where c 6¼ 0, we obtain a
c sin aþ b

c cos a ¼ 1. If we now introduce

the quantities “b” and “c” defined by c � cos b ¼ a
c and c � sinb ¼ b

c, the above
equation reduces to c � cos b � sin aþ c � sin b � cos a ¼ c � sin aþ bð Þ ¼ 1, where

c is given by c2 ¼ a
c
� �2 þ b

c

� �2
and since by hypotheses a2 þ b2 [ 0, it follows that

for all cj j � 1, i.e., for all a, b, and c satisfying a2 þ b2 � c2, and a 6¼ 0, the given

equation possesses infinity many solutions given by a ¼ sin�1 1
c� tan�1 b

a, since

tan b ¼ b
a. If a = 0 and b2 � c2, then a ¼ cos�1 c

b; but if b = 0, then it follows that

a ¼ sin�1 c
a, a

2 � c2.
Summarizing these results, we have:

(15c) a ¼
sin�1 1

c� tan�1 b
a ; a 6¼ 0; a2 þ b2 � c2; c2 ¼ a

c
� �2 þ b

c

� �2

� tan�1 b
a if c ¼ 0; a 6¼ 0

sin�1 c
a if b ¼ 0; a2 � c2; c 6¼ 0

cos�1 c
b if a ¼ 0; b2 � c2; c 6¼ 0

8>>>><
>>>>:
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Note that these formulae cover those special cases where the solution of the
above equation is given directly in terms of the inverse trigonometric functions.

Because it is imperative for all applications to computational navigation to know
the inverse trigonometric functions with all its ramifications, it behooves us to
derive all relevant formulae that can be readily evaluated on any inexpensive sci-
entific calculator.

By applying the Addition-TH. of plane trigonometry, we deduce that
sin xþ 2 � n � 180�ð Þ ¼ sin x; and sin ð2nþ 1Þ180� � xð Þ ¼ sin x, for all real
value x and all positive and negative integers n. But by definition of the inverse to
sin x, we conclude that sin�1 sin xð Þ ¼ n 180� þ ð�1Þnx; n = 0, ±1, ±2, …. This
may also be expressed by stating that:

(16c) sin�1 x ¼ n 180� þ ð�1Þnsin�1 x, 0 � x � 1, n = 0, ±1, ….

The index “n” defines the n-th BRANCH of sin�1 x, and this equation by be
interpreted as saying that it defines all branches in terms of one particular one
denoted by “sin�1 x”.

Similarly, we deduce from cos(2 � n � 180° ± x) = cos x that cos−1(cos x) =
2 � n � 180° ± x, i.e.,

(17c) cos −1x = 2 � n � 180° ± cos�1 x, |x| � 1, n = 0, ±1, …, likewise, we find
(18c) tan�1 x ¼ n � 180� þ tan�1 x, 8x; n ¼ 0;�1; . . .::

For the navigator, these expressions for the inverse trigonometric functions that
refer to “BRANCHES” may be somewhat confusing. However, since the formulae
of spherical trigonometry mainly encompasses values for arguments that lie between
zero and plus-minus one hundred and eighty degrees, only three branches of the
above functions are required for actual computations. Those branches correspond to
n = 0, n = 1, and n = −1. However, in the light of the limitations imposed by the
capacities of inexpensive calculators and tables, it is advantageous to define and
subsequently use only the so-called “MAIN BRANCHES” of said functions that are
denoted by sin�1 xj j; cos�1 xj j; and tan�1 xj j: The exact definitions are:
sin−1 |x| Defined only for non-negative arguments x satisfying |x| � 1, and its

range is restricted to 0 � sin−1|x| � 90°.
cos−1 |x| Defined only for non-negative arguments x satisfying |x| � 1, and its

range is restricted to 0 � cos−1|x| � 90°.
tan−1 |x| Defined only for non-negative arguments x satisfying |x| < ∞, and its

range is restricted to 0 � tan−1|x| � 90°.

In order to derive the desired formulae, we must first consider the case n = 0, i.e.,
the zero branch, by employing the above formulae (16c), (17c) and (18c) with n = 0.
When we do that, we find sin�1 x ¼ sin�1 x, and by using positive values for x, i.e.,
x = |x|, we find that sin�1 x ¼ sin�1 xj j, 0 � x � 1. By using negative values for x,
i.e., x = −|x|, we obtain sin�1 x ¼ � sin�1 xj j, since sin�1 � xj jð Þ ¼ � sin�1 xj j. The
latter can be readily deduced by noting that sin � sin�1 xj j� � ¼ � xj j.
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For the inverse of the cosine function, we deduce that cos�1 x ¼ �cos�1 x,
hence for x = |x|, we get cos�1 x ¼ � cos�1 xj j, i.e., two values. If we put x = −|x|,
we find that cos�1 x ¼ � cos�1 xj j ¼ � 90� þ sin�1 xj j� �

. The latter follows from
the identity: cos 90� þ sin�1 xj j� � ¼ � xj j.

Similarly, we find that tan�1 � xj jð Þ ¼ � tan�1 xj j since tan � tan�1 xj jð Þ ¼ −|x|.
Furthermore, for n = 0 we have tan�1 x ¼ tan�1 x and conclude that:

tan�1 x ¼ tan�1 xj j for all x satisfying 0 � x � ∞, and
tan x�1 ¼ � tan�1 xj j for all x satisfying −∞ < x � 0.

Next let us consider the BRANCH n = 1.
By putting n = 1, we obtain sin�1 x ¼ 180� � sin�1 x, hence for all x = |x|, we

find that sin�1 x ¼ 180� � sin�1 xj j. But if we substitute x = −|x|, we get
sin�1 x ¼ 180� þ sin�1 xj j � 180�. Therefore, these values of this part of the branch
do not fall in the prescribed range. By noting that sin 90� � cos�1 xj jð Þ ¼ xj j, it
follows that for all x � 0, sin�1 xj j ¼ 90� � cos�1 xj j, and hence,
sin�1 x ¼ 90� þ cos�1 xj j, for all x: 0 � x � 1.

In the case of cos�1 x, we can readily see that for this particular branch, it does
not fall in the prescribed range for all permissible x.

For tan�1 x, we obtain the expression tan�1 x ¼ 180� þ tan�1 x, and hence only
tan�1 x ¼ 180� � tan�1 xj j for all x � 0 satisfies the condition tan�1 x

�� ��� 180�.
Finally, let’s consider the BRANCH corresponding to n = −1, for which

sin�1 x ¼ � 180� þ sin�1 x
� �

.
For all x satisfying x = |x| � 1, we obtain sin�1 x ¼ � 180� þ sin�1 xj j� �

, and for
all values x = −|x| and |x| � 1, we get sin�1 x ¼ � 180� � sin�1 xj j� �

. Therefore,
only the latter part of this branch satisfies the imposed condition sin�1 x

�� ��� 180�.
Hence for n = −1, only sin�1 x ¼ � 180� � sin�1 xj j� � ¼ � 90� þ cos�1 xj jð Þ counts.

For n = −1, we also have tan�1 x ¼ �180� þ tan�1 x and therefore, only
tan�1 x ¼ � 180� � tan�1 xj jð Þ for all x satisfying 0 � x < ∞ has the appropriate
range. On the other hand, the corresponding branch of cos�1 x does not satisfy the
condition cos�1 x

�� ��� 180�, and therefore, does not count.
Summarizing these results, we have found the desired formulae for the inverse

trigonometric functions:

(19c)

sin�1 x =
� sin�1 xj j; plus ðþÞ if 0� x� 1

� 90� þ cos�1 xj jð Þ; minus �ð Þ if � 1� x� 0

(

cos�1 x =
� cos�1 xj j; for all x: 0� x� 1

� 90� þ sin�1 xj j� �
; for all x: � 1� x� 0

(

tan�1 x =
� tan�1 xj j; for all x: plus ðþÞ if 0� x\1
� tan�1 xj j � 180�ð Þ; for all x: minus �ð Þ if �1\x� 0

�
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Similar formulae can be derived for the other less frequently used trigonometric
functions.

It should also be noted that for theoretical purposes, it is advantageous to employ
the trigonometric functions with their arguments expressed in radians rather than in
degrees. However, it is customary to use the same symbols for the two different
functions. Most calculators now use distinct settings, degrees and radians, for these
distinct functions. Mathematically, the relationship between those two classes of

trigonometric functions is simply: sinrad x ¼ sin x0, with x0 ¼ 180 �x
p , where “x0”

denotes the degrees and “x” the radians. here we have used the symbol “sinrad x” to
make it abundantly clear that we are dealing with two different functions. What has
been said about sin x also applies to all the other trigonometric functions.

In conclusion, it should be pointed out that the most frequently used trigono-
metric expressions in astronavigation are the COS-TH. in the form

a ¼ cos�1 cos b cos cþ sin b sin c cosAð Þ or in the form A ¼ cos�1 cos a� cos b cos c
sin b sin c

� 	
.

All the relevant formulae in Sect. 2.4 are of this type. It can be stated that the entire
problem of finding your position at sea or in the air can be reduced to analytically
evaluating the two KING-PIN formulae deduced above.

(d) Interpolations and Approximations.

Next, let’s consider the problem of approximating a function either given ana-
lytically or merely in the form of discrete values numerically. This will include
Lagrange approximation or interpolations, Padé approximations, as well as other
approximations by rational functions, and also Taylor-type approximations.

In general, approximation are classified with reference to the type of elementary
functions that are being used to approximate a certain class of functions, and also,
most importantly, with regards to the requirements imposed upon the resulting error.
For instance, the most widely used set of elementary functions are the polynomials,
i.e., powers of x, and to a much lesser degree, the rational functions, i.e., the ratios of
two polynomials (Sect. 3.1). In astronomy, where some of the functions are related to
the periodic motions of a CO are periodic functions, one employs the set of
trigonometric functions with periods of 2p/n (see also Fournier Analysis).

With regards to the error in terms of those approximations, the most often used
requirements are that the error functions E(x) assume the value zero at a given set of
points, x ¼ xi, i = 0, 1, …, n, as, for instance, in interpolating with the set of ele-
mentary functions either the powers of x or rational functions. Another well-known
class of approximations are the Taylor Expansions, in the case where the set of
elementary functions is the set of all powers of x, or the Padé approximations with the
set of elementary functions equal to the set of rational functions. In the case of Taylor
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Expansions or Padé approximations, the requirements on the error function E(x) are
that the error and all its derivatives of up to the order m vanish at merely one single
point, x = x0.

Let’s consider the case of the interpolation of polynomials. Here we approximate
f(x) by a polynomial, i.e., we have the relation fðxÞ ¼ Pn

i¼0 aix
i þEnþ 1ðxÞ. Then

for a given set of points, Pk ¼ xk; ykð Þ, we require that Enþ 1 xkð Þ ¼ 0 for all k = 0,
1, …, n, resulting in the system of n + 1 linear equations:

Pn
i¼0 aix

i
k ¼ yk with

yk ¼ f xkð Þ for all k = 0, 1, …, n.
Obviously, solving such a linear system on a small calculator can be a very

tedious and time consuming task. Therefore, let us look at another approach based
on the Lagrangen Polynomials LiðxÞ defined by:

(1d) LkðxÞ ¼ pnþ 1ðxÞ
x�xkð Þp0

nþ 1ðxkÞ, with pnþ 1ðxÞ ¼
Qn

i¼0 x� xið Þ. From this, we then

conclude that the LkðxÞ satisfy the identities:

(2d) Lk xl
� � 0 if k 6¼ l

1 if k ¼ l

�
, and therefore f(x) can be expressed by:

(3d) fðxÞ ¼ Pn
i¼0 LiðxÞyi þEnþ 1ðxÞ, with yk ¼ f xkð Þ, k = 0, 1, …n.

In general, f(x) will not be known analytically, but if it is, and furthermore, has
derivatives of up to the order n + 1 with the n + 1st derivative still continuous, then
it can be shown that:

(4d) Enþ 1ðxÞ ¼ pnþ 1ðxÞ
ðnþ 1Þ! f fð Þðnþ 1Þ, with f2 a; b½ 	; a� xk � b, k = 0, 1, …n.

It can be easily shown that the above representation of the interpolation poly-
nomial in terms of the Lagrangen Polynomials is unique, i.e., if there exists another
polynomial of the same degree n passing through the same set of pints, it must be
identical to the polynomial designed by the first term of (3d), i.e., by the Lagrangen
interpolation polynomial.

For any particular application to navigation and astronomy, it suffices to use an
equal spacing of point of interpolation, i.e., we may assume that:

(5d) xkþ 1 ¼ xk þ h ¼ x0 þðkþ 1Þh, where h = xn�x0ð Þ
n :

Furthermore, it is convenient to use the center of the interval spanned by
x0 and xn as the point of reference, i.e., if we put

(6d) xc ¼ x0 þxn
2 ¼ x0 þ n

2 h; and x ¼ xc þm � h;withm ¼ x�x0

h � n
2, with the

new variable m satisfying � n
2 �m� n

2.

For our particular purpose, it suffices to consider only interpolation formulae of
up to the fourth order, i.e., 1 � n � 4.

Next, let us derive those relevant formulae explicitly.
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Examples

(i) Linear Interpolation—n = 1.

Here we have:

xc ¼ x0 þ h
2
; h ¼ x1 � x0;m ¼ x� x0

h
� 1
2
;� 1

2
�m� 1

2
;

L0ðmÞ ¼ 1
2
�m;L1ðmÞ ¼ 1

2
þm; and hence

(7d) fðmÞ ¼ 1
2
�m

� 	
� y0 þ

1
2
þm

� 	
� y1; h ¼ x1 � x0;m ¼ x� x0

h
� 1
2
;

� 1
2
�m� 1

2
:

(ii) Quadric Interpolation—n = 2.

Here we have:

xc ¼ x0 þ x2
2

¼ x0 þ h; h ¼ x2 � x0
2

;m ¼ x� x0
h

� 1;�1�m� 1

L0ðmÞ ¼ mðm� 1Þ
2

;L1ðmÞ ¼ �ðm� 1Þðmþ 1Þ;L2ðmÞ ¼ mðmþ 1Þ
2

; hence

(8d) fðmÞ ¼mðmþ 1Þ
2

� y0 � ðm� 1Þðmþ 1Þ � y1 þ
mðmþ 1Þ

2
� y2;

h ¼ x2 � x0
2

;m ¼ x� x0
h

� 1;�1�m� 1:

(iii) Cubic Interpolation—n = 3.
Here we have:

xc ¼ x0 þ 3
2
h; h ¼ x3 � x0

3
;m ¼ x� x0

h
� 3
2
;

L0ðmÞ ¼ � ð2m� 1Þð2m� 3Þð2mþ 1Þ
48

;L1ðmÞ ¼ ð2m� 1Þð2m� 3Þð2mþ 3Þ
16

;

L2ðmÞ ¼ � ð2m� 3Þð2mþ 1Þð2mþ 3Þ
16

;L3ðmÞ ¼ � ð2m� 1Þð2mþ 1Þð2mþ 3Þ
48

; hence

(9d)
f(m) ¼ �ð2m� 1Þð2m� 3Þð2mþ 1Þ

48
� y0 þ

ð2m� 1Þð2m� 3Þð2mþ 3Þ
16

� y1�

� ð2m� 3Þð2mþ 1Þð2mþ 3Þ
16

� y2 þ
ð2m� 1Þð2mþ 1Þð2mþ 3Þ

48
� y3 with
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h ¼ x3 � x0
3

; m ¼ x� x0
h

� 3
2
;� 3

2
�m� 3

2
:

(iv) Fourth-Degree Interpolation—n = 4.

Here we have:

xc ¼ x0 þ 2h; h ¼ x4 � x0
4

;m ¼ x� x0
h

� 2; xkþ 1 ¼ xk þ h;

L0ðmÞ ¼ 2mþ 2ð Þ �m � 2m� 2ð Þ 2m� 4ð Þ
192

; L1ðmÞ ¼ � 2mþ 4ð Þ 2m� 2ð Þ 2m� 4ð Þ �m
48

;

L2ðmÞ ¼ 2mþ 4ð Þ 2mþ 2ð Þ 2m� 2ð Þ 2m� 4ð Þ
64

; L3ðmÞ ¼ � 2mþ 4ð Þ 2mþ 2ð Þ 2m� 4ð Þ �m
48

;

L4ðmÞ ¼ 2mþ 4ð Þ 2mþ 2ð Þ 2m� 2ð Þ �m
192

; and therefore:

(10d)

f(m) ¼ ð2mþ 2Þð2m� 2Þð2m� 4Þ �m
192

� y0 �
ð2mþ 4Þð2m� 2Þð2m� 4Þ �m

48
� y1 þ

þ ð2mþ 4Þð2mþ 2Þð2m� 2Þð2m� 4Þ
64

� y2 �
ð2mþ 4Þð2mþ 2Þð2m� 4Þ �m

48
� y3þ

þ ð2mþ 4Þð2mþ 2Þð2m� 2Þ �m
192

� y4; h ¼ x4 � x0
4

;m ¼ x� x0
h

� 2;�2�m� 2:

Of course, there are situations like interpolating the universe x ¼ g�1ðyÞ of a
tabulated function g(x) where it becomes necessary to resort to employing the
general formula (3d) for the unequal spaced values of the yks. However, we will
make an attempt to get by with formulae (7d)–(10d) in most, but not all situations.
The construction of rational functions that approximate a certain class of functions is
more difficult and involved and cannot be addressed in this treatise adequately. [35]

For example, in the most simple case where the desired approximation is an
interpolation, one would expect it to be a straight forward computational problem,
since the 2(n + 1) linear equations for the al and bl are given by:

(11d) yk ¼ Pnþ 1ðxkÞ
QnðxkÞ ¼

Pnþ 1

l¼0
al�xl

kPn

l¼0
bl�xl

k

; 0� k� 2ðnþ 1Þ � 1; anþ 1 ¼ 1

and explicitly by:

(12d)
Pn

l¼0 ykbl � al
� �

xlk ¼ xnþ 1
k ; 0� k� 2ðnþ 1Þ � 1; anþ 1 ¼ 1;

appear to be solvable by well-known algorithms. However, this system of linear
equations poses some difficulties since it may not have a solution for a given set of
points (xk, yk), and a given n. [18]

Besides, even if this system posses a solution, it cannot be solved numerically
easily on a small calculator. Nevertheless, the great advantage of rational approx-
imation over polynomial approximations lies in the superior behavior of the error
function E(x). (Refer to Padé approximations in this section.)
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Next let us consider other types of approximations with the following require-
ments on the error function:

(13d) E(l)(x0) = 0, for all 0 � l � n. Here “f(l)(x)” demotes the l-th derivative
of f (x), and likewise for all E(x). It should be obvious that the underlying
assumption for this type of approximation is that only functions that have
n + 1 continuous derivatives can be approximated by this method.

In all cases where the elementary functions are again the powers of x, i.e.,
polynomials, we have the following representations:

f(x) =
Pn

l¼0 al x� x0ð Þl þEnþ 1ðxÞ. Then because of EðlÞ
nþ 1 x0ð Þ ¼ 0, we deduce

that al ¼ f ðlÞ x0ð Þ
l! ; l! ¼ 1 � 2 � 3 � � � � � l; 0! ¼ 1. We also deduce that Enþ 1ðxÞ

must satisfy the ordinary differential equation: E nþ 1ð Þ
nþ 1 ðxÞ ¼ fðnþ 1ÞðxÞ subject to the

initial conditions: E lð Þ
nþ 1 x0ð Þ ¼ 0; 0� l� n. It can also be shown easily that the

solution of this initial value problem is given by:

(14d) Enþ 1ðxÞ ¼
R x
x0

ðx�tÞn
n! � fðnþ 1ÞðtÞdt ¼ x�x0ð Þnþ 1

nþ 1ð Þ! � fðnþ 1Þ fð Þ; f� x; x0ð Þ: ½18; 36	

The resulting approximation is then:

fðxÞ ffi Pn
l¼0

f ðlÞ x0ð Þ
l! � x� x0ð Þl, usually referred to as Taylor Series Expansions

and in all cases where limn!1 Enþ 1ðxÞ ¼ 0, is written as:

(15d) f (x) ¼ P1
l¼0

f lð Þ x0ð Þ
l! � x� x0ð Þl ; TAYLOR SERIES:

Examples

ex ¼ P1
l¼0

xl

l! ;�1\x\1; lnðlþ xÞ ¼ x� x2

2 þ x3

3 � x4

4 þ � � � ; xj j\1;

lnðl� xÞ ¼ �x� x2

2
� x3

3
� � � � � xn

n
�; tan x ¼ xþ x3

3
þ 2

x5

15
þ � � � ; xj j � p

2
;

1
1�x ¼ P1

l¼0 x
l; xj j\1; cos x ¼ P1

l¼0
ð�1Þlx2l

2lð Þ! ;�1\x\1;

sin x ¼ P1
l¼0

ð�1Þlx2lþ 1

2lþ 1ð Þ! ; �1\x\1 sin�1 x ¼ P1
l¼0

ð2lÞ!x2lþ 1

22l� 2lþ 1ð Þ� l!ð Þ2 ; xj j\1;

cos�1 x ¼ p
2
� sin�1 x; tan�1 x ¼ P1

l¼0
ð�1Þlx2lþ 1

2lþ 12 ; xj j\1:

PADÉ APPROXIMATIONS [18, 35]

In the case where the elementary functions are no long polynomials but rational

functionsRm;nðxÞ ¼ PmðxÞ
QnðxÞ

, the resulting approximations are the PadéApproximations

for all functions f(x) that have a Taylor Series at x0 ¼ 0, i.e., for all f(x) that have the
representation fðxÞ ¼ P1

l¼0 clx
l. The error function Em;nðxÞ is then given by
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Em;nðxÞ ¼ fðxÞ � PmðxÞ
QnðxÞ

¼
P1

l¼0 clx
l

� �
� Pn

l¼0 blx
l

� �
�Pm

l¼0 alx
lPn

l¼0 blx
l

; b0 ¼ 1:

The requirements on the error function are that is must vanish together with all its
derivatives of up to order m + n at x0 = 0. this requirement is obviously met if all the
coefficients of the numerator (as specified below) are equal to zero, i.e., al ¼ 0 for all
0 � l � m + n, with the al defined by

P1
l¼0 clx

l �Pn
l¼0 blx

l �Pm
l¼0 alx

l

¼ P1
l¼0 alx

l. It follows then that the bls must satisfy the linear system of the n
equations:

(16d)
Pn

l¼0 cmþ n�1�l � bl ¼ 0, for all 1 = 0, 1, …, n − 1, ci = 0 if i < 0, b0 ¼ 1,
and the als are then given as linear combinations of the bls by:

(17d) ai ¼
Pi

l¼0 ci�l � bl, for all i = 0, 1, …., m, bk ¼ 0 if k > n.

The linear system of Eq. (16d) may or may not have a solution. Depending on
the existence of a solution of said system, we obtain a Padé Approximation for a
specific combination of m and n.

Examples

(i) f(x) = sin x, xj j � p
2 ; m = n = 2.

Since sin x ¼ x� 1
6
x3 þ 1

120
x5 � � � � it follows that

c0 ¼ 0; c1 ¼ 1; c2 ¼ 0; c3 ¼ 1
6
; c4 ¼ 0; … and hence (16d) yields:P2

l¼0 c4�l � bl ¼ c4 þ c3 � b1 þ c2 � b2 ¼ 0; and it follows that b1 ¼ 0. We also

have:
P2

l¼0 c3�l � bl ¼ c3 þ c2 � b1 þ c1 � b2 ¼ 0, and therefore, � 1
6 þ b2 ¼ 0,

and therefore b2 ¼ 1
6.

Substituting in Eq. (17d) yields:

a0 ¼
P0

l¼0 c0�lbl ¼ c0 ¼ 0, hence a0 ¼ 0; a1 ¼
P1

l¼0 c1�lbl ¼ c1 þ c0b1 ¼ 1þ 0b1 ¼ 1;

a2 ¼ X2
l¼0c2�lbl ¼ c2 þ c1b1 þ c0b2 ¼ c2 ¼ 0:

Substituting these values into the Padé Approximation:

(18d) fðxÞ ffi Rm;nðxÞ ffi PmðxÞ
QnðxÞ

yields sin x ffi x
1þ 1

6x2 ; an approximation that con-

stitutes a good one only for small values of x. For large values of x, as for
instance x ¼ p

2 ; the error is of the magnitude 10−1.

(ii) fðxÞ ¼ ex, m ¼ n ¼ 2, we have ex ¼ P1
l¼0

xl

l! ¼ 1þ x + x2

2 þ x3

6

þ x4

24 þ � � � þ , hence:
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c0 ¼ 1; c1 ¼ 1, c2 ¼ 1
2 ; c3 ¼ 1

6 ; c4 ¼ 1
24 : Again, substituting these values in

Eq. (16d) yields with b0 ¼ 1:

c4 + c3b1 þ c2b2 ¼ 1
24

þ 1
6
b1 þ 1

2
b2 ¼ 0; and

c3 + c2b1 þ c1b2 ¼ 1
6 þ 1

2 b1 + b2 ¼ 0; resulting in b1 ¼ 1
2 and b2 ¼ 1

2 ; and by
substituting into (17d) we obtain a0 ¼ c0 ¼ 1; a1 = c1 + c0b1 ¼ 1� 1

2 ; i.e., a1 ¼ 1
2 ;

a2 ¼ c2 þ c1b1 þ c0b2 ¼ 1
2 � 1

2 þ 1
12 ¼ 1

12 : Therefore, the desired Padé Approxi-
mation is:

ex ¼ 12þ 6�x + x2

12�6�x + x2 :

Again, I would like to reiterate that the Taylor and Padé approximations for any
given m and n are only accurate in the “SMALL”, i.e., for values of x close to zero,
but can be highly inaccurate in the “LARGE”, i.e., for values of x away from zero.
However, there are still other approximations by polynomials and rational functions
that are “good” over the entire interval of approximation for relatively small values
of m and n.

Next, let’s deal with the problem of solving non-linear equations or system of
non-linear equations as encountered in astronavigation.

(e) Solving Non-Linear Equations.

As has been mentioned in the preface of this book, any approach to solving the
problems of astronavigation by computational methods involves a little more than
just dealing with applied spherical trigonometry. In particular, we have employed
various types of approximation and also have come across the problem of solving
non-linear equations by iterative methods. Philosophically speaking, Navigation is
a Science based on approximations and whenever there are approximations
involved there exists the need for iterative processes for solving the resulting
problem analytically.

Let us first consider the problem of solving the non-linear equation:

(19e) f(x) = 0, x 2 [a,b], where “f ” is a continuous function with continuous first
and second derivatives on [a, b]. This problem actually breaks down into
solving two distinct problems, namely:

(i) Determining whether or not (19e) possesses a solution—root on [a, b]
and

(ii) If it does have a solution, how do you find it by calculation?

In what follows next, we must employ the concept of continuity that has been
defined mathematically and that translates, in simplified terms, into saying that one
must be able to plot the graph of the function f over the interval [a, b] between
points (a, f(a)) and (b, f(b)) without taking the pencil off the paper.

I shall now state a sufficient, but not a necessary condition for the existence of a
root of (19e) on [a, b]:
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“A sufficient condition for the existence of a root of (19e) on [a, b] is that f(x)
is continuous on [a, b] and that there are two points c and d on [a, b] so that
f(c) � f(d) < 0.”

Graphically speaking, this is very obvious (see Fig. 4.1.8) and according to
Fig. 4.1.9, the fact that this condition is by no means necessary becomes obvious.

The mathematical proof of the above statement is a direct consequence of the
INTERMEDIATE VALUE THEOREM of Calculus and states that if f is contin-
uous on [c, d], then if there exists a number A such that f(c) � A � f(d), then
there exists a value of f 2 ½c; d	 such that fðfÞ ¼ A.

Next we derive a procedure for actually calculating an approximation to the root
r of (19e) subject to additional conditions on f, namely:

(i) There exists a root r on [a, b],
(ii) f is twice differentiable with continuous second order derivative on [a, b],
(iii) There exists a neighborhood of r defined by |x − r| < e, and constants K and

M such that |f′(x)| � K, and |f″(x)| � M, for all x: |x − r| < e for a positive
number e.

Then if x0 lies in this neighborhood, i.e., |x0 − r| < e and furthermore, if

N � |r − x0| � 1, with N ¼ M
2K, then the sequence xl


 �
defined by:

Fig. 4.1.8

Fig. 4.1.9
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(20e) xlþ 1 ¼ xl � fðxlÞ
f 0ðxlÞ

; NEWTON-RAPHSON SEQUENCE, l = 0, 1, …

converges to the root r, i.e., liml!1 xl ¼ r.

To prove this statement of convergence to the root, we must employ
Taylor’s-TH. for n = 2 at x ¼ xl to obtain:

fðxÞ ¼ f(xlÞ + f 0ðxlÞðx� xlÞþ f 00ðfÞ
2

ðx� xlÞ2: Hence for x = r, we obtain

with f 2 r � xl
�� �� : xl � f(xlÞ

f 0 xl
� � ¼ rþ f 00ðfÞ

2f 0 xl
� � ðr � xlÞ2 for all xl � r � xl

�� ��\e:

Substituting (20e) into this expression, we deduce that:

r � xlþ 1
�� �� ¼ f 00 fð Þ

2f 0 xl
� �

�����
����� � r � xl

�� ��2 �N � r � xl
�� ��2; with “N” defined as above.

Therefore, we have:

(21e) r � xl
�� �� = N�1ðN � r � x0j j2l; l ¼ 0; 1; . . .. Since N � r � x0j j\1, we con-
clude that liml!1 xl ¼ r; which was to be proved.

Note that (21e) enables us to determine how many iterations are required to
make the error less than 10�j for any positive K. Also note that the often used
conditions liml!1 xlþ 1 � xl

�� �� ¼ 0; or xlþ 1
�� ��\ xl

�� �� for all l � L are merely
necessary but not sufficient conditions for the convergence of xl to r.

A typical application of this iterative method to Astor-Navigation consists in
solving KEPLERS EQUATION, i.e., E − e � sin E = M.

In all cases where the derivatives of f are not given analytically, we must use an
approximation instead, as, for instance, the backward difference quotient defined by

f 0ðxlÞ ffi fðxlÞ � fðxl�1Þ
xl � xl�1

:However, if we only replace the derivative in the Newton-

Raphson formula (20e) by this approximation for the first derivative, we obtain the

stationary iterative sequence xlþ 1 ¼
yl�1

yl�1 � yl
� xl þ

yl
yl � yl�1

� xl�1; l� 1;

x0 and x1 given.
This sequence so defined may not converge to the root r of (19e). Therefore,

these formulae do not provide a suitable algorithm for computing the root of (19e).
As we have seen in Sect. 2.8, the Secant-Method is, in general, a non-stationary

iterative method and only in cases where the function f is either convex or concave
can it become a stationary iterative method. Hence, in order to assure convergence
of our iterative process, we must use the formulae derived in Sect. 2.8 the latter
entails subdividing the interval in which f is either convex or concave or choosing
the interval about r sufficiently small to assure that f is either convex or concave.
Then we may employ the formulae:

(22e) xlþ 1 ¼
yl

yl � y1
� x1 þ y1

y1 � yl
� xl; l� 2; yl ¼ fðxlÞ; x1 and x2 given and
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f(x1Þ � fðx2Þ\0 if f is CONVEX, or

(23e) xlþ 1 ¼ y2
y2 � yl

� xl þ
yl

yl � y2
� x2; l� 3; otherwise as above but f is

CONCAVE.

(f) Differentials.

As we have seen in several previous sections, the problems associated with
finding error estimates in astronavigation are often related to approximations that
are based on DIFFERENTIALS. In the cases where the error depend on more than
one parameter, we are concerned with functions of several variables. In particular,
as we have seen in Sect. 2.17, the dependent variable may be given implicitly.
Therefore, let us consider the case where z is a function of x and y with the
functional dependence given by F(z) = G(x, y), where F is differentiable and G has
partial derivatives of, at least, order one. Then, by defining a function H of the three
variables x, y, and z by H(x, y, z) = G(x, y) − F(z), we derive:

dH = Hx � dxþHy � dyþHz � dz = Gx � dzþGydy� F0ðzÞdz = 0, with F0ðzÞ 6¼
0: We find that:

(24f) dz ¼ 1
F0ðzÞ � ðGxdx + Gydy) =

1
F0

� dG, where Gx ¼ @G
@x

;Gy ¼ @G
@y

:

In cases where G depends on more than two variables, we find that:

dz = 1
F0ðzÞ �

Pn
l¼1

@G
@xl

dxl; for all F0ðzÞ 6¼ 0:

In order to enable Navigators to develop their own refraction formulae (see
Sect. 3.1), it is also necessary to present some very important Quadrature Formulae,
i.e., approximations to definite Integrals. Therefore, we need to address this par-
ticular aspect of Numerical Analysis.

(g) Quadrature Formulae—Newton-Cotes Formulae.

The majority of numerical quadrature formulae are based on the concept of

approximating the integrand f(x) of the definitive integral
R b
a fðxÞdx by functions for

which the corresponding integrals are known, as for instance, in the case of
polynomials. The difficult part in deriving such QUADRATURE FORMULAE
consists in deriving explicit formulae for the error or error bounds. [18]

Here we shall only consider cases where the integrand f(x) is approximated by
polynomials of degree n that pass through the n + 1 points (xl, yl), with yl = f(xl).
Furthermore, we will only consider such cases where the x’s are spaced evenly
on [a,b] and where x0 = a and xn = b. Such types of formulae that are suitable
for adoption on small calculators are referred to as Newton-Cotes-Closed
Formulae. [18, 35]
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Newton-Cotes-Closed-Formulae—in the case of these types of formulae, the
integrand f(x) is approximated by the Lagrangen Polynomials Ll(x) of degree l over
the entire interval [a, b] and the abscissas xl are evenly spaced with the end point

included. Hence h ¼ b�a
n ; xl ¼ a + l � h; l ¼ 0; 1; . . .; n; yl ¼ fðxlÞ: Integration

of (3d) yields:
Z b

a
fðxÞdx =

Xn

l¼1
Clyl þ

1
ðnþ 1Þ!

Z b

a
pnþ 1ðxÞ � fðnþ 1ÞðfÞdx; where

the Cls are:

(25g) Cl ¼
Z b

a
LlðxÞdx:

It can be shown [3] that the error E in the resulting approximation:

(26g)
Z b

a
fðxÞdx ffi

Xn

l¼1
Clyl is given by:

(27g) E ¼
fðnþ 1ÞðgÞ
ðnþ 1Þ!

Z b

a
pnþ 1ðxÞdx if n : oddg 2 ða; bÞ:

fðnþ 2ÞðgÞ
ðnþ 2Þ!

Z b

a
x � pnþ 1ðxÞdx if n : eveng 2 ða; bÞ:

8>>><
>>>:

Whenever the interval of integration [a, b] is large and our n is small, we may
subdivide [a, b] into subintervals of length n � h and then apply the quadrature
formula for a given n to each subinterval.

For the use on small calculators, the following explicit quadrature formulae are
suitable:

TRAPAZOIDIAL RULE: By choosing n = 1 in formula (25g), (26g) and (27g)
we find that

C0 ¼ h
2
; C1 ¼ h

2
; yl ¼ fðx0 þl � h), l ¼ 0; 1; . . . and

(28g)
Z x0 þ h

x0
fðxÞdx ffi h

2
ðy0 þ y1Þ; E1 ¼ � h3

12
f 00ðgÞ; g 2 ðx0; x0 þ h):

In the cases where [a, b] is large, we divide it into m > 1 subintervals, each of
some length h and apply (28g) to each subinterval. The result of the summation of
all subintervals is:

(29g)
Z b

a
fðxÞdx ¼ h � y0

2
þ
Xm�1

l¼1
yl þ

ym
2

� �
, E1;m ¼ � h2

12 ðb� aÞf 00ðgÞ; h ¼ b�a
m ;

yl ¼ fðx0 þ l � h), l ¼ 0; 1; . . .;m� 1;
x0 ¼ a; g 2 ða; bÞ.

SIMPSON’S RULE: If we choose n = 2 in formulae (25g)–(27g), we obtain
with
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xl ¼ x0 þ l � h, l ¼ 0; 1; 2; that C0 ¼ h
3
; C1 ¼ 4

3
� h; C2 ¼ h

3
and with

yl ¼ fðx0 þ l � h), l ¼ 0; 1; 2:

(30g)
Z x0 þ 2h

x0
fðxÞdx ffi h

3
� ðy0 þ 4 � y1 þ y2Þ , E2 ¼ � h5

90
fð4ÞðgÞ, g 2 ðx0; x0 þ 2h).

Again, in all cases where the interval of integration is large, we may apply the
same procedures as in the case of the Trapezoidal Rule and obtain:

(31g)
Z b

a
fðxÞdx ¼ h

3
ðy0 þ 4 �

Xm�1

l¼0
y2lþ 1 þ 2 �

Xm�1

l¼1
y2l þ y2mÞ

E2m ¼ � h4

180
ðb� aÞfð4ÞðgÞ

h ¼ b� a
2m

; g 2 ða; bÞ;

m[ 1:

;

Note that the subdivision of [a, b] is only applied to the integration of the first
term of (3d).

With the help of the above equations, together with some of the other formulae
provided in this section, the reader can develop his or her own refraction formulae,
provided that they use a realistic model of the atmosphere that can be expressed
analytically by piecewise continuous functions.

(h) Algorithm For Polynomials.

Another useful algorithm that come into play for computing the value of a
polynomial P(x) for any given value of x is this:

(32h) PnðxÞ ¼
Pn

l¼0 alx
l with the n + 1 coefficients al: Then let us define the

sequence bl; l ¼ 0; 1; . . .n; for a given x by:
(33h) b0 ¼ an; bl ¼ bl�1 � xþ an�l, l ¼ 1; . . .n, then PnðxÞ ¼ bn.

Proof—by mathematical induction.

4.2 Some of the Instruments Used by the Navigator

By strictly adhering to the title and main objectives of this book, I should actually
refrain from describing the various instruments and their uses in navigation.
However, despite all rational reason for not doing it, I have decided to add a small
section on the use of the major instruments for the sake of completeness and for the
opportunity to share some of my experience in selecting those instruments that
might interest the reader.

Beginning with, perhaps, the most important class of instruments, namely, the
compasses. I have divided them into three categories:
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(i) MAGNETIC COMPASES—based on the electromagnetic field of the Earth and
allowing a directional devise (needle) to point to the magnetic pole of the planet.
I recommend that you buy only high quality units and also have, at least, two
stationary compasses and one hand-bearing compass on board. I personally
carry a miniature had-bearing compass on a lanyard around my neck.
Of course, it is imperative that the navigator checks the deviation and
variation of the magnetic compass frequently. Nowadays, digital compasses
with a higher degree of accuracy are also available to seafarers and aviators.

(ii) ASTRO AND SUN COMPASSES. Although used to a lesser degree by the
mariner than by the aviator, the Astro Compass requires as input, the latitude
of the observer, the local hour angle, and the declination of the celestial
object. By pointing the sighting assembly towards the CO, the true bearing,
i.e., heading is read at the lubber-line.
With the Sun Compass, this device shows the direction by means of a
shadow cast by a pin when exposed to sunlight. First the course of the vessel
is set opposite to the lubber-line which is aligned with the fore-aft axis of the
vessel on an horizontal azimuth dial. Then, by means of another dial that is
adjusted by a latitude scale, the pin is adjusted so as to be parallel to the polar
axis and set to the local apparent time. When the vessel is on course, the
shadow of the pin falls across the center of the local time dial and pointing at
the preset local apparent time mark. [4, 46, 48]
As a former aviator, I have a personal preference for the versatile
Astro-Compass that is used primarily for night observations.

(iii) GYRO COMPASS. Another class of compasses is based on the dynamics of a
rotating gyro (discussed in the second part of this book). Because of the gyro-
scopic inertia, the gyro compass, once it has been set and activated,will continue
to point in the same direction and the lubber-line will indicate the course.
(More about the big gyros of the universe, like the Sun, Earth, Moon,
Planets, and Stars in the second part of this book.) [2]
Although standard equipment on all aircrafts, only bigger yachts afford the
luxury of this device. Furthermore, this instrument requires a power source,
i.e., batteries, alternator, etc.
Next in line of importance come the timepieces like clocks, watches, etc.

CLOCKS ANDWATCHES constitute the most indispensable instruments for the
navigator. Since we have already examined this item in great detail in Sect. 2.4, I
would merely like to add another small and inexpensive timepiece to the previous list,
namely, an independent small stopwatch that can be attacked directly to the sextant.

SEXTANTS, THEODOLITES, ANDKAMELS. Here let me distinguish between
the so-called BUBBLESEXTANTS as used inAirNavigation, as for instance, theUS
NavyMark V and the British RAFMark IX, and the optical sextants that are based on
two mirrors, a telescope and a graduated arc with a movable part that contains one of
the two mirrors (see Fig. 4.2.1). The most expensive one also utilize a tangent screw
with micrometer drum attached enabling the navigator to measure angles as small as
0′.1 or less. [24]
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A very important accessory to the optical sextant is the Artificial Bubble Horizon
that can be attached to almost any conventional sextant, enabling the navigator to
make night observations. I have personally equipped all my optical sextants with
bubble horizons.

For observation on land or coastlines, the most accurate instrument is the
THEODOLITE as used by land surveyors and explorers. In case that such an
instrument, which measures angles as small as 1″ or less, is unavailable, an artificial
horizon that may consist of a tray filled with a high viscosity liquid can be used in
conjunction with a marine sextant for measuring vertical angles. In an emergency,
or for “non-instrument navigation” the KAMEL and ASTROLABE can be sub-
stituted for a sextant buy only if it is used as a calibrating device. [10, 49]

Next come the instruments necessary for determining Dip and Refraction for
Non-Standard conditions, i.e., for almost any condition that the navigator will
encounter at sea or in the air.

BAROMETER AND THERMOMETER. It is important that each vessel has at
least one pair of these instruments on board for the purpose of calculating
Refraction and dip, and also for meteorological purposes such as Weather
Forecasts, etc. All leading marine and aviation supply stores carry a large assort-
ment of these instruments and it us up to the navigator to decide what suits him or
her the best. However, I strongly recommend that the navigator also acquires a

Fig. 4.2.1
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pocket type Barometer-Thermometer as used, for instance, by mountain climbers.
Nowadays, one can even buy a wristwatch that incorporates a digital barometer and
thermometer along with the timepiece.

LOGS. Next comes the instruments for measuring the speed of the vessel rel-
ative to the water, or in the case of an airplane, the air speed, and also the distance
traveled relative to those elements or relative to the ground. There are basically four
different types of devices for measuring the magnitude of velocity.

The first consists in measuring the distance traveled together with the elapsed
time which can be done, for instance, by throwing a line that is attached to a float
over board and counting the time and distance traveled.

The second type of log utilizes an impeller and thereby measures the rotation of
this device that corresponds to the distance and speed of the vessel.

The third type is based on Bernoulli’s Law that relates pressure and speed in a
suitable tube. Whenever the speed of the vessel changes, the pressure in this device
also changes and because of said law, speed is determined by measuring the
pressure in the tube. In the case of airplanes, air speed is measured in a similar way
by means of the so-called “pitot” tube.

The fourth type of instruments are the electronic devices like transmitters and
receivers used in RADARS. Ground speed is determined by utilizing the
DOPPLER EFFECT.

DEPTH INDICATORS AND SONARS. Next to the logs come the instruments
that measure the distance above the ground level, in the case of a vessel, the bottom
of the sea. Besides speed and distance, the navigator also has to determine the
distance the vessel or aircraft is above the ground level. In bygone times, the
mariner used a “lead-line” with the distances marked on it. Modern depth sounders
use ultra sound or SONAR to determine depth and, perhaps, drift. In the case of an
airplane, barometric pressure, DOPPLER, and/or RADAR are all employed to
determine height above ground.

CALCULATORS AND COMPUTERS. Finally, there is the brain of all these
instruments, namely the frequently used and indispensable Calculator and/or
Computer, and a set of good old Logarithm Tables to cover an emergency situation
when all the electric and electronic devices have been deactivated, i.e., blown out.
As we have seen on several occasions in this book, the calculator can be anything
that has an algebraic logic and also has the elementary trigonometric functions as
well as the exponential functions built in. This amounts to saying that any Scientific
Calculator that can be had for $10.00 or less will do. On the upper scale of those
devices, the limits are only set by the manufacturers and the purse of the buyer.

However, in order to perform all the necessary calculations in a speedy way for
the EPHEMERIS as developed in the second half of this book, a more powerful and
programmable calculator is highly recommended. This is particularly true when
calculating orbits. [50, 54]

STAR FINDERS AND ASTROLABES. In order to facilitate the identification
of stars and planets (see Sect. 2.19), and at the same time provide a picture of the
sky overhead at any given instant, a STAR FINDER and/or an ASTROLOBE are
very handy. [11, 37, 40, 46]
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GPS. Last, but not least, is a GPS receiver which is obviously the first choice of the
Coastal-Navigator. Its accuracy and simplicity with regards to its use are unsurpassed
by all the other electronic navigational systems. Since virtually every serious boater
has a GPS and also know hot to use it, I will refrain from elaborating on it. however, I
am compelled to point out the shortcoming and limitations of this System.

The major shortcomings of this system are its dependence on artificial satellites
that can be sabotaged and/or eliminated, and its dependence on electronic trans-
mitters and receivers, both of which can be knocked out by an electro magnetic
pulse. It may never happen. But then, it could happen tomorrow.

An Astro-Compass

A Mark II Astro Compass (Stock photo) (Image credit www.ebay.com)
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The British RAF Mark IX Bubble Sextant

A RAF Mark IX Bubble Sextant courtesy of Military Autographs UK (Image credit militaryau-
tographs.com)
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Various Sextants

Marine Sextant in use (Image credit Pearson Scott Foresman)

A Stanly London Mark 3 sextant (Image credit Copyright © Stanley London 2016)
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A Sun Compass

Solar Compass (Image credit Dustin Plunkett, originally posted to Flickr as William Burt Solar
Compass, CC by 2.0)
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Star Finders and Astrolabes

Commercial Star Finder (Image credit physics.csbsju.edu)
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Part II
Formulae and Algorithms
of Positional Astronomy

In which the navigator will find the necessary formulae and algorithms employing
the basics of Positional Astronomy to enable him or her to find their position
without having a Nautical Almanac at their disposal. Included is an ephemeris for
the navigational stars and an abridged, low or medium low ephemeris for the sun.



Chapter 5
Elements of Astronomy as Used
in Navigation

5.1 Some Basic Concepts Describing the Motion
of the Earth Around the Sun

In this section we shall develop some approximations for the most basic aspect of
an ephemeris for the Sun and the stars which will enable the navigator to calculate
approximations to the required Greenwich Hour Angle (GHA) and Declination d of
the Sun and stars. Those results can be classified as low precision ephemerides for
the Sun and stars. In the following sections those formulae will be replaced by more
accurate ones that result in improved low precision and intermediate precision
ephemerides.

Contrary to what a navigator may find in text books on Astronomy, all the
formulae provided in this manual come with all the necessary data for the actual
numerical evaluation. What good is it for a navigator to be provided by an
approximate formulae for the equation of time or the equation of the center if no
explicit formulae or values for the mean anomaly and mean longitude are given?
Furthermore, all formulae provided herein can be evaluated by using an inexpen-
sive scientific calculator.

Since this book is not meant to be a comprehensive text on Positional
Astronomy, only the basics of the underlying theory will be explained allowing the
reader who has only a very limited knowledge of Astronomy to apply the provided
formulae intelligently. Detailed derivation of the formulae will sometimes be
omitted.

The starting point for deriving a practical ephemeris must, of course, be to define
a reverence point on the celestial equator. This reference point is called the first
point of Aries or the point of the vernal equinox, similar to the referenced system on
the globe referred to as the Greenwich Meridian.

As has already been explained in the first part of this book, the first point of
Aries (♈) is defined as the first point of intersection of the celestial equator and the
ecliptic. (See Fig. 5.1.1.)
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It is obvious that♈ can also be defined as one of the points where the declination
of the Sun is equal to zero. Of course,♈ is not necessarily occupied by a real star but
can be identified with the help of a real one. TakeALPHERATZwith SHA 357°.47.
Once♈ has been determined, all Celestial Objects (CO) are assigned coordinates in
terms of the hour angle of the CO relative to♈, referred to as Right Ascension (RA)
and the angle measured from the equator to the CO and referred as Declination d.
Therefore, if we can find the hour angle subtended by the Greenwich Meridian, i.e.
GHA ♈, we can then find the GHA or the star by adding the Sidereal Hour Angle
(SHA) to the GHA ♈. In other words, GHA (CO) = GHA ♈ + SHA (CO). Also
recall at this point how the RA is related to the SHA, namely RA = 360° − SHA.

It follows then that the RA is the angle measured from ♈ to the intersection of
the celestial equator with the meridian of the CO by going to the right (see
Fig. 5.1.1).

Since our objective is to find GHA ♈ at any instant of Universal Time (UT), we
must introduce the concept of a fictitious mean Sun, denoted by �, that travels
along the equator from left to right at a constant angular velocity of n°, and another
fictitious Sun, referred to as the dynamic mean Sun and denoted by �, that travels
with the same constant velocity n° along the ecliptic. The two fictitious Suns are
synchronized by meeting at the Vernal Equinox T at the same instant. Therefore,
the RA of the fictitious mean Sun � is equal to the longitude ‘ of the dynamic mean
sun �; i.e. RA � = ‘. Because of the latter, we shall refer to both fictitious Suns as
the mean Sun �. In order to visualize the three Suns, Fig. 5.1.2 shows the position
of these three Suns after they have passed the first point of Aries at the same instant.

Here “D” denotes the position of the dynamic mean Sun on the ecliptic; “S”
denotes the position of the true Sun on the ecliptic; “M” denotes the position of the
fictitious mean sun on the equator; and “T” indicates the point of intersection of the
hour circle of the true Sun with the equator. Therefore we can conclude as per the
definition of � that:

Fig. 5.1.1
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^♈D ¼ ^♈M ¼ RA� ¼ ‘; ^♈T ¼ RA� ¼ ‘; ^♈S ¼ k; where “‘”
denotes the longitude of the mean Sun and k the longitude of the true Sun.

The dynamic mean sun has been introduced with reference to the true Sun that
moves according to Kepler’s Second Law with a variable angular velocity around
the Earth’s geocentric system. However, the two Suns are no more than about 16
min apart at the extreme. Or course, the spacing of D, S, M and T in Fig. 5.1.2 are
highly exaggerated for the sake of clarity.

An immediate consequence of the introduction of the mean Sun is the equation:

(1) GHA ♈ ¼ RA�þGHA� ¼ ‘þGHA�
Since the GHA � is directly related to the universal time UT and therefore to the

UTC (also known as Coordinated Mean Time, or clock time) finding the GHA ♈
amounts to finding the RA � or ‘.

Although we can’t observe the transit of ♈ directly, a nearby star whose SHA is
known can be used to time the transit at any specific meridian, say the Greenwich
meridian. Another way of obtaining the time of transit of Aries it to use compiled
data as found in Almanacs. Once the time of transit of the first point of Aries has
been determined, the GHA ♈ can be calculated easily since the rate of rotation of
the earth is 24 h Sidereal Time. Of course, we have assumed so far that the first
point of Aries does not move, which is by no means correct. Only if we can
describe the movement of ♈ on the celestial sphere quantitatively we will be able
to obtain suitable results for our ephemeris. However, the discussion of the
Equation of the Equinox will be deferred until later when we deal with more exact
equations for the GHAs and the declinations d of the COs.

Fig. 5.1.2
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5.2 An Approximation to the Time of Transit of Aries
at Greenwich and the Greenwich Hour
Angle GHA of ♈

For the purpose of this section, it will suffice to assume that ♈ remains stationary.
As with regard to finding an approximate value for the Greenwich Hour Angle of
♈—GHA ♈—at any instant during a specific year, we can employ the method of
simple interpolation, provided that we know the GHA ♈s at two distinct days at
0h:00 UTC during this specified year. This method of interpolation is valid because
we can deduce from the general theory [see Sect. 6.2 and (3)] that the dependence
of GHA ♈ on the time can be approximated sufficiently accurately by a linear
function of the time. For now, assume that we have extracted those two values for
the GHA ♈s from the NA of the year in question. (In Chap. 8, we will examine
another simple formula for the GHA ♈ that does not required those two values and
is therefore independent of the NA.)

In order to derive a suitable approximation for the GHA♈, we must assume that
we know the value of GHA ♈ on two distinct days at 0h:00 UTC. Let us denote
those values by GHA ♈ðN0Þ and GHA ♈ðN1Þ; respectively. Furthermore, we
have imposed the condition that:

GHA ♈ðN0Þ\GHA ♈ðN1Þ \360�, where “N0” and “N1” denote the distinct
days by their year—number—(see example below). Then if N is any day of the
specified year in question at 0h:00 UTC, we deduce that:

GHA♈ðNÞ = GHA♈ðN0Þ + m � ðN� N0Þwithm ¼ ðGHA♈ðN1Þ � GHA
♈ðN0))/ðN1 � N0Þ:

This is the simple interpolation formula referred to above (see also Sect. 4.2). It
follows then that on day N at UTC denoted by “N” we have:

(1) GHA♈ðNÞ ¼ GHA♈ðN0Þ + m � ðN� N0Þþ 15:04106865UTC

m ¼ ðGHA♈ðN1Þ � GHA♈ðN0ÞÞ/ðN1 � N0Þ;GHA♈ðN0Þ \GHA♈ðN1) \360�:

Note that N0 and N1 and the values of GHA ♈ required, together with m, have
to be specified only once per year (see example below).

Next, let’s consider two examples:

Example #(1) Find the GHA ♈ on 07/14/13 at 17h:00 UTC.
Solution:

i. Choose N0 and N1 within 2013—to be done only once in 2013.

03=21=13; 0h : 00; N0 ¼ 80

06=21=13; 0h : 00;N1 ¼ 172

ii. From NA 2013 take GHA ♈ðN0Þ = 178°.676666, and
GHA ♈ðN1Þ ¼ 269�:356666
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iii. Calculate m.

m ¼ 0:985652166

iv. Count N ¼ 195ð07=14=13 at 0h : 00UTCÞ
v. Substitute those values into Eq. (1) to obtain:

GHA♈ðNÞ = 547�:7248328� 360� ¼ 187�:7248328
¼ 187�430:49 NAvalue is 187�430:2ð Þ

Example #(2) Find the GHA ♈ on 07/15/13 at 11h:00 UTC.

Solution:

i. Count N, i.e., N = 196 for (07/15/13 at 0h:00 UTC).
ii. Substitute these values together with those values calculated in

Example 1. into Eq. (1) to obtain:

GHA♈ðNÞ = 485�:4640728� 360� ¼ 98�:46407285
¼ 98�270:84 NAvalue is 98�270:68:ð Þ

In conclusion, it should be noted that Eq. (1) also enables the navigator to obtain
a simple approximation for the RA of the mean Sun—for by definition of the RA
we have RA � = GHA ♈ (N) − (UTC − 12) � 15. Hence by substituting the
expression given by (1) in this equation above we obtain:

(2) RA� ¼ GHA♈ðN0Þþm � ðN� N0Þþ 0:04106865 � UTCþ 180�:

Note that in RA � is given in degrees instead of hours, immediately providing
that the navigator with the mean longitude ‘, i.e., ‘(N) = RA �. Also note that the
time of transit of ♈ at Greenwich is given implicitly by (1)—put GHA ♈ = 0 and
solve for UTC.

5.3 The Right Ascension of RA of the Mean Sun, Mean
Longitude, Mean Anomaly, Longitude of Perigee,
Longitude of Epoch and Kepler’s Equation

Next in importance to having an explicit formula for the GHA♈ is to have a formula
for the right ascension of RA � of the true Sun, or which amounts to the same, a
formula for the difference in the right ascension of the true and the mean Sun, i.e., the
so-called Equation of Time (ET). By definition, the equation of time is given by:

5.2 An Approximation to the Time of Transit of Aries … 245



(1) ET ¼ RA�� RA� :

Although the RA �, which can readily be calculated by employing Eq. (1) in
Sect. 5.2, furnishes one part of this equation, the other component, namely the
RA �, cannot be calculated without knowledge of the parameters of the orbit of the
Sun about the center of the Earth. Furthermore, Kepler’s equation, or the Equation
of the Center, has to be used in order to obtain a formula for the RA � of the true
Sun. In order to enable navigators to understand the underlying theory to the extent
that they can assess the degree of accuracy of the resulting approximations, it is
necessary to develop a clear picture of the underlying dynamics of the orbital
motion of the Earth around the Sun and Sun around the Earth, respectively.

Starting with Kepler’s first law, we know that the Earth moves along an ellipse
of major semi-axis a, and minor semi-axis b. The sun, itself, occupies one of the
foci of the ellipse. This true model is referred to as the heliocentric model.
However, we will use the geocentric model instead, where the Sun is assumed to
move around the Earth on the elliptic and the Earth occupies one of the foci. These
two models correspond to the same physical situation and generate the same results
with one exception, namely, the longitude of the Earth differs 180° from the lon-
gitude of the Sun, i.e. k� = 180° + k. The geocentric model offers the advantage in
that it relates directly to the celestial sphere where the Sun moves along the ecliptic.
Here we are using the same analogy for the Earth as when we pretend that the
celestial sphere rotates about the axis of the stationary Earth.

The geocentric model of the orbit is depicted in Fig. 5.3.1. It also lets us interpret
the first point of Aries geometrically, for the line connecting the center of the Earth
with Aries turns out to be the projection of the axis of the gyro-Earth onto the
ecliptic.

In order to describe the motion of the Sun analytically, it will be necessary to
define and compute the relevant parameters of the orbit as indicated in Fig. 5.3.1.

The parameters which define the Sun’s orbit are:

a: semi-major axis of the ellipse.
a ¼ 1AU ¼ 149:6� 106 km
e: eccentricity of orbit. e = f/a, where “f” denotes the distance of the center of the
Earth from the center of the ellipse. e = 0.016718, at epoch 1980.
e0: the obliquity of the ecliptic. e0 = 23°.4418 at epoch 1980.
Tp: period in tropical years. Tp = 1.00004 at epoch 1980.
~e : longitude at epoch. ~e = 278°.83354 at epoch 1980.
x: longitude at perigee. x = 282°.596403 at epoch 1980. [63]

In addition, we require:

m: true anomaly of the Sun measured from perigee.
M: mean anomaly of the mean Sun also measured from perigee and synchronized
with m by m ð~sÞ ¼ Mð~sÞ ¼ 0; where “~s” denotes the instant when m passes perigee.
Finally,
E: eccentric anomaly defined as shown in Fig. 5.3.1.
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As can readily be deduced from Fig. 5.3.1, the mean longitude ‘, which is the
angle subtended by E0Aries and E0 � is given by:

(2) ‘ ¼ Mþx ¼ RA��:

Similarly, the true longitude k of the Sun is given by:

(3) k ¼ vþx ¼ lþC

If “t” denoted the time, measured in days, which has passed since the Sun has
passed the epoch, it follows that:

(4) M ¼ n� � Dþ~e� x ¼ n� � ðt� ~sÞ; where n� ¼ 360�
365:25 ¼ 0:985626283 and

“D” denotes the time in days and fractions of days from the given epoch.
It follows then from the definition of ~s that:

ν :  True Anomaly 

ω

ε

:  Longitude at Perigee 

S

E0

E: Eccentric Anomaly

M:  Mean Anomaly a:  Semi-Major Axis

C:  Center of Ellipse                                       

S:  Sun         PG:  Perigee

:  Mean Sun EP:  Epoch

:  Earth ~ :  Longitude at EP 

Fig. 5.3.1
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(5) ~s ¼ x�~e
n� :

It can also be easily shown that the eccentric anomaly E satisfies Kepler’s
equation:

(6) E ¼ Mþ e � sin E, where E and M are expressed in radians. [58], [formula 1
and 3, 63]

Once a solution to Kepler’s equation has been found by iterative methods, for
instance, m, the true anomaly, can be calculated by using the formula:

(7) tan m
2 ¼

ffiffiffiffiffiffiffiffi
1þe
1�e

q
� tan E2 [59, 60]

5.4 The Equation of the Center, Equation of Time
and True Longitude of the Sun

Instead of solving Kepler’s equation by an iterative procedure, let’s expand m in
terms of e as a power series, or since it is a periodic function of M, develop it as a
Fourier Series in M resulting in the equation of the center, namely:

(1) C: ¼ m�M ¼ 180
p

½ð2e� e3

4
þ 5

96
� e5Þ sinMþð5

4
e2 � 11

24
e4Þ � sin 2Mþð13

12
e3

� 43
64

� e5Þ � sin 3Mþ 103
96

e4 � sin 4Mþ 1097
960

e5 � sin 5Mþ � � ��; 58; 63½ �

Similarly, we can calculate the distance from the center of the Earth to the center
of the Sun (required for finding the semi-diameter of the disc of the Sun) by:

(2)
r
a
¼ 1þ e2

2
� ðe� 3

8
e3 þ 5

192
e5Þ � cosM� ðe

2

2
� e4

3
Þ � cos 2M� ð3

8
e3 � 45

128
e5Þ

� cos 3M� e4

3
� cos 4M� 125

384
� e5 � cos 5Mþ � � � 68; 72½ �

As will be explained later, for the purpose of navigation, it will suffice to
truncate these formulae, i.e., consider only terms containing of up to the power of
three in e. The above formula for the distance r between the Sun and Earth is based
on the relation:

(3) r ¼ a � ð1�e2Þ
ð1þe�cos mÞ ¼ a � ð1�e2Þ

ð1þe�cos ðMþCÞÞ : 59; 60½ �

Similarly, the Sun’s angular size, i.e., its angular diameter H can be fund to be:

(4) H ¼ H0 � ð1þe�cosmÞð1�e2Þ ¼ H � ð1þe�cos(MþC))
ð1�e2Þ ¼ H0

r in AU where H0 is the angu-

lar diameter when r = a. For instance at epoch 1980 H0 = 0°.533128.

Before we address the problem of how to calculate or extract the elements of the
orbit and its parameters, let us first consider the very relevant problem of finding an
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approximation to the Equation of Time. According to (1) in Sect. 5.3, we must first
calculate the right ascension RA � of the true Sun. The latter is given by:

(5) tan RA� ¼ cos e0 � tan k or cos k ¼ cos d � cos RA� : [66]

and the declination of the true Sun d is given by:

(6) sin d ¼ sin e0 � sin k: (See Fig. 5.4.1.)

Since the longitude k of the true Sun � is given by formula (5), Eqs. (1) and
(2) in Sect. 5.3 yield the exact equation of same as:

(7) ET ¼ ‘� tan�1ðcos e0 � tan kÞ:
In order to find a crude approximation to ET, we use a crude approximation to C

by neglecting in (1) all terms that contain powers of e higher than one, i.e., we
approximate C and therefore ET by their linear components. Specifically, we
employ the approximation C ffi 360

p � e � sin M: Using this approximation together

with the fact that tan2 e
2 	 1 and also RA� = k − a. Where a is a very small

quantity, we may derive the following expression for the ET:

(8) ET ffi 720
p � ðtan2 e0

2 � sin 2‘� 2 � e � sinM)—given in minutes of time. [63]

With the help of this low precision expression, formulae (1) and (2) in Sect. 5.2,
and (5) and (6) in Sect. 5.4, and a simple formula for calculating the SHA of the
navigational stars (as provided in a subsequent section), the navigator can still
functionwithout a NA. However, one obstacle in applying the above formula consists
in finding the mean anomaly M that appears in this formula. In case that we can find a
good approximation to ~s; we may use formula (4) in Sect. 5.3, where t is counted in
days and fractions of a day from the epoch in question. If not, we may have to extract
again values from the NA—once a year only, and calculate approximations to x and
e, as shown in Sect. 5.6, or use the polynomial expressions provided in Sect. 6.3.

In Sect. 5.6, I shall address this particular problem and eventually provide an exact
formula for M(t). But first, let us consider some numerical examples and definitions.

Fig. 5.4.1
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5.5 Numerical Examples and Other Concepts of Time

First, let us consider an example for finding an approximation to the Equation of
Time (ET) that is based on a crude estimate for the time of perigee.

Example #1 Find the ET on 07/15/13 at 12h:00 UTC given the following estimate
for ~s ¼ 01=03=13 at 0h : 00UTC:

Solution:

1. Calculate t and ~s; i.e., t = − (365 − 196) = −169. ~s ¼ 3:
2. Calculate M(t):

M tð Þ ¼ n�ðt� ~sÞ ¼ � n� � 172 ¼ �0�:985626283 � 172 ¼ �169�:5277207þ
þ 360�

¼ 190�:4722793

3. From Example 1 in Sect. 5.2, take the values: N0 = 80 and N = 196 and

calculate RA� ¼ 178�:67666þ 0:985652166 � 116þ 0:04106865 � 12þ
þ 180� ¼ 473�:505411 � 360� ¼ 113�:5057411; hence�
‘ ¼ 113�:5057411

4. By employing the approximate values: e0
2 ¼ 11:72 and e = 0.01666 and the

equation for ET, we find:

ET ¼ 720
p

� ðtan211:72 � sin 227:0102821� 2 � 0:01666
� sin 190:4722793Þ ¼ �5m:854398; i:e:;

ET ¼ �5m49s:61 ¼ �5m50s: TheNAvalue is � 5m59s:

However, the reader should realize that the relatively large error in the result of
this example depends strongly on the crude estimate of ~s; i.e., the time of transit at
perigee.

In the next sections we will see how not only the formula for the ET can be
considerably improved upon, but also how the necessary parameters can be deter-
mined more accurately. Before we improve upon the basic Eqs. (1) and (2) in
Sect. 5.2 and (8) in Sect. 5.4, we shall also examine how the equation for the ET that
is valid not only for the apparent noon instant (AN), but also for any instant defined
by UTC, can be readily employed to find the GHA� and the declination d of the true
Sun. Hence, with the help of those basic equations and expressions (1) and (2) be-
low, navigators have a “low precision” ephemeris for the Sun at their disposal.
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Specifically, the GHA and the declination d are then computed as follows:
From (1) in Sect. 5.3, we deduce that:

RA�0 ¼ ‘� ET
4 and hence:

SHA � ¼ 360� � RA�0 ET
4 � ‘.

Since GHA � = GHA ♈ + SHA � it follows that:

(1) GHA � = GHA ♈ + ET
4 � ‘.

By applying the Four-Parts formula of spherical trigonometry (see Sect. 4.2) to
the triangle of Fig. 5.4.1, we deduce that the declination d is given by:

(2) tan d ¼ tan e0 � sin RA�0 ¼ sinð‘� ET
4 Þ � tan e0:

Again, let’s consider a numerical example in order to illuminate the application
of the ET to navigation.

Example #2 Find the GHA � and the declination d for the Sun on 07/15/13 at
12h : 00UTC:

Solution:

1. First compute ET by employing formula (8)—see previous example—to obtain:

ET ¼ �5m:826854694; and ‘ ¼ RA�� ¼ 113�5051411:

2. Next, compute GHA ♈ by employing formula (1), Sect. 5.2 together with the
values N0 = 80, N1 = 172 and m = 0.985652166, as used in Example #1,
Sect. 5.2 and computed only once a year.

GHA♈ ¼ 178�:676666þ 0�:985652166 196� 80ð Þþ
þ 15�:04106865 � 12 ¼ 473�:5051411� 360� ¼ 113�:5051411:

3. Compute GHA � by employing formula (1) to find:

GHA� ¼ 113�:5051411� 113�:5051411� 5�:826854694
4

¼
¼ �1�:456713674þ 360� ¼ 358�:5432863 ¼
¼ 358�320:6:

4. Using the value e0 ffi 23�:44 and formula (2), we find:

tan d ¼ tan 23:44 � sin 114:9618548 ¼ 0:393067738; hence

d ¼ 21�:45818852 ¼ 21�270:5
ðThe values given in the NA are :

GHA� ¼ 358�300:1 and d ¼ 21�260:9Þ
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The reader may recall that one of the basic assumptions in the derivation of
Eq. (8) was that C, the Equation of the Center, contains merely the first term of
order one in powers of e. Accordingly, one would expect that much better
approximations can be obtained by taking terms of up to power three in e into
account. This is in deed possible and intermediate precision formulae can be
obtained, as will be shown in the next few sections. However, it should also be
obvious at this point of these presentations, that any formula provided herein will
depend on the parameters that enter it and in particular on the elements of the orbit
that are time dependent. As we have seen in the examples above, parameters such
as the eccentricity e, the obliquity of the ecliptic e0, and, in particular, the mean
anomaly M enter all relevant calculations and must be found if not already given.

Therefore, in the next section of this book, we will address the actual problem of
procuring all the necessary parameters that enter the equations for finding the GHA�
and the declination d of the Sun. At that time, I shall also present a more accurate
expression for the Equation of the Time based on a more accurate equation for the
center C.

So far, I have only used the concept of UTC (Coordinated Universal Time) and
not considered other time frames as used in astronomy. Although, for the navigator,
this UTC is the most important and only “relevant” time since it is the time
provided by time signals and chronometers. However, we must not overlook the
importance of other time frames used in positional astronomy. Therefore, let’s
briefly review the most important concepts of time in use in accordance with their
proper definitions.

DEFINITIONS OF TIME

(1) SMT: Sidereal Mean Time—defined by the LHA ♈/15 with reference to the
mean equinox.

(2) GSMT: Greenwich Sidereal Mean Time = GHA ♈/15, referred to the mean
equinox.

(3) MST: Mean Solar Time—defined by the local hour angle of the mean Sun,
measured from Mean-Noon = LHA�/15.

(4) GMT: Greenwich Mean Time = MST + 12h = GHA �/15 + 12h.
(5) UT: Universal Time—defined by the equation for the GHA ♈.
(6) TAI: Atomic Time—basis of all modern time measurements.
(7) UTC: Coordinated Universal Time—time signals as used by all navigators and

referred to the GMT adjusted for the variable angular velocity of the gyro-
Earth. UT + DUT. |DUT| 
 0s.9.

(8) EphT: Ephemeris Time—based on the dynamics of the orbital motion as
defined by the equation for the mean longitude ‘(T). TAI + 32s.1841.

(9) TDT: Terrestrial Dynamic Time = EphT.
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Quite often it is necessary to convert MST into SMT and conversely. The values
provided below are sufficiently accurate for the required conversions.

CONVERSION OF MEAN SOLAR TIME (MST) TO SIDEREAL MEAN
TIME (SMT)

24h �MST ¼ 24h3m:94248 ¼ 24h:065708 SMT

1h � MST ¼ 1h:00273781 SMT

1h � SMT ¼ 0h:99726967 MST

1h � MST ¼ 15�:041068 Rev:

5.6 An Approximate Method for Finding the Eccentricity,
the Longitude of the Perigee and the Epoch

As we have seen in the previous section, all the formulae provided there required
the numerical value of the element of the Earth-Sun orbit for any quantitative
evaluation. This implies that no ephemeris for the Sun can be obtained without
knowing directly or indirectly the following elements of the orbit:

(i) T1: Period of the orbit.
(ii) e: Eccentricity of the ellipse
(iii) a: Semi-major axis of the ellipse = 1 AU = 1.495985 � 108 km.
(iv) x: Ecliptic longitude of perigee.
(v) ~e: Ecliptic longitude of the epoch.
(vi) e0: Obliquity of the ecliptic.

Except for the semi-major axis of the orbit which remains constant for any
practical application, all the other orbital elements change slightly from year to year
and are therefore time dependent.

The elements of the orbit as listed above can all be found in the corresponding
issues of the Astronomical Ephemeris (AE) which is accessible either in print or on
line. At one time, prior to the age of the internet, it was sometimes difficult to find
the required issue of the AE when you actually needed it. Frustrated by this diffi-
culty, I devised a method for calculating those parameters by using the Nautical
Almanac (NA), current or outdated, it did not matter.

The idea to calculate approximate values for some of the orbital elements from
the NA data was triggered by an attempt to find a simple formula for calculating the
eccentricity of the Earth orbit by using the approximate time of the two equinoxes.
I was, of course, familiar with the method devised by F. Gauss, but I was also
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intrigued by the failure of Copernicus to come even close to the true value of the
required eccentricity. It was obvious that the only part of astronomy that I knew and
that Copernicus could not have know was the Kepler’s Second Law. It became the
key to developing my simple formula.

For the moment, let’s assume that we have somehow found the exact or
approximate times of the equinoxes Ts, TF and the times of the solstices Tss and
Tsw. Then, following the tradition of our ancestral astronomers who depicted the
orbit of the Earth about the Sun by a circle of radius a about the center C, we draw a
circle of radius one about the center C. (See Fig. 5.6.1.) Next we fix a point F very
close to C on the axis through C, indicating the position of the Sun. (Of course, this
will result in an highly distorted picture of the real situation, but it will serve our
purpose well.) Now, we draw a line through F, inclined by an angle u towards the
semi-major axis CF, showing the ecliptic longitude of the perihelion. (Since we
have chosen the heliocentric model, perigee now becomes perihelion.) This line
through F constitutes the direction of the first point of Aries from the Sun and
therefore, is perpendicular to the projection of the axis of the gryro-Earth on to the
plane of the ecliptic. This line intersects the circle at points Es and EF of the
equinoxes. Next we draw a line perpendicular to it through C that intersects FC at
an angle u. Now we can plainly see that the ecliptic longitude of perihelion x is
directly related to u by:

x ¼ 360� � ð90� � /Þ ¼ 270� þ/:

Let us also draw a line parallel to FEs passing through C. These two parallel
lines cut out a section of area A of the circle that is given by:

A ¼ 2 � Dr � cos/:
Furthermore, we also draw a line parallel to the line which is perpendicular to FEs

through C. These two parallel lines cut out an area A’ of the circle that is given by:

A0 ¼ 2 � Dr � sin/:
If we then identify the intersections of the line through F that intersects FC at an

angle u with the circle by Sss and Ssw, respectively, we may apply Kepler’s Second
Law to derive expressions for e and x. Note that by identifying those two points of
intersection with the summer and winter solstice respectively, we shall obtain only
approximations for the eccentricity e and longitude of perihelion x (Fig. 5.6.1).

By applying Kepler’s Second Law first to the area A, we find that:

p
2 þA
TF � Ts

¼
p
2 þ 2Dr � cosu

TF � Ts
¼ p

365:25
or cosu ¼ p

4Dr
2ðTF � TsÞ
365:25

� 1
� �

:
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By applying the same law to area A′ we find that:

p
2
þA0

Tsw � Tss
¼

p
2
þ 2Dr � sinu
Tsw � Tss

¼ p
365:25

or sinu ¼ p
4Dr

2ðTw � TsÞ
365:25

� 1
� �

(1) / ¼ tan�1 2ðTW � TSÞ
365:25

� 1
� �

=
2ðTF � TSÞ

365:25
� 1

� �� �
; e ¼ Dr

1
; hence. . .

(2) e ¼ p
4 � cosu � 2ðTF � TSÞ

365:25
� 1

� �
and

(3) x ¼ 270� þ/:

Therefore, we have found two important elements of the Earth-Sun orbit. In
order to calculate the third important element, namely ~e; the ecliptic longitude of the
epoch, we require one additional piece of information: namely the mean longitude ‘
at a specific instant T0, which we may assume to be equal an epoch. According to
Eqs. (2) and (4), Sect. 5.3, we have:

‘ Tð Þ ¼ n0 � ðT� T0Þþ~eðTÞ: It follows that:

(4) ~e ¼ ‘ðT0Þ; T0 ¼ TEP:

and since we have already approximated the RA � by means of formula (2), we
have found an approximation to ~e by virtue of Eq. (4), Sect. 5.3.

Once e, x and ~e are known, the mean anomaly M(T) can be calculated by
employing Eq. (4), Sect. 5.3, and the ecliptic mean longitude ‘(T) can be found by
using Eq. (2), Sect. 5.3. Conversely, if the equations for M(T) and ‘(T) are given as
functions of time T, then no other values other than e and e0 are required for the
calculation of an approximation to the ephemeris for the Sun.

Fig. 5.6.1
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It should be clearly understood that so far, we are only concerned with
approximations even when we can take the specific elements of the orbit from an
AE. Take, for instance, the following explicit data from the issue of ELEMENTS
OF ORBIT EARTH—1980: [74]

Tp ¼ 365:25 days:

e ¼ 0:016718

x ¼ 282�:596403
~e ¼ 278�:833540
e0 ¼ 23�:441884

a ¼ 1 � AU ¼ 1:495985 � 108 km

However, we are still not able to find ‘, M, and k at any instant apart from the
epoch precisely since those parameters are dependent on the time due to the ret-
rograde movement of the first point of Aries along the ecliptic. (The causes and
extent of this movement of ♈ will be explained in detail in the next section.)

Before we derive another improved formula for the equation of time, we shall apply
the approximate formulae (1)–(4) for finding e,x and ~e for the epoch 2008. In order to
apply our formulae (1)–(4), we extract from the NA (2008) the following data:

TF : 09=22=08@15h:77UTC ¼ 266d:6570

TS : 03=20=08@06h:00UTC ¼ 80d:25

TW : 12=21=08@12h:00UTC ¼ 356d:4383

TS : 06=21=08@00h:00UTC ¼ 173d

Substituting these values in formula (1) we find that:

/ ¼ tan�10:21504257 ¼ 12�:13621147 and hence by formula ð3Þ :
x ffi 282�:1362115: Then with the help of formula ð5Þ;we find:

e ffi 0:016636712

Finally by recalling that T corresponds to the epoch 2008, i.e., T0 = 366a, and
therefore according to (2) in Sect. 5.2, and (4) above, we find:

~eðT0Þ ¼ ‘ðT0Þ ffi 279�:79697

Of course these results clearly show that the approximations that we have
employed merely constitute a crude approximation to the true values. Nevertheless,
it is significant that by simply invoking Kepler’s Second Law and using some
approximate dates for our four major astronomical events, we were able to obtain
tangible results… results that Copernicus could not obtain.1

1Obviously he did not have an AE, but had the data available through observation.

256 5 Elements of Astronomy as Used in Navigation



5.7 Some Improved Formulae for the Equation of Time
and Center

The reader may recall that the derivation of the approximation (8) in Sect. 5.4 for
the Equation of Time was based on the rather crude approximation C ¼ 360

p � e �
sinM of the Equation of the Center. Therefore, in order to derive higher order
approximations for the Equation of Time, it is necessary to employ higher order
approximations for the Equation of the Center. However, for the purpose of nav-
igation, because of the smallness of the eccentricity e ffi 10�2, it is not necessary to
take any terms in formula (1), Sect. 5.4 into account that contain powers of e higher
than three. Therefore, the basis for our intermediate precision ephemeris will be the
following Equation of the Center:

(1) C ¼ 180
p � ð2 � e � sinMþ 5

4 � e2 � sin 2M� 1
4 � e3 sinMþ 13

12 � e3 � sin 3MÞ

Also note that a similar approximation in powers of e up to powers of three can
be obtained for the magnitude of the radius vector r ¼ r!�� ��, namely:

(2) r ¼ 1� e � cosMþ 1
2 � e2 � 1� cos 2Mð Þþ 3

8 � e3 � cosM� cos 3Mð Þ, in units
of AU. (Also see Eq. (2), Sect. 1.4.)

By employing the same techniques as used in the derivation of formula (8),
Sect. 5.4 but by carrying higher terms of e along in the formula for the center, we
readily obtain an improved formula for the Equation of Time, namely:

(3) ET ¼ 720
p

� ðtan2 e0
2
� sin 2‘� 2 � e � sinMþ 4 � e � tan2 e0

2
� sinM � cos 2‘

� 1
2
� tan4 e0

2
� sin 4‘� 5

4
� e2 sin 2MÞ; in minutes of time:

This improved equation will only yield improved results if the parameters
e, M, ‘, and e0 are sufficiently accurate. (See Sect. 2.19.)

So far, we have made no attempt to overcome the two major obstacles for
calculating the orbit of Sun-Earth, namely not having the exact formulae for the
time dependent parameters of M(T), ‘(T), e(T), and e0(T) available and not having
introduced a suitable time frame, namely the Julian calendar as opposed to the
Gregorian calendar. Aside from the requirement of having exact formulae for
the aforementioned parameters, it is also necessary to have an exact formulae for
the GHA ♈(T). Once these formulae are available it will not be necessary to
employ the Equation of Time again since GHA � and the declination d of the Sun
can be calculated directly by employing the Equation of the Center.
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An ephemeris for the Sun can be calculated by following the steps listed below:

A. Compute GHA ♈ by using Eq. (1) in Sect. 5.2.
B. Compute RA � by using Eq. (2) in Sect. 5.2.
C. Find the elements of the orbit. (See Sect. 5.6.)
D. Compute M by using Eq. (4), Sect. 5.3.
F. Compute ET by using Eq. (8), Sect. 5.4.
G. Compute GHA � by using Eq. (1), Sect. 5.5.
H. Compute d by using Eq. (2), Sect. 5.5.

In the next chapter, I will introduce a more suitable time frame for measuring
time in JD dates and centuries of JDs denoted by T. Then we will discover the
formulae for GHA ♈(T), M(T), ‘(T), e(T), and e0(T)—all of them in the form of
polynomials of powers of T up to the grade of three; i.e. P(T) =
a0 + a1 � T + a2 � T2 + a3 � T3. Readers will also find a brief treatise on the
underlying theory of astronomy to the extent that they will be able to evaluate the
effects of precession, nutation, proper motion, aberration, and annual parallax on
the right ascension and declination of stars.
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Chapter 6
Qualitative Description: The Relevant
Astronomical Phenomena

6.1 On the Change of the Elements of the Orbit with Time

As a consequence of being a gyroscope, the axis of rotation of the Earth slowly
changes its position relative to the normal of the plane of the ecliptic. Furthermore,
the normal of the ecliptic and therefore the plane of the ecliptic itself also changes its
position. (Readers who might be interested in the underlying dynamics of the
gyro-Earth are advised to jump ahead and read the corresponding section of Sect. 8.6.
They will then understand where the limitations of astro-dynamics as applied to
positional astronomy enter the picture.) Since our objective is to find the coordinates
of celestial objects that are based on the well defined coordinate systems of the
celestial sphere such as the celestial equator and the equinox or the ecliptic and the
equinox as opposed to merely finding trajectories of mass-points defined either by the
two, three or multi-body problem of classical mechanics, we are compelled to con-
sider the Earth to be a spheroid.

Let us, for a brief moment, visualize the replica of the celestial sphere our
grandfather bought us a long time ago. By trying to deduce from that sphere the
current coordinates of a star, we would certainly not get the correct coordinates
since the old equator of that replica is no longer the current equator on the celestial
sphere. (Of course, our geographic equator has hardly changed.) The explanation
for this phenomenon is simple. Because of the movement of the axis of rotation and
therefore of the figure axis of the Earth about the pole of the ecliptic, the celestial
equator changes continuously as does the plane of the ecliptic. Since the horizontal
component of the figure axis of the Earth is perpendicular to the intersection of the
equator with the plane of the ecliptic, i.e., the line passing through the center of the
Earth and the first point of Aries, the first point of Aries also moves accordingly.
The first point of Aries moves retrograde along the ecliptic. Because of the change
in the position of the normal to the ecliptic, an additional movement of the first
point of Aries ensues, but in the opposite direction. The first displacement of the
first point of Aries is caused by the gravitational forces of the Sun and Moon and is
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referred to as the luni-solar precession. The second displacement is due to the
gravitation forces for the planets and is referred to as planetary precession. The
combined effect of these changes on the position of the first point of Aries is
referred to as the general precession and amounts to approximately 50′′.22/year.
This means that within about 25,800 years, the figure axis and therefore the axis of
rotation will complete one revolution relative to the normal of the plane of the
ecliptic and hence to the pole of the elliptic.

In addition to the aforementioned secular displacements of the first point of
Aries, there are also other periodic displacements of relative short duration due to
gravitational forces of the Moon and Sun which can readily be attributed to the
periodic changes in the relative position of the Earth with regard to the positions of
the Moon and Sun. Those changes that result in changes of RA and declination of
any celestial objects are referred to as Nutation.

Since the effects or precession on the coordinates of a CO can be determined
fairly accurately by observation, and the mathematics required to develop explicit
formulae merely involves spherical trigonometry and elementary calculus, the
derivation of such formulae is straight foreword. However, the situation with regard
to finding explicit formulae, together with the necessary data, for the effects of
nutation on the coordinates is a great deal more difficult since it entails dealing with
more than two celestial bodies that mutually attract each other. They are referred to
as multi-body problems and result in unsolved theoretical problems for which only
approximate solutions can be found. (See Theory of Perturbations of Celestial
Dynamics.) [74], [75], [78].

Specifically, if one were to try to develop said formulae strictly by using the
methods of Celestial Mechanics, one would have to deal with the theory of gyro-
scopes, (see Sect. 8.6.) and would ultimately be faced with the formidable task of
determining the distribution of masses in the interior of the Earth referred to as
moments of inertia. As we all know, the latter is an undertaking physicists and
geologists still have not solved satisfactorily.

As a result of this theoretical assessment, the approach being used in this book is
strictly based on classical position astronomy and rests quantitatively on results obtained
over a long period of time by many distinguished astronomers. [57], [59], [60], 65].

6.2 The Concept of the Julian Date (JD) and Time
Expressed by Julian Centuries (T)

As has been pointed out already that in order to develop suitable formulae for the
effects of precession and nutation on the coordinates of celestial objects, it is
imperative to first introduce a suitable frame of time, referred to as the Julian
Calendar with the Julian date (JD) and subsequently with the time (T) expressed in
Julian Centuries. The reader should be reminded that our calendar is known as the
Gregorian Calendar and therefore it is necessary to know the algorithm for con-
verting our calendar days into Julian dates. Hence, let us first define JD by:
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Definition—JD The Julian date (JD) is a continuous count of days from the 1st of
January 4,713 BC (−4,712, Jan. 1. at Greenwich Noon (12h:00
UTC).

Examples January 1, 1978 AD, 0h:00 UTC = 2443509.5 JD
July 21, 1978 AD, 15h:00 UTC = 2443711.125 JD

We also need the definition of the truncation operator (int <x>) to extract from a
decimal, or rational number x, its integer part.

Definition—int <x> Given any real number x in decimal representation, int < x>
is equal that part of x that precedes the decimal point.

Examples int <13.75> = 13, int <−1.8> = −1, int <6/5> = 1.

Next, let me state an algorithm for actually converting any date of the Gregorian
calendar into its corresponding JD. For the sake of brevity, I will abbreviate the year
by Y, the month by M and the day of the month, with its fractions, by D. Then we
may state the algorithm as follows:

Once more, the reader is reminded that the Julian date commences at mid-day,
i.e., at

12h:00 UTC.

Examples: 1 Given Gregorian date: Y = 1979; M = 12; d = 31; UTC = 12h:00—
Find JD

Solution:

(i) y = 1979, m = 12, and since Y > 1582 we have:
(ii) A = int < 1979

100 >= 19; B = 2 − 19 + int < 19
4 > = −13

(iii) JD = int < 365.25 (1979 + 4716) > + int < 30.6001 � 13 > + 31.5 – 13
−1524.5 = 2445348 + 397 + 31.5 − 13 − 1524.5 = 2444239.

2. Given Gregorian date: Y = 1980; M = 1, d = 1, UTC = 12h:00—Find JD
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Solution:

(i) y = 1979, m = 13, since M < 2.
(ii) A = int < 1979

100 >= 19, B = 2 − 19 + int < 19
4 > = −13

(iii) JD = int < 365.25 (1979 + 4716) > + int < 30.6001 � 14 > + 1.5 – 13
−1524.5 = 2445348 + 428 + 1.5 − 13 − 1524.5 = 2444240.

3. Given Gregorian date: Y = 1987, M = 4, d = 10, UTC = 12h:00—Find JD
Solution:

(i) y = 1987, m = 4, d = 10.5, since M > 2.
(ii) A = int < 1987

100 >= 19, B = 2 − 19 + int < 19
4 > = −13

(iii) JD = int < 365.25 (1987 + 4716) > + int < 30.6001 � 5 > + 10.5 – 13
−1524.5 = 2446896

Because of the considerable magnitude of JD (�106), in our century, it is
obvious that JD itself is unsuitable as a measure for time in astronomical calcula-
tions. Therefore, it is logical instead to use Julian Centuries (T), from a specific
epoch on, and denoted by JD0 as the actual measure for elapsed time. Accordingly,
the definition of time T is given by:

2. (i) T ¼ ðJD� JD0Þ
36525 , and

(ii) T0 ¼ ðJD0 � JD0Þ
36525 if referred to UTC = 0h:00.

For example, if we choose the year 2000AC as epoch, the JD0 corresponding to
this date is: JD0 = 2451545, and T becomes:

3. T ¼ ðJD� 2451545Þ
36525 .

By adopting the concept of Julian Centuries, we are bound to deal with astro-
nomically small numbers representing the hours, minutes and second as fractions of
Julian Centuries. This becomes obvious if one notes that: 1 day = 2.7378 10−5 JC;
1 h = 1.14075 10−6 JC; 1 min = 1.90125 10−8 JC; 1 s = 3.16875 10−10 JC.

Since 0 � T < 1, we can readily see that any calculator with a ten digit
arithmetic will not be good enough to account for the seconds in our calculations
unless we resort to using a different representation of our decimal numbers.
Actually, we run into a similar situation if we choose to express hours, minutes,
seconds in terms of regular days, and therefore, of JD, for note that: 1 JD = 1 day;
1 h = 0.4166 JD; 1 min = 0.0006944 JD; 1 s = 0.000011574 JD.

In cases where the user has a calculator with fifteen or higher digit arithmetic, or
with a sufficiently high floating point arithmetic available, there is no reason not to
carry the seconds along in the calculation of T. The same holds if the user has a
calculator with a scientific number representation at his disposal.

If, however, no such sophisticated calculator is available, then we must resort to
using the 10x function of our ordinary scientific calculator to represent all the

262 6 Qualitative Description: The Relevant Astronomical Phenomena



decimal number as products of powers of ten and decimal number that have only
one digit before the decimal point. Ultimately, one should avoid using seconds in
the calculations of T all together. The latter is quite possible in the context of our
treatise with the exception, perhaps, in calculating the equation of the equinox.

Again, let’s consider some examples to numerically demonstrate what is actually
involved in finding T by using a simple scientific calculator with a ten digit
arithmetic.

Examples: 1 Given: Y = 2001, M = 1, d = 1, UTC = 14h:27m, Epoch: 2000AC.
Calculate T.
Solution:

(i) Calculate JD: Since M < 2, we have: y = 2000, m = 13
A = int <2000

100 >, B = 2 − 20 + int <20
4 > = −13 and

D = 1.6020833, hence:
JD = int <365.25 � (2000 + 4716) + int <30.6001 � 14> +
1.6020833 − 13 − 1524.5 = 2451911.102

(ii) Calculate T using (3)

T ¼ ð2451911:102� 2451545Þ
36525 = 0.010023326, i.e.,

T = 1.0023325 10−2

2. Given: Y = 2001, M = 1, d = 1, UTC = 14h:27m:50s, Epoch: 2000AC.
Calculate T.
Solution:

(i) Calculate JD: Again, since M < 2, we have: y = 2000, m = 13
and D = 1.602662003.
However, since the data, except for the UTC, is identical to the
data in example 1, the result will differ only by the difference
of the fifty seconds in UTC expressed in JC. First we
calculate the difference in JC and find that:
JD = 2451911.102 + 0.000578703 = 2451911.102578703.
This result cannot be obtained by using a calculator that has
only a ten digit arithmetic straight forward. Nevertheless, by
splitting this number into its integer part, 2451911, and its
fractional part, 0.102578703, we find that:
JD − JD0 = 366 + 1.02578703 � 10−1. Hence:
T = 366

36525 þ 1:02578703
3:6525 10−5 =

1.0020533 � 10−2 + 2.80845182 � 10−6 =
1.002334145 � 10−2.

The last example clearly shows the arithmetic problems arising from the seconds
in JD in cases where only a simple calculator is available. Later, I will show you
how to get around this problem. But for now, let’s consider some more illustrative
examples.
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Examples: 3 Given: Y = 2013, M = 11, d = 19, UTC = 18h 47m, Epoch 2000AC
Compute T.
Solution:

(i) Calculate JD using (1)
Since M > 2, we find: y = 2013, m = 11, and D = 19.782638888
hence: A = int <2013

100 > = 20, B = 2 − 20 + int <20
4 > = −13,

JD = int <365.25 (2013 + 4716) + int <30.6001 � 12>
+ 19.782638888 − 13 − 1524.5
JD = 2456616.283

(ii) Calculate T using (3)

T ¼ ðJD� JD0Þ
36525 ¼ 5071:283

36525
T = 1.38844161 10−1

4. Given: Y = 2013, M = 11, d = 19, UTC = 18h 47m 36s, Epoch 2000AC
Compute T
Solution:

(i) Compute JD using (1)
Since M > 2 we find that: y = 2013, m = 11, D = 19.78305555 and
A = int <2013

100 > = 20, B = 2 − 20 + int <20
4 > = −13

hence: JD = int <365.25 (2013 + 4716)> + int <30.6001 � 12>
+ 19.782638888 + 0.000416666 −
− 13 − 1524.5 = 2456616.283 + 0.000416666
after a manual intervention
JD = 2456616.283416666.

(ii) Compute T employing 3
First we find that: JD − JD0 = 5071.283416666
and hence: T = 5071:283416

36525 = 0.138844172
T = 1.38844172 10−1.

At this point, the reader may ask whether or not it is necessary to perform those
tedious arithmetic operations each time a position calculation—“fix”—by astro-
nomical navigation is to be made? The answer is, of course, NO! Firstly, if the JD
has been once computed and entered in the log, it is only necessary to count the
days from there on. Secondly, you can also avoid calculating T more than once per
day since most of the necessary corrections resulting form the daily variations in
time such as hours, minutes and seconds can be added to the result obtained for a
different UTC value.
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For example, in order to calculate the Greenwich Hour Angle of Aries for a
given instant UTC, it is only necessary to calculate the GHA ♈once a day for UTC
0h:00 and then add the product in hours and 15.04106865 to it. Similarly, the values
of M(T), ‘(T), and e(T) can be determined at any given instant T if the values are
know for UTC 0h:00.

6.3 The Elements of Our Orbit as a Function of the Time
T Expressed by Polynomials

Thanks to all the astronomers who have contributed to the development of explicit
formulae in terms of polynomials in T for the functions: e (T), M (T), ‘ (T) and e0 (T),
we can now benefit from these results. The polynomial expressions for the afore-
mentioned orbital elements can now be stated in accordance with the results provided
by the International Astronomical Union, and are as follows: [60], [60], [62], [66]

Mean anomaly of the Sun—

1. M (T) = 357°.52772 + 35999°.050340 T − 0°.0001603 T2 − T3

300000
Mean longitude of the Sun—

2. ‘ (T) = 280°.46646 + 36000°.76983 T + 0°.0003032 T2

Eccentricity of the Earth’s orbit.—
3. e (T) = 0.016708634 − 0.000042037 � T − 0.0000001267 T2

Mean obliquity of the ecliptic—
4. e0 (T) = 23° 26′ 21″.448 − 46″.8150 T − 0”.00059 T2 + 0”.001813 T3

e (T) = e0 (T) + De, where De is given by expression (6), Sect. 3.4.
In addition to these expressions, we will also need a polynomial expression for
the hour angle of the first point of Aries that is given by:

5. GHA♈ðTÞ = 100°.46061837 + 36000°.770053608 T + 0.000387933 T2 −

� T3

38710000 + 15.04106865 UTC,
and also a polynomial expression for the longitude of the ascending node of the
moon, namely:

6. X (T) = 125°.04452 − 1934°.136261 T + 0°.0020708 T2 + T3

450000.
The later enters the equation of the equinox and, in particular, the formulae for
the changes of longitude and obliquity of the ecliptic due to the effects of
nutation. Of course, these formulae will only be used in cases where higher
accuracy is required.
For the sake of completeness, with reverence to polynomial expressions, the
following formulae for the center C and the Greenwich Hour Angle are also
included:
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7. C (T) = (1°.914602 − 0°.004817 T − 0°.000014 T2) sin M + (0°.019993 −
− 0°.000101 T) sin 2M + 0.000289 sin 3M

8. GHA ♈ (T) = 100°.46061837 + 0°.985647365 (JD0 − 2451545) +
15.04106864 UTC
—here JD0 denotes the JD at 0h:00 UTC [2, 18], [2, 17]

As we proceed with the presentations and derivations for the formulae needed
for a relatively simple ephemeris for the Sun and stars, we ought not to loose the
necessary orientation that should enable us to reach our goal. Therefore, let us again
state where we are going with our investigations.

It should be very clear by now that we are trying to derive formulae that will
enable us to find the celestial positions of the Sun and the navigational stars at any
instant t > t0, if their positions are known at a fixed point of time t0. This obviously
entails two things, namely the calculations involving the effects of the motion of our
coordinate system on the RA and declination of these celestial objects, and sec-
ondly, the calculations of the relative position of these bodies due to their own
motion on the celestial sphere. Furthermore, it also entails calculating the effects of
the motion of the Earth have on the coordinates to be observed, known as aberration
and annual parallax.

In this chapter we shall once more review qualitatively the causes for the
changes of the coordinate system as defined by the equator and the equinox, known
as precession and nutation. We shall also explain the phenomena known as aber-
ration and annual parallax and proper motion. Then we will also define the astro-
nomical positions or places that will enable us to easily move from one epoch to
another, i.e., to calculate the apparent position of a CO at any instant, provided its
mean position at a given epoch is known. However, the quantitative aspects, i.e.,
the effects of these phenomena have on the RA and the declination of a CO will be
covered in the next chapter.

6.4 Qualitative Aspects of Precession and Nutation

As has already been mentioned, the Earth is a giant, fast moving Gyro at 18.5
miles/s whose figure axis rotates about the normal to the ecliptic describing a cone
with an angle e0—the obliquity of the ecliptic and completing one revolution in
about 26,000 years (see Fig. 6.4.1, and period of precession). This effect is due to
the gravitational forces exerted on the Earth by the Sun, Moon and planets. In
addition, the periodic changes in the relative positions of the Sun, Moon and planets
create additional periodic changes in the obliquity and longitude of the equinox
causing the trajectory of the Earth axis on the celestial sphere to wobble. These
periodic changes in the position of the axis of rotation are due to what is known as
Nutation (see Fig. 6.4.2 and Sect. 8.6).
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Fig. 6.4.1

Fig. 6.4.2
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6.5 The Concept of Proper Motion for Stars

For centuries, astronomers have known that some, if not all, stars are moving
relative to the position of the Sun. Therefore, it is necessary to take the effects these
motions have on the RA and declination into account in calculating their exact
position on the celestial sphere. In order to understand the concept of said motions
to the extent that explicit formulae can be derived, we first define the concept of
proper motion with reference to Fig. 6.5.1.

In Fig. 6.5.1, a star moves within one year from s to s′ along the straight line as
defined by Fig. 6.5.1. The position it occupies on the celestial sphere is no longer S,
but S′. The angle l, subtended by the two rays OS and OS′ is then referred to as the
proper motion of l of this star within one year.

Next let us represent the vector n v! by its two components: v � n, called the
tangential component and ƍn, referred to as the radial component. Then, with
reference to Fig. 6.5.1, we have:

(1) v = v!�� �� sin H, ƍ = v!�� �� cos H.
The tangental velocity v can be determined once the proper motion and the
parallax P are known. From Fig. 6.5.1 we deduce that:
sin l = n �v

d , and hence l = n �v
d � cosec 100, but according to 11 in Sect. 6.7,P =

a
d � cosec 100, and therefore v = l �a

nP . Bu substituting the numerical values for the

semi-major axis, namely a = 149.6 � 106 km, and the numerical value for the
seconds inayear, namely,n=3.15576107 kminto the last expression,wefind that:

(2) v = 4.74 l
P km/s.

On the other hand, the component of the radial velocity can only be determined
by means of spectroscoping methods and is given by:

(3) ƍ = c �Dk
k km/s, where c denotes the velocity of light, k the wave length of light

to be used, and Dk the measured shift in wavelength due to the radial move-
ment of the star (see also Doppler effect of electromagnetic waves).
(Note that we have made use of the fact that l is a very small angle � 10″, and
therefore, the triangle SÔ′S′ can be considered to be a small, plain rectangular
triangle).

Fig. 6.5.1
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It follows then, that once v and ƍ are known, v!�� �� and H, i.e., v!, can readily be
calculated by employing the two equations (1).

Next let us consider two examples:
Examples:

1. ALDEBARAN: l = 0″.205, P = 0″.055, v = 17.7 km/s.
ƍ = +54 km/s., v!�� �� = 56.8 km/s., H = 18°.2.

2. CAPELLA: l = 0″.439, P = 0″.075, v = 27.7 km/s.
ƍ = +30.2 km/s., v!�� �� = 41.0 km/s., H = 42°.5.

6.6 Aberration

Since the Earth is moving with a tangential velocity of about 29.784585 km/s
(about thirty times faster that the fastest bullet) around the Sun, and the velocity of
light is about 3 � 105 km/s, we may conclude that the speed of our giant gyro-earth
is small in comparison to the speed of light, but we may not conclude that it is
negligible when it comes to astronomical observations. Therefore, we must treat
such observations with reference to a moving and not to a stationary frame of
reference. This also means that we cannot neglect the additional displacements of
the observed positions of celestial objects.

In order to understand this phenomenon, known as ABERRATION, to the extent
that we can calculate its effect on the RA and declination of those objects, let’s first
look at Fig. 6.6.1.

In Fig. 6.6.1, “EF denotes the direction of the moving Earth, i.e., the tangential
velocity v. Es shows the direction for the observer E to the stellar object S if the

Earth is assumed to be stationary, and ES0 is the direction in which the observer sees
the object when the Earth is moving with linear velocity v!. The distance Es and Ee

Fig. 6.6.1
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are then related so that EeEs ¼ v
c.
1 Here “c” denotes the velocity of light and v ¼ v!�� ��

the tangential velocity of the Earth. It follows then, that by applying the SIN-TH of
plane trigonometry we find:

sin б/sin 00 = Ee
Es

¼ v
c or sin б = v

c � sin 00. But since angle б is, in reality, very

small, we have: sin б = sin ‘” � б, hence б = v
c � cosec ‘” sin 00. We can now define

the constant of aberration j as:

(1) j = v
c � cosec ‘” = 20”.5, we also have:

(2) б = j � sin 00 = 20”.5 � sin 00

Diurnal Aberration
So far, we have only considered the most important component of aberration,

namely, the annual aberration. However, since the Earth not only moves on its orbit
around the Sun, but also revolves around its axis of rotation completing one full
revolution within twenty-four hours of Sidereal Mean Time (SMT), we must also
consider this particular tangential component of the rotation velocity of the Earth in
our calculus.

Expressed in seconds of SMT, this amounts to 86164 s. SMT = 24h SMT.

Therefore, the tangential velocity is: v =
2pr � cos u
86164 km/s

¼ 0:465 � cos u km/s, where

u denotes the latitude of the observer. Substituting this value into the formula
(1) for the constant of aberration, we find that this constant, as it now refers to the
DIURNAL aberration, is given by:

(3) jD = 0:465
c cosec ‘” cos u = 0”.32 � cos u � 0”.32.

Compared to the value of the annual aberration of about 20”.5, we can pretend
that this component does not have to enter our calculations for the effects of
aberration on the RA and declination of COs. Furthermore, it also depends on the
position of the observer and therefore only complicates matters.

Although the phenomena of aberration can and should be treated by applying the
Theory of Special Relativity, we should refraining from doing so for the sake of
simplicity. Similarly, we should also not consider any corrections for the light-time
as it applies to the planets and the Moon for obvious reasons [58], [65].

Appendix

A less abstract and more physical explanation of the phenomenon ABBERATION
can be conceived if one looks through a large telescope at a distant star S at the
instant when the eye-piece of the telescope is focused on the star and its inclination
is 0—see Fig. 6.6.1. The light from the star has reached, at this instant, the

1We deliberately have not used the addition of c
!

and v
!

so as to avoid invoking the Theory of
Special Relativitiy.
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objective at point S. Let us denote the focus-length of the telescope at E by ‘. Then,
the light will reach the eye-piece some et ¼ 1

c seconds later, at which time the cross
hairs of the eye-piece has moved to the point e, i.e., Ee ¼ v � 1c meters to the right of
E. However, since the position of the telescope has not been altered, the focus is
now on the point S′ and hence, it appears as if the light is coming from S′.

Note that the apparent ray Es0 forms an angle б with the inclination 00 of the
telescope, i.e., the ray originating from S with the inclination 00 has been moved
forward in the direction of the moving Earth.

6.7 Annual Stellar Parallax, Definitions of Mean, True
and Apparent Place of a Celestial Object

For the navigator who merely wishes to calculate stellar positions, the concept of
stellar parallax is of no great importance since its numerical value never exceeds
0”.8 and therefore may be neglected in most navigational applications.
Nevertheless, I shall give a brief description of it together with the most relevant
formulae because it is important to know how we can reach out to farther away
places of the universe by being able to determine the distance of a star away from
the Earth.

First, let’s review the concept of a star’s parallax defined as the angle P under
which the semi-major axis of the orbit of the Earth (a) appears when viewed from
the star relative to a perspective perpendicular to the plane of the ecliptic. Then, per

definition, P is given by—P:
sinP
a

¼ sin 90�

d
¼ 1

d
, and hence sin P ¼ a

d, where

“d” denotes the stars distance from the Sun. Since P is very small, i.e., � 0”.8, we
deduce from the last expression that:

(1) P = a
d cosec ‘”.

The annual stellar parallax is then defined as the angle Pr subtended by the rays
from the star towards the Sun and Earth as depicted by Fig. 6.7.1.

In Fig. 6.7.1, Earth’s orbit about the Sun has been depicted as a circle. It follows
then from the geometry of Fig. 6.7.1 that: P = 0 − 0′, and hence:

sin #� #0ð Þ
r

¼ sin #0

d
, which implies that:

(2) Pr ¼ #� #0 ¼ P � ra � sin #0 ffi P � sin #0

As has already been mentioned, the derivations of the formulae for the effects on
the RA and declination will be presented in the next chapter. However, before we
can study them, we still need to define the relevant places of celestial objects as
used in astronomy. Those places are defined as follows:
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Mean Place At Epoch
The mean place at epoch of a CO is its position on the celestial sphere centered

at the Sun and referred to the mean equator and equinox at a specific time of the
epoch—for instance, to the beginning of the year 2000AC.

Mean Equator and Equinox
The mean equator and equinox are defined with reference to the fixed planes of

the ecliptic and equator, respective at the fixed time which coincides with the
beginning of a specific year and referred to as Epoch.

Mean Place
Mean place at an epoch plus the effect of precession plus the proper motion

computed for the interval between the epoch and the instant in question.
True Place
The true place of a CO is defined at any given instant as its position on the

celestial sphere centered at the Sun and referred to the true equator and true equinox
at that instant. Therefore, the equator and the equinox are now the actual equator
and equinox at that particular instant and are referred to a fixed ecliptic at a fixed
time being dependent on the precession and nutation computed for the interval
between the epoch and the instant in question. Thus we have the following
equation:

True place ¼ Mean Place þ Effect of Nutation at the date in question:
Apparent Place
The apparent place of a CO at any instant is defined to be its position on the

celestial sphere centered at the Earth with reference to the true equator and equinox
at that particular instant. Thus we have the equation:

Apparent Place = True Place + Effect of Aberration + Effect of Annual Parallax
(if applicable).

Fig. 6.7.1
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It follows then that what navigators actually need for calculating their positions
are the GHA and declination of the apparent place of the CO in question. However,
since navigators are located on the surface of the Earth and not at its center, and are
also surrounded by an atmosphere that causes the light from a CO to be refracted,
and since they may not be observing the center of the CO, they are obviously not
measuring the altitude of the apparent place of the CO. Only after applying all the
necessary corrections, such as instrument error, dip, refraction, parallax and
semi-diameter to the observed altitude, may navigators conclude that they have
found a valid approximation to the altitude of the apparent place of the CO.

Next we will derive all the necessary formulae for calculating the quantitative
effects that the phenomena of precession, nutation, aberration, proper motion, and
annual parallax have on the coordinates of the CO and thereby derive a suitable
algorithm for calculated an ephemeris for the Sun and stars.
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Chapter 7
Quantitative Treatise of Those Phenomena

7.1 Effects of Precession on the RA and the Approximate
Method of Declination

In order to derive explicit formulae for the effects of precession, nutation, proper
motion, aberration and annual parallax on the right ascension (a-RA) and declination
d of the COs, it is convenient to refer to their changing positions on the celestial
sphere. By applying the corresponding formulae of spherical trigonometry, we obtain
formulae that express their static positions and then by applying elementary calculus
and or coordinate transformations, we shall be able to find the explicit formulae that
give us the changes of a-RA and d in terms of the variable time t.

Approximate Formulae

By applying the COS-TH. of spherical trigonometry to the triangle SbKP of Fig. 6.4.6
(Sect. 6.4), we deduce first that:

(i) sin d ¼ cos e � sin bþ sin e � cos b sin k. Next we apply SIN-TH to find:
(ii) cos a � cos d ¼ cos b � cos k. And then by applying the ANALOG-TH., we

obtain:
(iii) cos b sin k ¼ sin d � sin eþ cos d � cos e sin a.

Then by differentiating (i) with respect to k, i.e., evaluating dd
dk, and then by

differentiating (ii) with respect to k, and finally by employing (iii), we deduce that:

(1) da
dt

� �
L
¼ dk

dt � ðcos eþ sin e � sin a � tan dÞ; dd
dt

� �
L
¼ dk

dt � sin e � cos a:

Here we have abbreviated the RA by a, i.e., a = RA, and the subscript “L”
indicates that the rate of change so obtained corresponds to only one of the two
components of change due to precession, namely to the “luni-solar” precession,
resulting from the mutual gravitational effects of the Sun and Moon on the Earth.
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Up to this point in our arguments, formulae (1) are exact. Next, we must take
into account the other component of precession, one that is due to the gravitational
effects of the planets and is referred to as “planetary” precession. First, we apply the
approximations suggested by Fig. 6.4.6 (Sect. 6.4), and Fig. 7.1.1.

Accordingly we have: Dk0 ¼ Dk � cos e�Dm0, and hence:

(2) da
dt

� �
P
¼ � dk0

dt ¼ dm0

dt � dk
dt � cos e.

In this formula, the subscript “P” indicates that the rates of change refer to
planetary precession. Similarly, we deduce from Fig. 6.4.6 (Sect. 6.4), and from

Fig. 7.1.1, (above), that: dn0

dt ¼ dk
dt � sin e and when substituted into the second

relation of (1), yields:

(3) dd
dt

� �
P
¼ dn0

dt � cos a0, where a0 and d0 denote the RA and declination respec-

tively at the initial of epoch E0.

Since the quantities dm
0

dt and dn0

dt are almost constant, we shall denote them by

“m” and “n”, respectively, i.e., mS ¼ dm0

dt and nS ¼ dn0

dt . By employing these

expressions together with the Eqs. (1)–(3), we deduce that the total rate of change
for the RA is:

da
dt ¼ da

dt

� �
L
þ da

dt

� �
P
¼ mS þ nS � sin a0 � tan d0; dd

dt = n00 � cos a0 � t, and

therefore, the final result is given by:
(4) a� a0 ¼ mS þ nS � sin a0 � tan d0ð Þ � t; d� d0 ¼ n00 � cos a0. Note that “t”
denotes the time expressed in years between epoch E0 and E.

It has been found that the quantities of mS and nS depend on T as follows:

(5) ms ¼ 3s:07496þ 0s:00186 T; ns ¼ 1s:33621� 0s:00057 T
m00 ¼ 4600:1244þ 000:0279 T; n00 ¼ 2000:04315 � 0:00855 T;

where “T” is defined by Eq. (3), Sect. 6.2, and the superscript “s” indicates that the
value is expressed in seconds of time.

Fig. 7.1.1
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7.2 Rotational Transformations and Rigorous Formulae
for Precession

Before we can actually deal with the rigorous approach, we need to recall some
results of elementary analytic geometry. First, let’s consider the case where n = 2,
i.e., of plane trigonometry. Let “e1

!” and “e2
!” denote the unit vectors which are

orthogonal, i.e. e1
!� e2! = 0, and let “ x!” denote a vector with components x, y in

said frame of reference (See Fig. 7.2.2).
Then if we rotate the coordinate system spanned by e1

! and e2
! by the plane of

angle a, measured counterclockwise, we generate a new orthogonal coordinate

system denoted by e01
!

and e02
!
, and the vector x! stationary now has the new

coordinates x′, y′. By applying simple geometry, we deduce that:

x0 ¼ cos a � xþ sin a � y
y′ = − sin a � x + cos a � y, written in vector notations: x0

!
= ′R(a) � x!, where

0RðaÞ ¼ cos a sin a
� sin a cos a

� �
:

The matrix R(a) is referred to as the rotational matrix in two dimensions. If we
now apply the same mathematics to the three dimensional case, n = 3, we find that
by turning the coordinate system e1

!; e2
!; e3

! about e3
!, i.e., about the z-axis, the

coordinates transformation is as follows:

x0
! ¼ 0RzðaÞ � x!; with 0RzðaÞ ¼

cos a sin a 0
� sin a cos a 0
0 0 1

0
@

1
A. See Fig. 7.2.3.

Similarly, we now rotate the coordinate system e01
!
; e02
!
; e03
!

so obtained about the y′-
axis, by the angle b, we find that:

Fig. 7.2.2
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x00
! ¼ 0RyðbÞ � x0

! ¼
cos b 0 �sin b
0 1 0
sin b 0 cos b

0
@

1
A � x0!. But since x0

! ¼ 0RzðaÞ � x!, we

find that: x00
! ¼ 0RyðbÞ � 0RzðaÞ x!. Finally, if we once more rotate the coordinate

system e001
!
; e002
!
; e003
!

by an angle c—always counterclockwise, about e003
!
, i.e., about the

new z′′-axis, we then obtain:

X000 ¼ Rz00 ðcÞ � x00
! ¼ Rz00 ðcÞ � RyðbÞ � RzðaÞ � x!; with Rz00 ðcÞ ¼

cos c sin c 0

� sin c cos c 0

0 0 1

0
B@

1
CA:

Therefore, the rotation matrix R(a, b, c) that comprises all three rotations is
equal to the product of all single rotation matrices, i.e.:

(1) Rða; b; cÞ ¼ Rz00 ðcÞ � Ry0 ðbÞ � RzðaÞ, with

RzðaÞ ¼
cos a sin a 0

� sin a cos a 0

0 0 1

0
B@

1
CA; Ry0 ðbÞ ¼

cos b 0 � sin b

0 1 0

sin b 0 cos b

0
B@

1
CA; and

Rz00 ðcÞ ¼
cos c sin c 0

� sin c cos c 0

0 0 1

0
B@

1
CA:

Formula (1) will enable us to derive the rigorous solution once we have identified
the angles a, b, and c. From Fig. 6.4.6 (Sect. 6.4), we readily deduce that the first
rotation takes place in the plane of the equator of epoch E0 (here the year 2000AC)
and must be negative. Therefore by denoting it by f, we conclude that: a = −f.

Fig. 7.2.3
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The next rotation brings the equator of epoch E0 into the new equator of epoch
E0 + t. The rotation is about the axis CM, where “C” denotes the center of the
celestial sphere and “M” denotes the node of the equators. (See Fig. 7.1.1,
Sect. 7.1.) In terms of our usual notations, this axis is the new y′-axis that is the
result of the first transformation. Let us denote the angle of the second rotation byH
which must be positive. Therefore, we find that b = H. The result of the second
transformation is that the axis of rotation of the Earth, denoted by “z” has been
moved from P0 to P1 (See Fig. 6.4.6, Sect. 6.4).

This axis, now denoted by “z′” lies in the plane defined by CP0P1. We still have
to rotate this plane about the new z′-axis in order for it to pass through the new
equinox. (See Fig. 7.1.1, Sect. 7.1.) This time, the angle or rotation is negative and
we denote it by “−z”, i.e., we have c = −z. Summing up these results and referring
them to Fig. 6.4.6 (Sect. 6.4), and to Fig. 7.1.1 (Sect. 7.1), we have: a ¼ �f; b ¼
H; c ¼ �z and the rotation matrix in

(1) becomes:
(2) Rð�f;H;�zÞ ¼

cos z � cosH � cos f� sin f � sin z � cos z � cosH � sin f� sin z � cos f � cos z � sin f
sin z � cosH � cos fþ cos z � sin f � sin z � cosH � sin fþ cos z � cos f � sin z � sinH
sinH � cos f � sin H � sin f cosH

8><
>:

9>=
>;:

By expressing the vectors~x0 and~x of our transformation in polar coordinates, a,
d, i.e., by:

~x0 ¼
cos d0 � cos a0
cos d0 � sin a0
sin d0

0
@

1
A; ~x ¼

cos d � cos a
cos d � sin a
sin d

0
@

1
A, where “a” and “d” are the

RAs and declinations of the CO, we may then deduce the component equations
from our transformation formula ~x ¼ Rð�f;H;�zÞ �~x0 as:

(3) cos d � cos ða� zÞ ¼ cos H � cos d0 � cos ða0 þ fÞ � sin H � sin d0
cos d � sin ða� zÞ ¼ cos d0 � sin ða0 þ fÞ

sin d ¼ sin H � cos d0 � cos ða0 þ fÞþ cos H � sin d0

Finally, by defining the quantities A, B, and C by:

(4) A ¼ cos d0 � sin ðaþ fÞ
B ¼ cos H � cos d0 � cos ða0 þ fÞ � sin H � sin d0
C ¼ sin H � cos d0 � cos ða0 þ fÞþ cos H � sin d0

we find a and d explicitly by evaluating:

(5) a ¼ zþ tan�1 A
B ; and d ¼ sin�1C: [2, 19], [2, 16]

These formulae are relatively easy to evaluate numerically, and the problem of
ambiguity in employing the multi-valued functions tan−1x and sin−1x can easily be
resolved by referring the solutions to the corresponding quadrants.

7.2 Rotational Transformations and Rigorous Formulae for Precession 279

http://dx.doi.org/10.1007/978-3-319-47994-1_6
http://dx.doi.org/10.1007/978-3-319-47994-1_6


In applying formula (2), we have assumed that the values of f, H, and z are
known. These values are all time dependent and, therefore, can only be found by
physical observation like the values of m and n in formulae (4) and (5), Sect. 7.1.

Thanks to the efforts of many distinguishes Astronomers, we can adopt the
following corresponding polynomial expressions in terms of the powers of T as
given by:

(6) f = (230600.2181 + 100:39656T0 � 0:000139T2
0ÞTþ ð000.30188� 000:000344T0ÞT2 þ 000:017998T3

H = (200400.3109� 000:85330T0 � 000:000217T2
0ÞT�ð000:42665þ 000:000217T0ÞT2 þ 000:041833T3

z = (203600.218 + 100:39656T0 � 000:000139T2
0ÞTþ ð100:09468þ 000:000066T0ÞT2 þ 000:018203T3

Where T0 and T are defined by:

(7) T0 ¼ ðJD0�2451545Þ
36525 ; and T ¼ ðJD�JD0Þ

36525 :

Here T0 is the time interval in Julian centuries between the year 2000AC and the
starting epoch of JD0 and T is the time interval expressed in the same units between
the starting epoch JD0 and the final epoch JD.

Note that in cases where the starting epoch coincides with the epoch of the year
2000AC, T0 = 0, and the above expressions (6) simplify considerably.

7.3 Approximate Formulae for the RA ʘ and Declination
d as the Result of Two Rotations Only

Now, with the aid of the exact formulae, we are able to cast some light on the
validity of approximate formula (4), Sect. 7.1. Specifically, we can see that those
formulae can only be deduced from the exact formulae in the small, i.e., in dif-
ferential form. However, in the large, i.e., for finite angles of rotations, those
formulae cannot be deduced from the exact equations. Therefore, higher derivatives
of those erroneous formulae should not be used to construct Taylor-Series expan-
sion for the functions a(t) and d(t).

Go back to Fig. 6.4.6 (Sect. 6.4) and 7.1.1 (Sect. 7.1). You can see that the
approximate solutions are based on the premise that the coordinate system attached
to the Earth is only subjected to two rotations, not three, as it should be.
Quantitatively speaking then, the authors of said method have rotated their coor-
dinate system only about two very small angles, a ¼ �D�m, and b ¼ �D�n.
Therefore, the corresponding rotation matrices are:

Rzð�Dm0Þ ¼
1 �Dm0 0
Dm0 1 0
0 0 1

0
@

1
A; RyðDn0Þ ¼

1 0 �Dn0

0 1 0
Dn0 0 1

0
@

1
A,

hence R(� Dm0;Dn0) ¼ Rz(� Dm0Þ � Ry(Dn0Þ ¼
1 �Dm0 �Dn0

Dm0 1 0
Dn0 0 1

0
@

1
A. We
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now deduce that: ~x ¼ R(� Dm0;Dn0) �~x0 ¼~x0 þ
�Dm0 � y0 �Dn0 � z0
Dm0 � x0
Dn0 � x0

0
@

1
A,

and therefore: d~x
dt

� �
t0
¼

�m � y0 �n � z0
m � x0
n � x0

0
@

1
A, from which we deduce the three

equations: dx
dt

� �
t0
¼ �m � y0 � n � z0 dy

dt

� �
t0
¼ m � x0 dz

dt

� �
t0
¼ n � x0

By expressing the Cartesian coordinates by their corresponding polar coordi-
nates (see Sect. 7.2) and by invoking the equations of differentials for both system
of coordinates as given by:

r � dd ¼ sin d � cos a � dx� sin d � sin a � dy + cos d � dz
r � cos d � da ¼ �sin a � dx + cos a � dy
dr ¼ � cos d � cos a � dxþ cos d � sin a � dy + sin d � dz

we arrive at our approximate formulae (4), Sect. 7.1, namely:
da
dt

� �
t0
¼ m + n � sin a0 � tan d0; and dd

dt

� �
t0
¼ n � cos a0, where we have identi-

fied r ¼ ‘; a0 ¼ aðt0Þ; and d0 ¼ dðt0Þ. Therefore, we may conclude that the
approximate solutions are the result of two and not three rotations, as has previously
been pointed out.

On the other hand, if we apply the rotation matrix (1) to the three very small
angles: a ¼ �Dm0, and b ¼ Dn0, and c ¼ Dz, we deduce from expression (1) that:

Rð�Dm0;Dn0;DzÞ ¼
1 �Dz� Dm0 �Dn0

Dm0 þDz 1 0

Dn0 0 1

0
B@

1
CA

6¼
1 �Dm0 �Dn0

Dm0 1 0

Dn0 0 1

0
B@

1
CA ¼ R(� Dm0;Dn0Þ

for all Dz 6¼ 0, and Rð�Dm0;Dn0; 0Þ 6¼ Rð�Dm0;Dn0Þ.

As we can now readily see, the approximate solution does not even in the
infinitesimal sense constitute a sufficiently accurate approximation to the true
solution. By sufficiently accurate, I mean, accurately enough to approximate higher
derivatives of the true solution by the corresponding higher derivates of the
approximate solution. Consequentially, it is not recommended to employ the so
called “improved” solutions that are based on those erroneous derivates. For that
very reason, the method of improved solution based on the secular variations had
not been included in this book.

Having developed approximate and rigorous formulae for the effect of preces-
sion on the right ascension and the declination d, we will now do the same for the
effects of nutation on these coordinates.
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7.4 Effects of Nutation on the RA and Declination

Nutation not only changes the equinox and therefore the longitude, but also changes
the inclination of the Earth axis relative to the pole K of the ecliptic. (See Fig. 6.4.6,
Sect. 6.4.) Because of this, we need to distinguish between the nutation in obliquity
and the nutation in longitude. First, let’s address the phenomenon of nutation in
obliquity

Nutation in Obliquity

Examine Fig. 7 (Sect. 6.4). It clearly shows that nutation in obliquity De does not
alter the latitude b and longitude k of a CO. Because of this, we may differentiate
(i), Sect. 7.1 with regards to e and thereby find the differential dd:

dd ¼ �deðsin b � sin e� cos b � cos e � sinkÞ � sec d:
If we now employ the Analogue-Th., we may deduce that:

sin b � sin e ¼ cos b � cos e � sin k� cos d � sin a. (See Fig. 6.4.6, Sect. 6.4) It
follows, then, that from the above expression for dd assumes:
(1) dd0N ¼ de � sin ~a, or in differences: Dd0N ¼ De � sin ~a. (For definition of ~a, see

below.)

Next we then differentiate the equation (ii), Sect. 7.1 with regard to d and find
that:

da � sin a � cos d ¼ � dd � cos a � sin d:
Substituting (1) into this expression yields:

daN ¼ �de � cos~a � tan ed. Interpreting this expression in terms of the differences
Da and De, we obtain the finite expression:
(2) Da0N ¼ �De � cos~a � tan ed, where ~a ¼ a1þ s ¼ RA, referred to the equinox

and equator of epoch E1þ s, i.e., of that particular instant of time s anded ¼ d1þ s, the declination referred to the same instant.

Now, let’s derive the other relevant formula for the other component of nutation,
namely, nutation in longitude.

Nutation in Longitude

Again referring to Fig. 6.4.6, Sect. 6.4, we can see that the effect of nutation in
longitude is qualitatively the same as the effect of luni-solar precession and
according to Eq. 1, Sect. 7.1, is given by:

(3) DaLN ¼ DWðcos eþ sin e � sin ~a � tan edÞ, where we have merely changed the

notations from Dk to DW, a to ~a, and d to ed. We also deduce from the second part
of (1) that:

(4) DdLN ¼ DW � sin e � cos ~a.
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By combining the above results (1)–(4), we arrive at the final equations, namely:

(5) DaN ¼ �a� a1þ s ¼ Da0n þDaLn ¼ DWðcos eþ sin a1þ s � sin e � tan d1þ sÞ
� De cos a1þ s � tan d1þ s

Ddn ¼ d� d1þ s ¼ Dd0n þDdLn ¼ DW sin e � cos a1þ s þDe sin a1þ s

By applying these formulae to any concrete situation, it is imperative to realize that
in order to find the true place of a CO at any instant El+s, we must first know it’s mean
place at that instant. This implies that we must know its RA a0 and declination d0 at the
initial epoch E0, and then we must calculate those values for the epoch El+s and thereby
determine its mean place at El+s. The notation used here for the final epoch El+s
signifies merely that for the sake of convenience we have employed the epoch E1 at the
beginning of the year preceding the actual instant El+s. The quantity s in time is then
equal the time elapsed since the beginning of the year and the instant under consid-
eration and is expressed in fractions of a year. For example, let the instant for which we
like to find the true place of a particular CO be J2013, June 10, 18h 20m 00s UTC and
E0 = J2000. Then E1 = J2013, s = 0.442899077, and El+s = J2013.442899077.

It may also help to memorize the following scheme for finding the true place of a
CO:

E0 ) E1 ) E1þ s ¼ E

a0 ) a1 ) a1þ s )j �a

d0 ) d1 ) d1þ s )j d

By application of precession and proper motion By application of nutation.

Note that the formulae (5) of this section loose validity if the COs are close to the
celestial pole. In the latter case, the corresponding formulae in elliptical coordinates
b and k can be employed. In order to apply formulae (5), we still must provide
expressions for the two important parameters, De and DW. However, since the
derivation of those formulae is based on more advanced theoretical methods of
Celestial Mechanics, and on the Theory of Perturbation of Systems of Differential
Equations, and also on a large amount of observational data that has been compiled
over more than two centuries, we can only adopt those expressions for the nutation
in longitude DW, and nutation in obliquity De as stated below:

(6) DW ¼ �1700:200 � sin Xþ 000:206 � sin 2X� 100:319 � sin 2‘þ 000:143 � sin M

� 000227 � sin 2‘0 þ 000:071 � sin m + . . .. . .. . .. . .. . .. . .. . .. . .(manymore terms)

(7) De ¼ 900:203 � cos X� 000:090 � cos 2Xþ 000:574 � cos 2‘þ 000:022 � cos (2‘þMÞ
+ 000:098 � cos 2‘0 þ 000:020 � cos ð2‘0 � XÞþ . . .. . .. . .. . .. . .. . .

[62, 70, 72]
The expressions in terms of polynomials of T for the node of the Moon X(T), the

mean anomaly of the sun M (T), and the mean longitude of the Sun ‘ (t) are all
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given in Sect. 6.3 among the formulae (1)–(6). The expressions for the mean
anomaly of m (T) and the mean longitude of the Moon ‘′(T) are given below:

(8) m(T) = 134�:96298þ 477198�:857398 � T + 0�:0086972 � T2 þ T3

56250�

‘0ðTÞ ¼ 218�:3165þ 481267�:8813 � T
In most applications to navigation, it will suffice to consider only the first terms

in (6) and (7) resulting in the approximations below:

(9) DW ffi �1700:2 � sin X, and De ffi 900:203 � cos X
The explanation for encountering parameters pertaining to the orbit of the Moon

in formulae (6) and (7) is that in analyzing nutation one must consider the
three-body problem of mechanics, namely the analytic problem of accounting
quantitatively for the mutual attraction of the Sun, Moon and Earth. Since, so far,
no analytic solution for this problem which involves solving a non-linear system of
second order differential equations, has been found, only approximate or numerical
solutions are available.

One of those approximate methods for solving the three-body problem consists
in first solving the prevailing two-body problem, say Sun-Earth, and then by
modifying this solution, for instance by adding additional terms, and thereby
finding an approximate solution to the real three-body problem (Sun-Moon-Earth)
This method is generally known as the Method of Perturbation.

However, there is still another unsolved problem involved in solving the
aforementioned problem analytically, namely, the problem of finding a realistic
model for the density distribution inside and on the surface of the Earth which is
required for calculating the moments of inertia of the gyro-Earth. (See Sect. 8.6.)
Therefore, the use of other astronomical methods as for instance observations are
necessary in order to find the numerical values of the coefficients in the series
expansions of DW and De.

In concluding this analytic treatise of the effects of nutation on the RA and
declination, it should be noted that in all applications to navigation, whenever a
higher degree of accuracy is required, the use of an intermittent epoch E1 and the
use of the time parameter s offer the advantage that the rigorous formulae (4) and
(6), Sect. 7.2 have to be applied only once a year for any particular CO, and
because of s < 1, the approximate formulae (4) can then be employed to go from E1

to El+s at any other instant of the year corresponding to s.
Next we shall examine the problem of finding the quantitative effects of proper

motion on the RA and declination d. Actually, we should have already examined
this before discussing nutation, since the components of proper motion are required
in the computation of the coordinates alþ s and dlþ s of the mean place of the epoch
El+s.
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7.5 Effects of Proper Motion on the RA and Declination d

Similarly, as in the case of nutation, we are compelled to refer the phenomenon of
proper motion to the celestial sphere for interpretation in order to be able to derive
analytic expressions for the quantitative effects of proper motion on the RA a and
the declination d of a CO. Strictly from the theoretical point of view, we should
invoke the Theory of Special Relativity since the moving objects under consider-
ation attain velocities of the order 10−4 c, where c = 3 � 106 km/s. However, such
consideration is outside the parameters and the objective of this book.

From Fig. 7.5.4 we readily deduce the components of proper motion with regards
to the displacement of S to A along the great circle SC in direction of the RA denoted
by la and in the direction of d denoted by ld. Specifically we deduce that:

AB ¼ l � sin / � sin ‘00 ¼ la � cos d � sin ‘00; and
AS ¼ l � cos / � sin ‘00 ¼ ld � sin ‘00, and hence:

(1) la ¼ l � sin / � sec d; and ld ¼ l � cos / ðin arc sec.Þ
Note that the relations between these components and the actual changes in RA

and declination are:

(2) la ¼ da
dt

� �
PM

, and ld ¼ dd
dt

� �
PM

, where the subscript “PM” refers to the

changes of a and d, respectively, relative to the effects of proper motion.

In what follows, we shall assume that l remains constant over a fraction of a
century and also that the quantities l, la, ld, and the corresponding changes are all
expressed in circular measures, i.e., radians.

Although it is quite feasible to treat the cases where l can be a time-dependent
variable, but the resulting terms in the corresponding formulae would exhibit
parameters, such as the tangential velocity v and the parallax P of the CO, for
which numerical values are not readily available to navigators unless they have a

Fig. 7.5.4
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recent star catalogue at their disposal. Furthermore, those additional terms in the
more accurate formulae can be neglected in most of our practical applications.

In accordance with the aforementioned assumptions, la ¼ lað/; dÞ and ld ¼
ldð/; dÞ are continuous, differentiable functions of / and d only and their differ-
entials are:

dla;d = @la;d
@/ d/þ @la;d

@d dd. Hence:

dla
dt ¼

@la
@/

d/
dt þ

@la
@d

dd
dt ; and

dld
dt ¼ @ld

@/
d/
dt þ

@ld
@d

dd
dt

Therefore, we require all the partial derivatives of la and ld, which can readily
be deduced from (1), to be:

@la
@/ ¼ l � cos/ � sec d; and
@la
@d ¼ l � sin/ � sec d � tan d; and
@ld
@/ ¼ �l � sin/; and
@ld
@d ¼ 0

Since dddt is known by virtue of (2), it remains only to derive a formula for d/dt . Again,

by referring to Fig. 7.5.4 and by applying the SIN-TH. of spherical trigonometry,
we deduce that:

sin / � cos d ¼ sin /0 � cos d0 ¼ const. Next, differentiating this expression
with regards to d yields:

d
dd ðsin / � cos dÞ ¼ � sin d � sin /þ cos d � cos / d/

dd ¼ 0, i.e., d/ ¼ tan / �
tan d � dd from which it follows that:

d/
dt ¼ tan / � tan d � ld, where we have again made use of (2)

Substituting all the derivatives so obtained into the above equations for dladt and dld
dt

yields:

(3) dla
dt ¼ 2la � ld � tan d � sin ‘00, where la and ld are expressed in arc seconds.

(4) dla
dt ¼ 2la � ld � 15 � tan d � sin ‘00, where la is expressed in seconds of time and

ld in arc sec.

and,

(5) dld
dt ¼ �l2a � sin d � cos d � sin ‘00, where ld is expressed in arc seconds.

(6) dld
dt ¼ �l2a � 152 � sin d � cos d � sin ‘00, where ld is expressed in seconds of

time.

In all those cases where a higher degree of accuracy is required, the following
equations due to William Chauvenet can be employed:

286 7 Quantitative Treatise of Those Phenomena



sin c ¼ sin H sin ðaþ fÞ
cos d , to calculate c, and then:

(7) l0a ¼ sec d0 � ðla cos d � cos cþ l�d
15 � sin cÞ, and

l0d ¼ �15la cos d � sin cþ ld � cos c, where the superscript “′” denotes the
values corresponding to the new epoch E′ and with f and H given by the formulae
(6) Sect. 7.2. Note that the components of proper motion l′a and la are expressed in
seconds of time and that the components l′d and ld are expressed in arc seconds.

Finally, we are now in a position to state explicitly how the actual changes in Da
in RA and Dd in declination are related to the components of proper motion and
their derivatives. From the Taylor-Series expansion—approximation:

Da =
P1
m¼1

1
n! � dna

dan

� �
0
� tn ffi da

dt

� �
0
þ 1

2
d2a
dt2

� �
0
� t

� �
� t, we deduce that:

(8) Da ¼ ðla þ 1=2dla
dt � t) � t, and Dd ¼ ðld þ 1=2dld

dt � t) � t, where “t” stands for

the time between epoch E′ and E.

Next, we shall derive explicit formulae for the quantitative effects of aberration
on the RA and declination d.

7.6 Effects of Aberration on the RA and Declination d

Annual Aberration Only—See Sect. 6.6.

In treating said effects, we now assume that the observer is located at the center of
the Earth, and therefore, the center of the celestial sphere now coincides with the
center of the Earth-geocentric system—See Fig. 7.6.5.

Fig. 7.6.5
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Again, it is convenient to refer to the position S of the CO; its image S′; the
position of the Sun ʘ; and also the position of F that defines the direction of the
moving Earth on the celestial sphere. Because we are now deriving the formulae for
the finite displacements of Dk and Db of the CO and no longer rates of changes, it
will simply suffice to employ the equations of spherical trigonometry.

First, lets look at the spherical triangle SbKF and apply the COS-TH. to find that:

(1) cos 0 ¼ sin b � 0 + cos b � sin 90� � cosðkH � k� 90Þ ¼ cos b � sin ðkH � kÞ ,
where “kʘ” denotes the longitude of the true Sun—See Fig. 7.6.6.

Next we consider the small triangle SbS0S to be a plane triangle and deduce that:

(2) SS ¼ Dk � cos b ¼ r � sinW, and SS0 ¼ �Db ¼ r � cos W, where
r ffi j � sin 0—See (2), Sect. 2.6.

Again by applying the COS-TH. to the triangle KbSF, we conclude that:
cos 90� ¼ sin b � cos 0þ cos b � sin 0 � cosð180� �WÞ

¼ sin b � cos 0� cos b � sin 0 � cos W ,

and it follows that:

(3) cos W ¼ tan b � cot 0:
Next we apply the SIN-TH. to the same triangle to obtain:

sin 90�

sinð180� �WÞ ¼
sin 0

sinðkH � k� 90�Þ, which yields:

(4) sin W ¼ � cosðkH � kÞ
sin 0

. Combining the expressions (1)–(4) and using the

expression (2), Sect. 6.6, again, we obtain:

Fig. 7.6.6
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(5) Dk ¼ �j � sec b � cosðkH � kÞ
Db ¼ �j � sin b � sin ðkH � kÞ

One important case that we will require in the derivations of algorithms for an
ephemeris for the Sun is the special case of the Sun, itself, i.e., where k ¼ kH and
b ¼ 0. In this case, (5) reduces to:

(6) DkH ¼ �j; Db ¼ 0.

By applying the same techniques to the triangles of Fig. 7.6.5, we obtain the
corresponding formulae for the displacements in RA and declination as follows:

(7) Da = � j � sec d � ðcos a � cos kH � cos eþ sin a � sin kHÞ and
Dd = � j � cos kH cos e � ðtan eþ cos d� sin a � sin dÞ � j � cos a � sin d � sin kH

As an immediate consequence of Eq. (5), it follows that as the Earth moves
around the Sun, the image S′ of S moves around S on an ellipse with the semi-major
axis j and the semi-minor axis j � sin b. For, let us define:

x ¼ Dk cosb and y ¼ �Db:

then by employing the expressions (5), it follows that:
x2

j2 þ y2

j2� sin2 b
¼ 1. This is the equation of an ellipse about—(0, 0), i.e. about the

position of S and it is referred to as the Aberrational Ellipse.
However, before we can write down an algorithm for the ephemeris of the Sun

and the Stars we will have to derive explicit formulae for the quantitative effects of
annual parallax on the coordinates of the COs.

Fig. 7.7.7
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7.7 Effects of Annual Parallax on the RA
and Declination d

The derivation of the required formulae for the computation of the effects of annual
stellar parallax follows very closely the derivation of the corresponding formulae
for the effects of aberration of the coordinates of the COs. Again, we need to
refer back to the celestial sphere where we can identify the positions and angles
shown in Fig. 6.7.1, Sect. 6.7. On the celestial sphere, things look, then, as depicted
in Figs. 7.7.7 and 7.7.8 below.

First, let’s consider the spherical triangle KbS ʘ and apply the COS-TH. to its
sides as follows:

cos 90� ¼ cosð90� � bÞ � cos 0þ sinð90� � bÞ � sin 0 � cosð180� �WÞ, and
therefore

sin b � cos 0� cos b � sin 0 � cos W ¼ 0, resulting in:

(1) cos W ¼ tan b � cot 0:
Next we apply SIN-TH. to the same triangles and obtain:

sin 90�

sinð180� �WÞ ¼
sin 0

sin ðkH � kÞ, and resulting in:

(2) sin W ¼ P
Pa

� sin ðkH � kÞ, where Pa ¼ P � sin 0—(See (2) Sect. 6.7)

By looking at the very small triangle, SbS0S, we realize that it can be considered
to be a plane triangle. Therefore, we deduce that:

Fig. 7.7.8
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(3) SS ¼ cos b � Dk ¼ Pa � sin W, and SS ¼ �Db ¼ Pa � cos W. Combining the
expressions (1)–(3), we finally obtain:

(4) Dk ¼ P � sec b � sin ðkH � kÞ and
Db ¼ �P � sin b � cosðkH � kÞ , where kʘ again denotes the longitude of

the true Sun.

Exactly as in the case of aberration, we may also conclude that the image S′ of S
prescribes an ellipse about S with semi-major axisP and semi-minor axisP � sin b.
This is an immediate consequence of the expressions (4). For by defining:

x = P � sin ðkH � kÞ; and y = P � sin b � cos ðkH � kÞ, we deduce that:
x2

P02 þ y2

P02 sin2 b, the equation of the ellipse of annual parallax.

Finally, let’s also examine the formulae for the effects of annual parallax on the
RA and declination d. However, since the actual derivation of these formulae
follow exactly the same patterns of some of the previous ones, I only need to state
the explicit results. Look at Fig. 7.7.8.

From this we can readily deduce the final results:

(5) Da ¼ P � sec d � ðcos a � cos e � sin kH � sin a � cos kHÞ and
Dd ¼ P � ðcos d � sin e � sin kH � cos a � sin d � cos kH � sin a � sin d � cos e � sin kHÞ

where “a” denotes the RA and d the declination [55, 63].

7.8 Calculating the Apparent RA and Declination d,
and the Equation of the Equinox

To sum up the results of this chapter. so far, we have compiled and examined all the
necessary formulae for an ephemeris of the Sun1 and Stars. What remains to be
done is to show how to put all these pieces together in order to execute the
algorithms with ease. One way of showing how to apply these formulae is to use the
following scheme:

(I) Going from one epoch E0
0 to an intermittent epoch E0

1, and from there to the
actual one E0

1þ s—Symbolically:
E0
0 ) E0

1 ) E0
1þ s:

(II) Going from the mean place of the initial epoch to the mean place of an inter-
mittent epoch, and from there to the mean place of the final epoch, and from
there to the true place, and finally to the apparent places—Symbolically:

MPðE0
0Þ ) MPðE0

1Þ ) MPðE1þ sÞ ) TNðE1þ sÞ ) AAðE1þ sÞ ) AAPðE1þ sÞ

1Less perturbation.
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(III) Calculating the RA, a, and declination d by applying at each step the indi-
cated correction:

a0 )
by applying
precession + proper
motion

a1 )
by applying
precession + proper
motion

a1þ s )
by
applying
nutation

an )
by
applying
aberration

aA ) aAP ¼ a
by applying
annual
parallax

(Note that the superscript “0” in E0 indicates an epoch that begins at the first day of
the year at 0h:00 UTC. Furthermore, MP denotes a mean place, TN the true place,
and AP and APA the apparent places.)

The total effects on the RA, a, and declination d can then be computed as
follows:

a� a0 ¼ ðaAP � aAÞþ ðaA � aNÞþ ðaN � a1þ sÞþ ða1þ s � a1Þþ ða1 � a0Þ
which can be written as:

(1) a ¼ a0 þDPPa0 þDPPa1 þDNa1þ s þDAaN þDAPaN
d ¼ d0 þDPPd0 þDPPd1 þDNd1þ s þDAdN þDAPdN

, and

where DPP refers to the change due to precession and proper motion, and DN to the
change due to nutation. Furthermore, DA refers to the change due to aberration, and
DAP to the change due to annual stellar parallax.

In some applications where either the use of the exact formulae for precession is
not required or where it is imperative to employ the exact equations throughout, you
may go directly from the initial epoch E0

0 to epoch E1þ s. Therefore, in those cases,
the terms DPPa1 and DPPd1 will not appear in the expression (1). Furthermore, the
difference operator dPP for the combined effect of precession and proper motion can
be split into the operators DP and DPM where DP denotes solely the effect of the
precession, and DPM signifies the effects of proper motion only so that:

(2) DPPa0 ¼ DPa0 þDPMa0; andDPPd0 ¼ DPd0 þDPMd0:

THE EQUATION OF THE EQUINOX

So far we have used the coordinate system of the celestial sphere, i.e., the coordinates
RA and declination only. In order to apply this system of coordinates to navigation,
we must relate it to our fixed terrestrial coordinate system defined in terms of latitude
and longitude with reference to the actual equator of the Earth and the Greenwich
meridian. This is readily accomplished by employing the concept of the Greenwich
Hour Angle (GHA) of any CO. The equation that we have been using in Part I of this
book and in Sect. 5.1 that links the RA to the GHA of any CO is:

(3) GHA* = GHA ♈ + SHA* = GHA ♈—RA*. Here “*” denotes the CO.

This formula clearly shows that we must also increase the accuracy of the
GHA♈ in order to obtain more accurate values for the GHA of the CO. We also
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know that the formula (5) Sect. 6.3, which gives the GHA♈ in terms of a poly-
nomial in powers of T, cannot account for the effects of nutation on said coordi-
nates. Therefore, we must find an improved formula for the GHA♈ that takes
nutation into account.

This can be accomplished by adopting the concept of the “fictitious star”—First
point of Aries denoted by GHA♈. Since this star moves along the equator, its
declination is zero and since it is a fictitious star, the effects of proper motion,
aberration, and annual parallax are all zero. Hence according to (3) we have:

GHA♈ ¼ GHA♈0 � RA♈, where ♈0 denotes the position of the First Point
of Aries at a fixed epoch E0, i.e., RA♈0 ¼ 0. According to formula (1), we then
conclude that: DRA♈0 ¼ DPRA♈0 þDNRA♈0. Taking also into account
that RA♈0 ¼ 360� � DRA♈0, we conclude that:

(4) GHA♈� ¼ GHA♈0 þDRA♈0 ¼ ðGHA♈0 þDPRA♈0ÞþDNRA♈0:

Since d = 0, we can deduce from formula (5), Sect. 7.4 that
DNRA♈0 ¼ DW � cos e, and by applying formula (9), Sect. 7.4, we arrive at:

(5) DNRA♈0 ¼ DW � cos e ¼ �1700:2 � sinX � cos e ¼ �0�:004777777 � sinX � cos e:
Substituting (5) into (4) and noting that the sum of the first two terms in (4) is

equal to the expression (5) Sect. 6.3, we conclude that:

(6) GHA♈ � ðTÞ ¼ GHA♈ðTÞþE, where E, the Equation of the Equinox, is
given by:

(7) E ¼ �0�:0047777777 � sinX � cos e:
By multiplying expression (6) by 1

15, we find the Sidereal Time.
In concluding of this chapter, we still need to examine one other technical

problem related to the evaluation of the formulae provided herein. The starting
point of all the numerical calculations is calculating the value for the time T of the
instant, in terms of Julian centuries, i.e., of T as defined by (3), Sect. 6.2. For PC
and sophisticated calculators, this does not pose a problem. However, for the user
who only has a simple scientific calculator with a ten digit arithmetic at his disposal,
there arises a difficult situation once seconds of time have to be expressed in terms
of T since one second of UTC corresponds to 3.168808777 � 10−10 in T time.

For instance, if one tries to add this number to the number one, the calculator
will give the result as one which is obviously incorrect. Therefore the question
arises: How can one account for seconds of time in all those formulae that depend
on the variable T if one only has a simple calculator to hand?

One method for overcoming this difficulty is to define first a value of T that does
not account for the hours, minutes, and seconds, denoted by T0, and given by:

(8) T0 ¼ JD0 � JDO

36525
, where JD0 is the Julian Date of the instant at 0h.00 UTC.

Then if UTC stands for the hours, minutes, and seconds since 0h.00, expressed in
hours, we have:
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(9) UTC ¼ hþm � 0:016666666þ s � 0:000277777, where “h” denotes the hours,
“m” the minutes, and “s” the seconds.

By the definition of T, we deduce that:

(10) T =
JD0 þ UTC

24 � JDO

36525
¼ JD0 � JDO

36525
þ UTC

24 � 36525 ¼ T0 þDT, with

DT ¼ 1:140771161 � 10�6 UTC: It follows then that DT satisfies:
3:168808777 � 10�10 �DT� 2:737850787 � 10�5:

On the other hand, we know that T0 < ‘ and that it will fall in the range of (10−2,
10−1). It follows then that the operation T0 + DT cannot be executed on a simple
calculator. However, since in all of our applications T appears only in conjunction
with a coefficient denoted by A, so that actually only terms containing A � T = A
�T0 + A � DT are involved in our formulae, we can be assured that the addition of A
� DT can be executed on a simple calculator because the magnitude of A is always
sufficiently large. Also note that because of the range of DT it follows that all terms
containing DT2 and higher powers of DT can be neglected in our calculations so
that the approximation T2 ffi T2

0 þ 2T0 � DT can be employed. (See numerical
examples in Sect. 6.4.)
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Chapter 8
Ephemerides

8.1 Low Accuracy Ephemeris for the Sun, a Numerical
Example

This low accuracy ephemeris is based on an algorithm for computing the GHA and
declination of the Sun that utilizes only the linear parts of the expressions provided
in Chap. 7. Therefore, the approximations so obtained are the result of a lin-
earization of the exact equations and are derived from said expressions by
neglecting—truncating—all terms that contain powers of two or higher in T.
Furthermore, this algorithm also does not take into consideration terms in (l),
Sect. 7.8 that account for the effects of nutation and aberration.1

It also strictly adheres to the initial epoch of the year 2000AC, since only for this
epoch is all relevant data provided for in Appendix A.

With regards to accuracy, it can be said, that in many applications to navigation,
the accuracy attained by using this ephemeris comes sometimes even close to the
results given in the NA and, in general, the error should not exceed ±1′.

1It also does not account for the perturbation caused by the Moon and the bulge of the Earth
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Algorithm I

Step 1: Input Year
Y

Month
M

Day
d

Hour
h

Minute
�m

Second
s

Step 2: Calculate UTC ¼ hþ �m � 0:016666666þ s � 0:000277777
¼

Step 3: Calculate or
use recorded value

y ¼ Y� 1; m ¼ Mþ 12; if M� 2; A ¼ int\y=100[ ; B ¼ 2� Aþ int\A=4 [
Y, m ¼ M, if M[ 2: if Y� 1582; D = d + UTC=24

�

¼
JD ¼ int\365:25 ðyþ 4716Þ[ þ int\30:6001 ðmþ l)[ þ DþB� 1524:5

¼
Step 4: Calculate

T0 ¼ JD0 � 2451545
36525

; DT ¼ 1.140771161 10�6 � UTC
T ¼ T0 þDT

JD0 ¼ JD� UTC = 24

¼
Step 5: Calculate GHA ¼ 100�:46061837þ 36000:77005 � T0 þ 15:04106865 � UTC

¼
Step 6: Calculate M ðT) ¼ 357�:52772þ 35999:05034 � T0 þ 0:04106667845 � UTC

¼
Step 7: Calculate ‘ ðT) ¼ 280�:46646þ 36000:76983 � T0 þ :04106864 � UTC

¼
Step 8: Calculate e ðT) ¼ 0:016708634� 0:000042037 � T0

¼
Step 9: Calculate C ðTÞ ¼ 180 � e

p
� 2 sinMþ e � 5=4 � sin 2Mþ e2 � ð13 = 12 sin 3M� 1 = 4 sin MÞ� �

¼
Step 10: Calculate e0ðTÞ ¼ 23�:439291111� 0:013004166 � T0

¼
Step 11: Calculate k ¼ Cþ 1; v ¼ CþM

¼
Step 12: Calculate RA � = tan–1(cos e0 � tan k)*, SHA � = 360° – RA �

¼
Step 13: Calculate GHA� = GHA ♈ + SHA�
Step 14: Calculate d ¼ sin�1ðsin e0 � sin kÞ

¼
Step 15 Calculate

r ¼ 1� e2

1þ e cos v
� AU:

¼

P ¼ 800:794
r

¼ HP�
¼

SD ¼ 95900:63
r

¼
*Note that tan�1 x is a multi-valued function with branches that are 180° apart, i.e., tan�1 x ¼ tan�1

0 x � k �
180�; k ¼ 0; 1; 2. . . tan�1

0 denotes the value of zero-branch as used in most calculators. To remove the inherent
ambiguity it is simply necessary to recall that the RA� of the true Sun can only differ by no more than ±4°2′
from the RA� = l (T) of the fictitious Sun
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The reader should also recall that P in the last formula of this algorithm denotes
the horizontal parallax as needed in sight reductions.

Next, let’s look at a practical example in order to illustrate how this algorithm
actually works:

Example Find the GHA and the declination d of the true Sun � on December 24,
2013 at 14h 25m 36s UTC.

Solution:

1. Input: Y = 2013, M = 12, d = 24, h = 14, �m ¼ 25, s = 36.
2. Calculate: UTC = 14.39333329
3. Calculate: JD0 = 2456650.5
4. Calculate: T0 = 0.139780971 and DT = 1.641949909 � 10−5
5. Calculate: GHA ♈ = 309°.1743264 = 309° 10’ 27”.6
6. Calculate: M (T) = 350°.1010164
7. Calculate: ‘ (T) = 273°.2801346
8. Calculate: e (T) = 1.6702758 � 10−2
9. Calculate: C (T) = −0.335937345

10. Calculate: e0 (T) = 23°.43747338
11. Calculate: k = 272°.9441973, m = 349°.7650791
12. Calculate: RA � = 273°.2084226, SHA � = 86°.79157738
13. Calculate: GHA � = 35°.96590378 = 35° 58 (NA = 35° 58′ 36′′)
14. Calculate: d = −23°.40469131 = −23° 24′ 16′′.8 (NA = −23° 24′.1)
15. Calculate: r = 0.983530723 AU. P = 8′′.94125602 = 0′.149020933

SD = 16′.26126018, AU = 1.49597870 � 108 km.

In all cases where higher accuracy is required, we need to include terms of T2 in
our approximations of the “exact” formulae and also include the effects of nutation
and aberration on the coordinates. The resulting algorithm will produce results that
can be classified as approximation of intermediate accuracy that should suffice for
the purpose of navigation. It should also be noted that the Julian Date JD does not
have to computed every time a “fix” is required since it suffices to calculate it, for
example, once a month when it is recorded in the ship’s Log and then the days are
added as time goes on.

In the above example, all the numerical calculations were carried out with a
simple, inexpensive, scientific calculator.

8.2 Intermediate Accuracy Ephemeris for the Sun

As a direct application of some of the explicit expressions provided in the previous
chapter, we can now write down an algorithm by taking terms of up to order two in
T and of up to order four in e into account in our formulae and also account for the
corrections for nutation and aberration. In order to provide the user with the option
of employing the results of the low accuracy algorithm, we shall use the superscript
“ ‘ “ for all the quantities of our improved algorithm #II.
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In case the user opts for the latter, all, except for three improved quantities, can
be calculated by simply adding one or two additional corrective terms to the results
of the low accurate algorithm. We then have:

Algorithm II

Step 1: Input Year Y Month M Day d Hour h Minute �m Second s

Step 2: Calculate UTC ¼ hþ �m � 0:016666666þ s � 0:000277777
¼

Step 3: Calculate
or use recorded value

y ¼ Y� 1; m ¼ Mþ 12; if M� 2; A ¼ int\y = 100[ ; B ¼ 2� Aþ int\A=4[
Y, m ¼ M, if M [ 2: if Y� 1582; D = d + UTC=24

�

¼
JD ¼ int\365:25 ðyþ 4716Þ[ þ int\30:6001 ðmþ l)[ þ DþB� 1524:5

¼
Step 4: Calculate

T0 ¼ JD0 � 2451545
36525

; DT ¼ 10.140771161 10�6 � UTC
JD0 ¼ JD� UTC = 24

T ¼ T0 þDT; T2 ffi T2
0 þ 2 � T0 � DT

¼
Step 5: Calculate M0ðTÞ ¼ 357�:52772þ 35999:05034 � T0 þ 0:04106667845 � UTC

� 1:603 � 10�4 � ðT0 þ 2:281542322 � 10�6 � UTCÞ � T0

¼ M(T) � 1:603 � 10�4 � ðT0 þ 2:281542322 � 10�6 � UTCÞ � T0

¼
Step 6: Calculate ‘0ðT) ¼ 280�:46646þ 36000:76983 � T0 þ 0:04106864 � UTC

þ 3:032:10�4 � ðT0 þ 2:281542322:10�6:UTCÞ � T0

¼ ‘ ðT)þ 3:032:10�4 � ðT0 þ 2:281542322:10�6:UTCÞ � T0

¼
Step 7: Calculate e0ðT) ¼ e ðT) ¼ 0:016708634� 0:000042037 � T0

¼
Step 8: Calculate C0ðTÞ ¼ 180 � e

p
� 2 sinM0 þ e0 � 5=4 � sin 2M0 þ e02 � ð13 = 12 sin 3M0 � 1 = 4 sin M0Þ� �

þ e04 � ð103 = 96 � sin 4M0 � 11 = 24 � sin 2M0Þ

¼ C ðT)þ e04 � ð103 = 96 � sin 4M0 � 11 = 24 � sin 2M0Þ � 180

p
¼

Step 9: Calculate X0ðTÞ ¼ 125�:04452� 1934:136261 � T0 � 2:206406868 � 10�3 � UTC
þ 2:0708 � 10�3 � ðT0 þ 2:281542322 � 10�6 � UTCÞ � T0

¼
Step 10: Calculate e00ðTÞ ¼ e0ðTÞþDe ¼ 23�:439291111 � 0:013004166 � T0 þDe

¼ 23�:439291111 � 0:013004166 � T0 þ 0:002556388 � cosX0

¼
Step 11: Calculate GHA’ ♈ = 100°.46061837 + 36000.77005 � T0 + 15.04106865 � UTC

+ 3.8793 � 10-4 � (T0 + 2.281542322 � 10-6 � UTC) � T0 – 0.0047777777 �
� cos e’ � sin X’
¼ GHA ♈ + 3.87933 � 10–4 � (T0 + 2.281542322 � 10-6 � UTC) � T0

– 0.0047777777 � cos e � sin X’
¼

(continued)
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(continued)

Step 12: Calculate k0 = C0 þ ‘0 þDkH þDw ¼ C0 þ ‘0 � j� 0.004777777 � sinX0

¼ C0 þ ‘0 � 0�:005694444 � 0�:004777777 � sinX0;
¼

and
v0 ¼ C0 þM0 - 0.004777777 � sinX0

¼
Step 13: Calculate RA �0 = tan–1(cos e′ � tan k′), SHA � = 360° – RA �0

¼
Step 14: Calculate GHA �0 = GHA’ ♈ + SHA �0

¼
Step 15: Calculate d0 ¼ sin�1ðsin e0 � sin k0Þ

¼
Step 16: Calculate

r0 ¼ 1� e02

1þ e0 cos v0
� AU:

¼

P0 ¼ 800:794
r0

¼

SD ¼ 95900:63
r0

¼

Next, let’s consider an example where the input is the same as in the previous
example in order to have a tangible comparison.

Example Find the GHA and the declination d of the true Sun � on December 24,
2013 at 14h 25m 36s UTC.

Solution:

1. Input: Y = 2013, M = 12, d = 24, h = 14, �m ¼ 25, s = 36.
2. Calculate: UTC = 14.39333329
3. Calculate: JD0 = 2456650.5
4. Calculate: T0 = 0.139780971 and DT = 1.641949909 � 10−5
5. Calculate: M′ (T) = 350°.1010133
6. Calculate: ‘′ (T) = 273°.2801405
7. Calculate: e′ (T) = 1.6702758 � 10−2

8*. Calculate: C′ (T) = 0−0.335937386
9. Calculate: X′ (T) = 214°.65573583

10. Calculate: e′ (T) = 23°.43537054
11. Calculate: GHA’ ♈ = 309°.177444923

12*. Calculate: k′ = 272°.9412255, m′ = 349°.7677928
13*. Calculate: RA �0= 273°.2051343, SHA �0 = 86°.79486571
14*. Calculate: GHA′ � = 35°.972318633 = 35° 58′ 20′′.4

8.2 Intermediate Accuracy Ephemeris for the Sun 299



15*. Calculate: d′ = −23°.40265784 = −23° 24′ 10′′
16*. Calculate: r′ = 0.983530723 AU. P′ = 0′.149020933

SD′ = 16′.26126018, AU = 1.49597870 108 km

Again, all the numerical evaluations of this section have been performed with a
simple calculator. However, for obvious reasons, it is highly recommended that the
potential user have a more sophisticated programmable calculator in addition to the
simple one.

In closing this section, the reader is reminded that besides the two algorithms
already presented in this section, a third has been previously outlined in Sect. 8.6
and has been designated as an emergency ephemeris.

In the next section, I will construct an algorithm for an ephemeris for the stars…
in particular, for the 57 most important stars to navigation for which all the nec-
essary data has been provided in Appendix A, making this book a practical manual
for navigation and not just a collection of navigational formulae.

8.3 Low Accuracy Ephemeris for the Stars

Because of the database available in Appendix A in the back of this book, it is
convenient to choose 2000AC for the epoch E0 as the initial epoch for this ephe-
meris. In the case of a low accuracy ephemeris it would suffice to go directly from
E0 to the final epoch E without invoking the exact formulae (4), (5), and (6),
Sect. 7.2. Furthermore, you may also neglect the effects of aberration and annual
parallax as well as the equation of the equinox. Then, according to the formulae of
Sect. 7.8 the true place of a star, taken as a good approximation to the apparent
place, can be found by executing the following algorithm:

Algorithm III

Step 1: Input Year
Y

Month
M

Day
d

Hour
h

Minute
�m

Second
s

RA* Declination RA component
of PM

d component of PM

a0 d0 la ld
Step 2: Calculate UTC ¼ hþ �m � 0:016666666þ s � 0:000277777

¼
Step 3: Calculate

y ¼ Y� 1; m ¼ Mþ 12; if M� 2; A ¼ int\y = 100[ ; B ¼ 2� Aþ int\A=4[
Y, m ¼ M, if M [ 2: D = d + UTC=24, if Y� 1582;

�

¼
JD ¼ int\365:25 ðyþ 4716Þ[ þ int\30:6001 ðmþ l)[ þDþB� 1524:5

¼
Step 4: Calculate

T0 ¼ JD0 � 2451545
36525

; JD0 constant from 0h : 00; JD0 ¼ UTC = 24

¼
T ¼ T0 þDT; and DT ¼ 1.140771161 � 10�6 � UTC
¼

(continued)
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Step 5: Calculate: GHA ♈ = 100°.46061837 + 36000.77005 � T0 + 15.04106865 � UTC
¼

Step 6: Calculate ms ¼ 3s:07496þ 0s:00180 � T0

¼
ns ¼ 1s:33621� 0s:00057 � T0

¼
m00 ¼ 15 �ms

¼
n00 ¼ 15 � ns

¼
Step 7: Calculate: DPas0 ¼ ðms þ ns � sin a0 � tan d0Þ � 102 � T

¼
DPd0 ¼ n00 � cos a0 � 102 � T; T ¼ T0 þDT

¼
Step 8: Calculate DPMas0 ¼ ðlsa þlsa � l00d15 � tan d0 � sin 100 � 102 � TÞ102T,

sin 100 ¼ 4:84813681 � 10�6

¼
DPMd0 ¼ ðl00d �

1
2
ðlsa � 15Þ2 � sin d0 � cos d0 � sin 100 � 102 � TÞ � 102T

¼
Step 9: Calculate X ðTÞ ¼ 125�:04452� 1934:136261 � T0 � 2:206406868 � 10�3 � UTC

¼
Step 10: Calculate: DW ¼ �1700:200 � sinX; and De ¼ 900:203 � cosX ¼ 0�:002556388 � cosX

¼
Step 11: Calculate eðTÞ ¼ e0ðTÞþDe ¼ 23�:439291111� 0:013004166 � T0 þ � 0:002556388

� cosX
¼

Step 12: Calculate as ¼ a0 þDPa0 þDPMa0 and ds ¼ d0 þDPd0 þDPMd0; in degress

¼
DNa00s ¼ Dw � ðcos eþ sin e � sin as � tan dsÞ � De � cos astan ds

¼
DNd

00
s ¼ Dw � sin e � cos as þDe � sin as
¼

Step 13: Calculate a ¼ as þDNas
¼

and
d ¼ ds þDNds
¼

Step 14: Calculate GHA* = GHA ♈ + SHA*
¼
and SHA* = 360° – a
¼
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Next, let’s consider an example to determine the true place (approximation for
apparent place) of the navigational star ALPHERATZ for which we have the
required data in Appendix A. For the time of observation we will use the time and
date used in the previous examples. (Just a suggestion… but if you record the
computed JD from the previous examples, you will avoid having to use the sub-
routine for finding it in this one.)

Example: Star—ALPHERATZ

Step 1: Input Year Month Day Hour Minute Second

2013 12 24 14 23 36

RA*
0h.8m 23s.3

Declination
29°.5′ 26′′

RA
Component
of PM
0s.136

d Component of
PM
−0′′.163

a0
2°.097083328

d0
29°.0905555

la
0°.000566666

ld
−0°.000045277

Step 2: Calculate UTC ¼ 14:39333329

Step 3: Calculate JD ¼ 2456650:5

T0 ¼ 0:139780971

DT ¼ 1:641949909 � 10�5

T ¼ 0:1397973914

Step 4: Calculate 102 � T ¼ 13:97973914

Step 5: Calculate GHA ♈ = 309°.1743264 = 309° 10’ 27”.6

Step 6: Calculate ms ¼ 3s:075219903

ns ¼ 1s:336130325

n00 ¼ 2000:04195487

Step 7: Calculate DPa0 ¼ 43s:3710675 ¼ 0�:180712781
DPd0 ¼ 0�:077776014

Step 8: Calculate DPMa0 ¼ 1s:901098268 ¼ 0�:007921242
DPMd0 ¼ �200:279535221 ¼ �0�:000633204

Step 9: Calculate: X ðTÞ ¼ 214�:65573583

Step 10: Calculate DW ¼ 900:780680262
De ¼ �700:570236834

Step 11: Calculate e ðTÞ ¼ 23�:43537054

Step 12: Calculate as ¼ 2�:285717351
ds ¼ 29�:16770831

DNas ¼ 1300:28235845 ¼ 0�:003689544
DNds ¼ 300:584900608 ¼ 0�:000995805

Step 13: Calculate a ¼ 2�:289406901
d ¼ 29�:16870412 ¼ 29 � :100 700:3 ðNA ¼ 29�:100 1800Þ

Step 14: Calculate SHA� ¼ 357�:7105931 ¼ 357� 430 ðNA ¼ 357� 430:lÞ
GHA� ¼ 306�:8849195 ¼ 306� 530
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8.4 Intermediate Accuracy Ephemeris for the Stars

In all cases where higher accuracy is required, you need to invoke the exact
equations for the effect of precession, the equation of the equinox and also take into
account the displacement due to aberration and, if necessary, the displacement due
to annual parallax. You should also choose the starting epoch to coincide with the
JD corresponding to the year 2000AC resulting in T0

0 ¼ 0 and hence in a consid-
erable simplification of the formulae (6) in Sect. 7.2 for the parameters f, H, and z
of the rotational transformation (3), (4), and (5), Sect. 7.2.

Algorithm IV

Step 1: Input Year
Y

Month
M

Day
d

Hours
h

Minutes
�m

Seconds
s

RA* Declination RA—
Component of
PM

d—Component of PM

a0 d0 la ld

Step 2: Calculate UTC ¼ h þ �m � 0:016666666þ s � 0:000277777
¼

Step 3: Calculate or Count
y ¼ Y� 1; m ¼ Mþ 12; if M ¼ 2; A ¼ int\y=100[ ; B ¼ 2� Aþ int\A=4[

Y, m ¼ M, if M[ 2; D = d + UTC=24, and for all Y ¼ 1583AC

�

¼
JD ¼ int\365:25 ðyþ 4716Þ[ þ int\30:6001 ðmþ l)[ þDþB � 1524:5

¼
Step 4: Calculate

T0 ¼ JD0 � 2451545
36525

; JD0 counts from 0h : 00; JD0 ¼ JD� UTC = 24

¼
T ¼ T0 þDT; and DT ¼ 1.140771161 � 10�6 � UTC
¼

Step 5: Calculate X ðTÞ ¼ 125�:04452 � 1934:136261 � T0 � 2:206406868 � 10�3 � UTC
¼

Step 6: Calculate DW ¼ �1700:200 � sinX; and De ¼ 900:203 � cosX
¼

Step 7: Calculate e ðTÞ ¼ e0ðTÞþDe ¼ 23�:439291111� 0:013004166 � T0 þ � 0:002556388 � cosX
¼

Step 8: Calculate GHA ♈ = 100°.46061837 + 36000.77005 � T0 + 15.04106865 � UTC
+ 0.000387933 � T0

2 - 0.004777777 � cos e � sin X
¼

Step 9: Calculate n = 2306”.2182 � T + 0”.30188 � T2

¼
H = 2004”.3109 � T – 0”.42665 � T2

¼
z = 2306”.2181 � T + 1”.09468 � T2

¼
(continued)
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(continued)

Step 10: Calculate A ¼ cos d0 � sin ða0 þ nÞ
¼

aP ¼ zþ tan�1 A
B

¼
dP ¼ sin�1C

¼
B ¼ cosH � cos d0 � cos ða0 þ nÞ � sinH � sin d0
¼

C ¼ sineH � cos d0 � cos ða0 þ nÞþ cos H � sin d0
¼

Step 11: Calculate DPMa0 ¼ ðlsa þ lsa � 15l00d tan d0 � sin 100 102 � TÞ 102 � T; sin 100 ¼ 4:8484368 � 10�6

¼
DPMd0 ¼ ðl00d � 1 = 2 ðlsa 15Þ2 � sin d0 � cos d0 � sin 100 102 � TÞ 102 � T

¼
Step 12: Calculate as ¼ ap þDPMa0

¼
ds ¼ dp þDPMd0

¼
DNas ¼ Dw ðcos eþ sin e � sin as � tan dsÞ � De � cos as � tan ds

¼
DNds ¼ Dw � sin e � cos as þDe � sin as

¼
Step 13: Calculate aT ¼ as þDNas

¼
dT ¼ ds þDNds

¼
DAaT ¼ �j � sec dT ðcos aT cos k� cos eþ sin aT � sin k�Þ

¼
DAdT ¼ �j � cos k� � cos eðtan e � cos dT � sin aT � sin dTÞ � j � cos aT � sin dT sin k�

¼
j ffi 2000:5

k�: longitude of true Sun to be found by using the subroutine for the
ephemeris for the Sun or using approximation*

Step 14: Calculate DAPaT ¼ P � sec dT ðcos aT cos e � sin k� - sin aT � cos k�Þ
¼

DAPdT ¼ P � ðcos df � sin e � sin k� � cos aT � sin dT cosk� � sin aT � sin dT sin k�Þ
¼

P: star’s geometirc parallax; k�: Sun’s longitude [see note *]

Step 15: Calculate a ¼ aT þDAaT þDAPaT
¼

d ¼ dT þDAdT þDAPdT
¼

Step 16: Calculate GHA* = GHA ♈ + SHA*
¼
SHA = 360° – a
¼

*For the purpose of calculating DA and DAP, one may resort to approximating k� by the mean longitude l(T)—
see formula (2), Sect. 2.3
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For the same of having a tangible comparison for the achieved accuracy at hand,
consider again the data of the previous example:

Example: Star * ALPHERATZ
Calculate the GHA* and the declination.

Step 1: Input Year
2013

Month
12

Day
24

Hours
14

Minutes
23

Seconds
36

RA*
0h.8m 23s.3

Declination
29°5′ 26′′

RA—
Component of
PM
0s.136

d—Component of
PM
−0s.136

a0
2°.097083328

d0
29°.0905555

la
0°.000566666

ld
−0°.000045277

Step 2: Calculate UTC ¼ 14:39333329

Step 3: Calculate JD ¼ 2456650:5

Step 4: Calculate T0 ¼ 0:139780971;

DT ¼ 1:641949909 � 10�5;

T ¼ 0:13979739

Step 5: Calculate X Tð Þ ¼ 214�:65573583

Step 6: Calculate Dw ¼ 900:780680262;De ¼ �700:570236834

Step 7: Calculate e Tð Þ ¼ 23�:43537054

Step 8: Calculate GHA ♈ = 309°.1768267 = 309°10’36”.6

Step 9: Calculate n = 0°.089558103,
H = 0°.077830304,
z = 0°.089562407

Step 10: Calculate A ¼ 0:033341687;

B ¼ 0:872554826;

C ¼ 0:487377067

Step 11: Calculate aP ¼ zþ tan�1A =B ¼ 2�:27785922

Step 12: Calculate: dP ¼ sin�1C ¼ 29�:1683291

Step 13: Calculate DPMa0 ¼ 0�:007921242;
DPMd0 ¼ �0�:000633204

Step 14: Calculate as ¼ a0 þDpa0 þDPMa0 ¼ 2�:285780462

Step 15: Calculate ds ¼ d0 þDpd0 þDPMd0 ¼ 29�:1676959

Step 16: Calculate DNas ¼ 0�:003689544

Step 17: Calculate DNds ¼ 0�:000995803

Step 18: Calculate aT ¼ as þDNas ¼ 2�:283470006

Step 19: Calculate dT ¼ ds þDNds ¼ 29�:1686917

Step 20: Calculate DAaT ¼ �000:16776099 ¼ �0�:0000466

Step 21: Calculate DAdT ¼ 900:623708627 ¼ 0�:002673252

Step 22: Calculate DAPaT ¼ �000:033628231 ¼ �0�:00000934

Step 23: Calculate: DAPdT ¼ �000:011275716 ¼ �0�:000003132

Step 24: Calculate a ¼ 2�:289414066 ¼ 2�1702100:9
(continued)
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(continued)

Step 25: Calculate d ¼ 29�:17136182 ¼ 29�1001700

Step 26: Calculate SHA� ¼ 357�:7105859 ¼ 357�4203800

Step 27: Calculate GHA� ¼ 306�:887685 ¼ 306�5301400:89

Concerning the accuracy of the results thus obtained it should be understood that
it is no longer meaningful to compare them relative to data that exhibits a lesser
degree of accuracy. By taking only the linear terms of the expressions which
depend on T (see Eqs. (1) to (8), Sect. 6.3) into account and by using the first two
terms in the Equation of the Center, the introduction of a simplified time parameter
s yields the algorithm presented in Sect. 8.5. Again, the errors should not
exceed ± 1′ in all relevant cases.

8.5 Compressed Low Accuracy Ephemeris for the Sun
and Stars for the Years 2014–

Algorithm V

Input Year
Y

Month
M

Day
d

Hour
h

Minute
�m

Second
s

RA* Declination R component
of PM

d component of PM

a0 d0 la ld
(1) D: Count the full days from day 01/01/2014 to the day of the instant in

question at 0h:00.
¼

(2) UTC ¼ hþ �m � 0:016666666þ s � 0:000277777
¼

(3) s ¼ 14þ 2:73785078 � 10�3 � D
¼

(4) GHA ♈ = 100°.46061837 + 360°.77005 � s + 15.04106865 � UTC
¼

SUN
(5S) M ðsÞ ¼ 357�:52772þ 359�:990503 � sþ 0:04106667845 � UTC

¼
(6S) ‘ ðsÞ ¼ 280�:46646þ 360�:007698 � sþ 0:04106864 � UTC

¼
(7S) e ðsÞ ¼ 0:016708634� 0:00000000420 � s

¼
(8S) e0ðsÞ ¼ 23�:439291111� 0:000130042 � s

¼
(continued)
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(continued)

(9S)
C ðsÞ ¼ 180

p
� e � ð2 sin M + e � 5

4
� sin 2MÞ

¼
k�ðsÞ ¼ C ðsÞþ ‘ ðsÞ

¼
(10S) RA � = tan -l (cos e0 � tan k�)*

¼
SHA � = 360° - RA �
¼

(11S) GHA � = GHA ♈ + SHA �
¼
E.T. = 4 � (‘(s) - RA �)
¼

(12S) d ¼ sin�1ðsin e0 sink�Þ
¼

v ¼ CþM

¼

SD ¼ 95900:63
r

¼

r ¼ 1� e2

1þ e cos v
� AU

¼

P =
800:794

r
¼

STARS
(5*) m00 ¼ 4600:1244þ 0:000279 � s

¼
n00 ¼ 2000:0431� 0:000085 � s

¼
(6*) a ¼ a0 þ 2:777777 � 10�4 � ðm00 þ n00 � sin a0 � tan d0 þ l00a Þ � s

¼
d ¼ d0 þ 2:777777 � 10�4 � ðn00 � cos a0 þ l00dÞ � s
¼

(7*) GHA* = GHA ♈ + SHA*
¼
SHA* = 360° – a
¼

*Select the correct branch of tan−1 x by assuring that the RA is no more than about ±4° away from
l (s)
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Example 1: SUN

Input: 2013 12 24 14 23 36

(1) D = −8
(2) UTC = 14.39809719
(3) s = 13.97809719
(4) M = 350°.1010462
(5) ‘ = 273°.2801664
(6) e = 0.016702763
(7) e0 = 23°.43747337
(8) GHA ♈= 309°.1743661
(9) C = −0.335804634, k� = 272°.9443614

(10) RA � = 273°.2086018, SHA � = 86°.79139818
(11) GHA � = 35°.96576428 ≅ 35° 58’, ET = 17s.2
(12) d = −23°.40468763 = −23° 24′ 16′′.9

Example 2: STAR* ALPHERATZ

Input: 2013 12 24 14 23 36
2°.097083328 29°.0905555 0′′.000566666 − 0′′.000045277

(1) D = −8
(2) UTC = 14.39333329
(3) s = 13.97809719
(4) GHA ♈= 309°.1743661
(5) m′′ = 46′′.12829989, n′′ = 20′′.04191189
(6) a = 2°.277777057, d = 29°.16832204 = 29° 10′ 6′′
(7) SHA* = 357°.7222229 = 357° 43′ 20′′

GHA* = 306°.896589 = 306° 53′ 47′′.7

8.6 The Earth Viewed as a Gyro

In the first part of this book, our working assumption was that the Earth was a
SPHEROID. Now, it’s time to imagine that the Earth is simply a sphere with bulges
near the equator. By employing this model, we can readily see that there are

unequal forces of attraction Fþ
�!

and F�
�!

on these bulges. (See Fig. 8.6.1.)
Since the net gravitational torque on a spherical planet is zero, we only have to

deal with the resulting torque exerted by the forces Fþ
�!

and F�
�!

. These torques are:

Cþ
�! ¼~a � Fþ

�!
, and C�

�! ¼ �~a � F�
�!

. Hence, the resulting torque is:

C
!¼ �~a � ðFþ

�!� F�
�!Þ.

A similar situation exists with regards to the attraction by the Moon and the
Planets. By adding up these additional torques and averaging with the torque of the
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Sun, we may conclude that there exists a torque C
!

on the Earth that is perpen-
dicular to the figure axis of the Earth and the normal to the ecliptic. (See Fig. 8.6.2.)

By taking into account the motion of the Moon and Planets relative to the Earth
and Sun, we can see that there exists additional forces exerted by the mutual
gravitational attraction of said bodies on the Earth resulting in additional torques
that try to pull the equator of the Earth into the plane of the ecliptic. Therefore, the
angle e between the Earth and the ecliptic is no longer constant but a periodic
function of time.

It is also important to realize that it is a gross oversimplification to assume that
the Earth is a SPHERICAL GYRO, i.e., a spheroid with three equal major
movements of inertia. However, it is sufficiently realistic to assume that the Earth
“represents” a SYMMETRIC GYRO, i.e. a spheroid with two equal major
moments of inertia. It follows then that the figure axis of the Earth ~k, the axis of

angular momentum L
!
, and the axis of rotation ~x lie in a common plane. (See

Fig. 8.6.3.)

In actuality, the angles between the vectors k0
!
; L
!
, and ~x are very small indeed,

as we will see later.

Fig. 8.6.1

Fig. 8.6.2
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Another very important consideration is to distinguish between secular and
periodic forces and torques. Accordingly, their net effects on the motion of the axis
of the Earth are divided in secular and periodic changes of the axis of the Earth and
therefore, on the coordinates of all celestial bodies (CB).

Summarizing the aforementioned phenomena, we can state that the axis of the

rotation ~x, as well as the figure axis k0
!

prescribe a circular cone about the axis of
the angular momentum which, in turn, prescribes a circular cone about the normal~k
to the ecliptic, resulting in a conical motion which “wobbles” about the normal to
the ecliptic. (See Fig. 8.6.4.)

Fig. 8.6.3

Fig. 8.6.4
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Accordingly, the secular components of the motion of the Earth-axis are referred
to as PRECESSION, and the periodic components are referred to as NUTATION.
Since our objective has been to calculate the effects of precession and nutation on
the equatorial coordinates of the CBs, it is appropriate to give a brief outline of the
underlying analytic treatment of these two phenomena without going deep into the
theory of Celestial Mechanics, but rather to explain where the limitations of said
theory are.

As the result of Newton’s Law of Inertia, we can write down the equation of the
motion of the “rigid spheroid” Earth as:

(1) d
dt L
!¼ C

!
, where L

!
denotes the angular momentum and C

!
torque.

It can also be readily shown that:

(2) L
!¼ P (I)~x, where P(I) denotes the tensor of inertia – think of it as a special
matrix in three dimensions, namely:

(3) P (I) =
Ixx �Ixy �Ixz
�Ixy Iyy �Iyz
�Ixz �Iyz Izz

0
@

1
A, where Ixx denotes the moment of inertia

about the x-axis; Iyy the moment of inertia about the y-axis; and Izz the
moment of inertia about the z-axis. The elements Ixy; Ixz and Iyz are referred to
as the moments of derivation, for obvious reasons.
It follows then from (2) and (3) that, in general, and in particular in case of the
Earth, the angular momentum and the axis of rotation do not have the same
direction in space, as has been pointed out earlier. This is true even in the
case of zero external forces, i.e., C ¼ 0 [76, 77]
It can now be shown that the tensor of inertia (3) can be reduced to a much
simpler form, namely:

(4) P(I) =
I1 0 0
0 I2 0
0 0 I3

0
@

1
A, by transformation of the space-like coordinate system

~i;~j; ~k to a fixed body coordinate system i0
!
; j0
!
; k0
!
. The scalars I1; I2; I3

represent the major-principal moments of inertia about the three

major-principal axes i0
!
; j0
!
; k0
!
, which are again mutually perpendicular to

each other. The origin ~0 of said coordinate system coincides with the center
mass of the rigid body. In all cases where two of those three major-principal
moment are equal, such a gyro should be referred to as a symmetric gyro and
arranged so that I1 ¼ I2 = Is; I3 = I

If we choose as axis of symmetry the figure axis denoted by the vector k0
!
, and

as the other corresponding two major-principal axes the vectors s0
!

and s00
!

that

are mutually perpendicular and also perpendicular to k0
!
, i.e., k0

! � s0! ¼
0; k0

! � s00! ¼ 0 and s0
! � s00! ¼ 0, then I becomes the moment of inertia about k0

!
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and Is the moment of inertia about s0
!

and s00
!
.

Next, let us define the scalar ɤ by:

(5) ɤ = I
Is, then it can be shown that 1 < ɤ < 2. [77]

If we now write the vector of rotation ~x as the sum of a vector xs
�! that is

perpendicular to k0
!
, i.e., k0

! � xs
�! ¼ 0, and the vector xz � k0

!
, we obtain:

(6) ~x ¼ xs
�!þxz � k0

!
.

Substituting (6) into Eq. (2) and using (4) and (5), we conclude that

(7) L
!¼ I

c � xs
�!þ I � xz k0

!
. Eliminating xs

�! from (6) yields:

(8) ~x ¼ c
I � L

!� ðc� 1Þ � xz k0
!
. Differentiating (8) and employing Eq. (1) yields:

(9) C
!¼ I

c
d~x
dt þðc� 1Þ � dxz

dt � k
0!þxz � dk

0!
dt

� �� �
, the equation of the gyro.

Recalling that any radian vector~r that rotates with an angular velocity x about

a unit vector ~u has a linear or tangential velocity d~r
dt that can be expressed by

d~r
dt ¼ ~x �~r, where ~x ¼ x �~u. Therefore, we may use the expressions:

dk0
!
dt ¼ xx

�! � k0
!
; d xs

�!
dt ¼ k0

! � xs
�!, and d L

!
dt ¼ k0

! � L
!

in our calculus.

By multiplying, i.e., by using the dot-product, Eq. (9) by k0
!

and taking into

account Eq. (6) as well as the fact that k0
! � ð~r � k0

!Þ ¼ 0 for any vector~r, we

may conclude that: Cz0 ¼ k0
! � C!¼ I � dxz0

dt . Therefore, for all external forces

that result in Cz ¼ 0, we have: dxz

dt ¼ 0, and hence –

(10) xz ¼ const:, a very important result indeed.
On account of expressions (10) and (6), Equation (9) reduces to:

(11) C
!¼ I

c � ðd xs
�!
dt þ c � xz

dk0
!
dt Þ.

A very important special case results if we neglect the first term in (11) the
result of this approximation is the much simpler equation:

(12) C
!¼ I � xz � dk

0!
dt , referred to as the equation of the precession. It should be

noted that in most applications the quantity d xs
�!
dt is very small in comparison

to the second term in Eq. (11). A further simplification in solving (12) results

if we consider the cased where C
!			 			 ¼ const. Then, together with xz ¼ const:,

we obtain a constant rate of precession, i.e., dk0
!
dt

				
				 ¼ const.

Next, let’s apply these results to a simple model of the gyro-Earth and also
illustrate of the most important properties of a gyro.
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Examples: Gyro-Earth—A Simplified Approach

Here we assume that C
!¼ R � k0! � ð�mB gS~kÞ ¼ mB � gS � R �~k� k0

!
, where “R”

denotes the radius of the Earth, “mB” denotes the mass of the Earth’s bulges, and
“gS” denotes the gravitational constant related to the mutual attraction of the Sun
and Earth.

It follows from the above equation that C
!			 			 ¼ R �mB � gS sin/ where “/”

denotes the angle between ~k and k0
!
, i.e., the angle between the figure axis of the

Earth and the normal to the ecliptic. Our simplified model eliminates the effects of

nutation since C
!			 			 ¼ const: implies that xz ¼ const . On the other hand, we can

deduce from Eq. (12) that:

C
!¼ I � xz � dk

0!
dt ¼ I � xz � xp

�! � k0
! ¼ I � xz � xp~k � k0

! ¼ mB gS R~k � k0
!
,

where “ xp
�!” denotes the angular velocity of precession:

(13) xp ¼ mB � gS � R
I � xz

.

Of course, the constants I, mB, and gS are only known approximately and
therefore, numerical values for the precession can only be obtained experimentally.
From astronomical observations, it has been determined that:

xp ¼ 360�

25800 y
¼ 5000:23

year
¼ 1�:5918 � 10�6

hour
, as compared to xz ¼ 15�

hour
. Hence

xp  xz, indeed.

Gyro Compass—a simplified approach

In order to illustrate the most important aspect of a gyro, let’s consider a solid wheel
mounted on an axel that is supported by movable bearing on two ends. (See
Fig. 8.6.5 below.)

The wheel is now spun around increasing the angular velocity until one of its
supports can be removed. Instead of dropping to the floor, its axis, that is now
perpendicular to the force of gravity, wanders around the second support that rotates
freely in the plane that is parallel to the floor. The mathematical treatment is exactly
the same as in the Gyro-Earth example and the rate of precession is again give by
Eq. (13). However, in this case, the parameters are known.

In conclusion, we can say that although we know the fundamental Eqs. (9) and
(11) of the gyro, we still will need the necessary initial values as wells the
knowledge of the resulting torque and the principal moments of inertia in order to
solve them.

Of course, finding these parameters is a highly theoretical task reserved for the
discipline of Celestial Dynamics. But it should be obvious by now that we will have
to employ experimental facts to arrive at viable numerical results involving many
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other disciplines, as for instance, geology, oceanography, experimental astronomy
and numerical analysis to mention just a few.

So far as we know, at this point of history, exact values for the major-principal
moments of inertia are not known and the multi-body of dynamics can only be
solved approximately by numerical methods or by series expansions that are based
on the theory of perturbation resulting in hundreds of terms necessary to come even
close to support the experimental results (see also related literature [74–80]).

Fig. 8.6.5

314 8 Ephemerides



Appendix A
Condensed Catalogue for the 57
Navigational Stars and Polaris

EPOCH 2000/12h:00

Name Constellation SAO# Mag RA h/m/s d0/′/″ l00a l00d P00

Acamar Eridanus 216113 3.24 02/53/15.7 −40/18/17 −0.045 0.018 0.035

Achernar Eridanus 232481 0.46 01/37/42.9 −57/14/12 0.095 −0.035 0.026

Acrux Crux 257964 1.33 12/26/35.9 −63/05/57 −0.036 −0.036 0.008

Adhara Canis Major 172676 1.5 06/58/37.5 −28/58/20 0.004 0.003 0.001

Aldebaran Taurus 94027 0.85 04/36/55.2 16/30/33 0.063 −0.19 0.048

Alioth Ursa Major 28553 1.77 12/54/01.7 55/57/35 0.112 −0.006 0.009

Alkaid Ursa Major 44752 1.86 13/47/32.4 49/18/48 −0.122 −0.011 0.035

Al Nair Grus 230992 1.74 22/08/14 −46/57/40 0.129 −0.151 0.057

Alnilam Orion 132346 1.7 05/36/12.8 −01/12/7 0.001 −0.002 0.002

Alphard Hydra 136871 1.98 09/27/35.2 −08/39/31 −0.014 0.033 0.022

Alphecca Corona
Borealis

83893 2.23 15/34/41.3 26/42/53 0.121 −0.089 0.049

Alpheratz Andromeda 73765 2.06 00/08/23.3 29/05/26 0.136 −0.163 0.032

Altair Aquila 125122 0.77 19/50/47 08/52/06 0.538 0.386 0.198

Ankaa Phoenix 215093 2.39 00/26/17 −42/18/22 0.203 −0.396 0.035

Antares Scorpius 184415 0.96 16/29/16.4 −26/25/55 −0.01 −0.02 0.024

Arcturus Boötes 100944 −0.04 14/15/37.7 19/10/57 −1.093 −1.998 0.09

Atria Triangulum
Australe

253700 1.92 16/48/39.9 −69/01/40 0.014 −0.034 0.031

Avior Carina 235932 1.86 08/22/30.8 −59/30/35 −0.026 0.014

Bellatrix Orion 112740 1.64 05/25/07.9 06/20/59 −0.009 −0.014 0.029

Betelgeuse Orion 113271 0.5 05/55/10.3 07/24/25 0.026 0.009 0.005

Canopus Carina 234480 −0.72 06/23/57.1 −52/41/45 0.022 0.021 0.028

Capella Auriga 40186 0.08 05/16/41.4 45/59/59 0.076 −0.425 0.073

Castor Gemini 60179 1.98 07/34/36 31/53/18 −0.171 −0.098 0.067

Deneb Cygnus 49941 1.25 20/41/25.9 45/16/49 0.003 0.002 0.006

Denebola Leo 99809 2.14 11/49/36 14/34/19 −0.407 −0.114 0.082

Diphda Cetus 147420 2.04 00/43/35.4 −17/59/12 0.234 0.033 0.061

Dubhe Ursa Major 15384 1.79 11/03/43.7 61/45/03 −0.119 −0.067 0.038

Elnath Taurus 77168 1.65 05/26/17.5 28/36/27 0.022 −0.175 0.028
(continued)
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(continued)

Name Constellation SAO# Mag RA h/m/s d0/′/″ l00a l00d P00

Eltanin Drago 30653 2.23 17/56/36 51/29/20 −0.008 −0.019 0.025

Enif Pegasus 127029 2.39 21/44/11.2 09/52/30 0.031 −0.001 0.006

Fomalhaut Piscis
Austrinus

191524 1.16 22/57/39.1 −29/37/20 0.333 −0.165 0.149

Gacrux Crux 240019 1.63 12/31/09.9 −57/06/48 0.023 −0.262

Gienah Corvus 157176 2.59 12/15/48 −17/32/31 −0.161 0.023

Hadar Centaurus 252582 0.61 14/03/49.4 −60/22/23 −0.032 −0.019 0.009

Hamal Aries 75157 2.00 02/07/10.4 23/27/45 0.19 −0.148 0.048

Kaus
Australis

Sagittarius 210091 1.85 18/24/10.3 −34/23/0.5 0.038 −0.124 0.023

Kochab Ursa Minor 8102 2.08 14/50/42.3 74/09/20 −0.031 0.012 0.039

Markab Pegasus 108378 2.49 23/04/45.7 15/12/19 0.063 −0.042 0.038

Menkar Cetus 110920 2.53 09/02/16.8 04/05/23 −0.009 −0.078 0.009

Miaplacidus Carina 250495 1.68 09/13/12 −69/43/02 −0.162 0.108 0.021

Mirfak Perseus 38787 1.79 03/24/19.4 49/57/40 0.024 −0.025 0.016

Nunki Sagittarius 187448 2.02 18/55/15.9 −26/17/48 −0.013 −0.054

Peacock Pavo 246574 1.94 20/25/38.9 −56/44/06 0.007 −0.089

Pollux Gemini 78666 1.14 07/45/18.9 28/01/34 −0.628 −0.046 0.091

Procyon Canis Minor 115756 0.38 07/39/18.1 05/13/30 −0.71 −1.023 0.288

Raselhague Ophiuchus 102932 2.08 17/34/56.1 12/33/38 0.12 −0.226 0.067

Regulus Leo 98967 1.35 10/08/22.3 11/58/02 −0.248 0.006 0.045

Rigel Orion 131907 0.12 05/14/32.3 −08/12/06 0.00 −0.001 0.013

Rigel
Kentaur

Centaurus 252838 −0.01 14/39/35.9 −60/50/07 −3.642 0.699 0.751

Sabik Ophiuchus 160332 2.43 17/10/22.7 −15/43/29 0.039 0.098 0.052

Schedar Cassiopeia 21609 2.23 00/40/30.5 56/32/14 0.053 −0.032 0.015

Shaula Scorpius 208954 1.63 17/33/36.5 −37/06/14 −0.001 −0.029

Sirius Canis Major 151881 −1.46 06/45/08 −16/42/58 −0.553 −1.205 0.375

Spica Virgo 157923 0.98 13/25/11.6 −11/09/41 −0.041 −0.028 0.023

Suhail Vela 219504 1.78 08/09/32 −47/20/12 −0.004 0.006 0.017

Vega Lyra 67174 0.03 18/36/56.3 38/47/01 0.202 0.286 0.123

Zubenel-
genubi

Libra 158840 2.75 14/50/52.1 −16/02/30 −0.106 −0.067 0.05

POLARIS Ursa Minor 308 2.02 02/31/48.7 89/15/51 0.038 −0.015 0.00
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Appendix B
Greek Alphabet

A a a Alpha N m Nu

B b б Beta N n Xi

C c Gamma O o Omicron

D d Delta P p - Pi

E e Epsilon P q Rho

Z f Zeta R r 1 Sigma

H η Eta T s Tau

H h 0 Theta ! t Upsilon

I i Iota U / u Phi

K j Kappa X v Chi

K k Lambda W w Psi

M l Mu X x Omega

© Springer International Publishing AG 2018
K.A. Zischka, Astronavigation,
DOI 10.1007/978-3-319-47994-1

317



Appendix C
Star Charts

North Sky Chart

Image credit www.mapsharing.org/MS-maps/map-pages-space-map/2-space-map-north-sky.html
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South Sky Chart

Image credit www.mapsharing.org/MS-maps/map-pages-space-map/3-space-map-south-sky.html
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