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Abstract

This paper is devoted to one of the members of the Göttingen triumvirate, Gauß,

Dirichlet and Riemann. It is the latter to whom I wish to pay tribute, and especially

to his world-famous article of 1859, which he presented in person at the Berlin

Academy upon his election as a corresponding member. His article entitled, “Über

die Anzahl der Primzahlen unter einer gegebenen Größe” (“On the Number of Primes

Less Than a Given Magnitude”), revolutionized mathematics worldwide. Included

in the present paper is a detailed analysis of Riemann’s article, including such novel

concepts as analytical continuation in the complex plane; the product formula for

entire functions; and, last but not least, a detailed study of the zeros of the so-called

Riemann zeta function and its close relation to determining the number of primes

up to a given magnitude, i.e., an explicit formula for the prime counting function.
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Short Biography of Bernhard Riemann (1826 - 1866)

Bernhard Riemann was born in Breselenz near Dannenberg in Lower Saxony in 1826.

Like his father, he was first supposed to become a pastor, but already in high school

Riemann’s extraordinary mathematical talent caught the attention of his principal. It

is said that Riemann read the 859-page book by Legendre on number theory which was

loaned to him by the principal in one week. He began studying mathematics in Göttingen,

where he attended lectures by Gauß, although they were closed to first-semester students.

Riemann then transferred to Jacobi and Dirichlet in Berlin, both of whom supported and

encouraged him; he then returned to Göttingen. His doctoral thesis was on the theory of

functions. In order to be permitted to teach as private lecturer in Göttingen, candidates

had to submit three suggestions for the topic of their Habilitation lecture, and normally

the department head would choose the uppermost topic on the list. Riemann’s third topic

was “Basics of Geometry”, and when Gauß read that, he, as department head, selected

that topic for Riemann’s Habilitation lecture. Very much surprised, Riemann put all his

research on the topic “Electricity, Magnetism, Light and Graviation” aside and in 1854,

two months before his trial lecture, created the foundations of differential geometry. Gauß

was thrilled! In 1855 Gauß died and was followed by Dirichlet. When Dirichlet died four

years later, Riemann took over the mathematics chair at Göttingen University. In 1862,

he married Elise Koch, with whom he had one daughter. Riemann fell ill with TB and

looked for relief in the milder climate of Tessin, where he died at the early age of only 39

at Lake Maggiore.

In addition to founding differential geometry, Riemann made other major contributions;

especially important was his work in the theory of functions; his “Über die Anzahl der

Primzahlen unter einer gegebenen Größe” (On the Number of Primes up to a Given Mag-

nitude), communicated in the “Monatsberichte der Berliner Akademie, November 1859,

with findings on the zeta function; his works on the theory of integration, the Fourier

transformation, the hypergeometric differential equation, and the hyperbolic differential

equations and stability problems of solutions of partial differential equations in mathemat-

ical physics. Riemann was influenced by the research on algebraic geometry and topology

by his Italian mathematician friends Betti and Beltrami. Einstein’s General theory of

Relativity would be unthinkable without Riemannian Geometry.

All these topics have kept mathematicians and theoretical physicists busy for many years

and will continue to do so for many more to come. Today, exactly 150 years after Rie-
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mann’s death, the major unsolved problem in pure mathematics is the so-called Riemann

hypothesis, a conjecture made by Riemann in 1859 in his paper on the number of primes

less than a given positive integer x.

Mathematicians later realized that Riemann’s hypothesis governs the distribution of prime

numbers to an extraordinary extent, which is why its proof is so eagerly sought. Since

all the efforts of some of the best mathematicians have failed so far, perhaps another

Riemann is needed.

This is also true for many local relativistic quantum field theory models of elementary

particles, where Riemann’s results are of utmost importance for handling infinities with

the aid of his zeta-function regularization. In non-relativistic quantum mechanics, we

need a Riemannian Hamiltonian which becomes diagonalized in the prime number basis.

The measurement process, i.e., the operator acting on an object that will provide us with

such a set of discrete prime number eigenvalues, is still to be found. One might wonder

what kind of symmetry structure lies behind this kind of physical system.

Let us not forget that the few papers that Riemann published in his lifetime dealt with

physics problems. Moreover, in the days of Gauss, Dirichlet and Riemann, a distinction

between the disciplines of mathematics and physics was not made. In particular, Rie-

mann approached problems in mathematics and physics not so much as an analyst but

illuminated them globally from a geometric and topological viewpoint, meaning that he

made many results of analysis better understood using the new methods of the theory of

functions and analytical continuation into the whole complex plane, thereby simplifying

many problems of real analysis.

1 Towards Euler’s Product Formula and Riemann’s Ex-

tension of the Zeta Function

There is a very close connection between the sums of the reciprocals of the integers raised

to a variable power that Euler wrote down in 1737, the now-called zeta function,

ζ(s) =

∞∑

n=1

1

ns
= 1 +

1

2s
+

1

3s
+

1

4s
+

1

5s
+ · · · , s > 1 (1)

and the primes - which, as integers, are the very signature of discontinuity. Euler con-

sidered s to be a real integer variable with s > 1 to insure convergence of the sum.
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Multiplying the definition of ζ(s) by 1/2s we obtain

1

2s
ζ(s) =

∞∑

n=1

1

(2n)s
=

1

2s
+

1

4s
+

1

6s
+

1

8s
+ · · · (2)

and subtracting this from ζ(s) we get

ζ(s)− 1

2s
ζ(s) =

∞∑

n=1

1

ns
−

∞∑

n=1

1

(2n)s

or

(

1− 1

2s

)

ζ(s) = 1 +
1

3s
+

1

5s
+

1

7s
+

1

9s
+

1

11s
+ · · · . (3)

Hence all the multiples of the prime n = 2 disappeared from the original sum of the

defined ζ(s). In short, we found

(

1− 1

2s

)

ζ(s) =
∞∑

n=1
Λn6=2k

1

ns
. (4)

Next, we multiply this last result by 1/3s to obtain

1

3s

(

1− 1

2s

)

ζ(s) =

∞∑

n=1
Λn6=2k

1

(3n)s
= 1 +

1

3s
+

1

9s
+

1

15s
+

1

21s
+ · · · (5)

and so, subtracting this from (1− 1/2s)ζ(s), we have
(

1− 1

2s

)(

1− 1

3s

)

ζ(s) = 1 +
1

5s
+

1

7s
+

1

11s
+ · · ·

=
∞∑

n = 1

Λn 6= 2k

Λn 6= 3k

1

ns
. (6)

Now we multiply this result by 1/5s and so on. As we repeat this process over and

over, multiplying through our last result by 1/ps, where p denotes successive primes, we

subtract out all the multiples of the primes. Hence, since all integers are composed of

primes (Euclid’s fundamental theorem of the theory of numbers), we removed all numbers

of the right-hand side of the defining sum of ζ(s) - except for the number 1. Thus our

final result is the product

{
Πpprime

(
1− p−s

)}
ζ(s) = 1 (7)
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or

ζ(s) = Πp prime

1

1− p−s
=

∞∑

n=1

1

ns
, s > 1 . (8)

Euler’s actual statement reads: “Si ex serie numerorum primorum sequens formetur ex-

pressio
∏

p

ps

(ps−1)
erit eius valor aequalis summae huius seriei

∑

n=1

1
ns .”

Now we are going to extend Euler’s zeta function into the complex plane C, which is a

major achievement of Riemann’s. Hence from now on, s is complex valued and we write

ζ(s) =
∞∑

n=1

1

ns
=

1

12
+

1

22
+

1

32
+ · · · but with Re(s) > 1 . (9)

This is an absolutely convergent infinite series, which also holds true for the product of

all primes in

ζ(s) = Πp prime

1

1− p−s
=

(
1

1− 2−s

)

·
(

1

1− 3−s

)

·
(

1

1− 5−s

)

· · ·
(

1

1− p−s

)

· · · . (10)

ζ(s) has no zeros in the region Re(s) > 1, as none of these factors have zeros. However,

with Riemann’s extension of zeta into the entire complex plane, we will be able to locate

zeros as well as poles. To show this, we have to analytically continue Euler’s original real

valued zeta function into the entire complex s plane. A first result in this direction will

be achieved with the aid of the so-called Dirichlet series, which turns up when calculating

(1− 21−s)ζ(s) =
∞∑

n=1

n−s − 21−s
∞∑

n=1

n−s =
∞∑

n=1

n−s − 2
∞∑

n=1

(2n)−s

= 1− 2

2s
+

1

2s
− 2

4s
+ · · · = 1− 1

2s
+

1

3s
− 1

4s
+

1

5s
− 1

6s
+ · · ·

=
∞∑

n=1

(−1)n+1

ns
=: η(s) , Dirichlet series . (11)

This series is convergent for all s ∈ C with Re(s) > 0. Hence we can define

ζ(s) =
1

1− 21−s

∞∑

n=1

(−1)n+1

ns
for Re(s) > 0 and 1− 21−s 6= 0 . (12)

When we write

η(s) +
2

2s
ζ(s) =

∞∑

n=1

(−1)n+1

ns
+

2

2s

∞∑

n=1

1

ns

=
∞∑

n=1

(
1

(2n− 1)s
− 1

(2n)s
+

2

(2n)s

)

=
∞∑

n=1

1

ns
= ζ(s) , (13)



6

we can collect our results so far in the string of formulae

ζ(s) =
1

1− 21−s

∞∑

n=1

(−1)n+1

ns
=

η(s)

1− 21−s
=

1

s− 1

∞∑

n=1

(
n

(n+ 1)s
− n− s

ns

)

. (14)

Most important, we can continue ζ(s) into the realm of the critical strip 0 < Re(s) < 1.

Of course, the zeros in the denominator in the representation given above have to be

excluded, i.e., from

1− 21−s = 0 (15)

follows

1 = e(1−s) log 2 (16)

meaning

2πin = (1− s) log 2 (17)

or

s = 1− 2πin

log 2
, n ∈ Z . (18)

Having shown that the zeta function can be analytically continued into the half plane

{s ∈ C|Re(s) > 0, s 6= 1}, we still have to prove that ζ(s) has a pole at s = 1:

lim
s→1

ζ(s) = lim
s→1

(s− 1)

1− 21−s

∞∑

n=1

(−1)n+1n−s = lim
s→1

(s− 1)

1− 21−s
log 2

= lim
s→1

1

− log 2 · 21−s · (−1)
log 2 = lim

s→1

1

21−s
= 1 , (19)

where we used Abel’s theorem limx→1− log(x+1) = log 2 and the continuity of log(x+1).

How about arguments for the zeta function equal to or less than zero? Later we will show

that the zeta function satisfies the functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)

Γ(1− s)ζ(1− s) . (20)

This defines ζ(s) in the whole complex s plane. Note that the left-hand side goes over by

just changing s → 1 − s into ζ(1− s), so that we can compute ζ(1− s), given ζ(s), e.g.,

ζ(−15) in terms of ζ(16).

If s is a negative even integer, then ζ(s) = 0 because the factor sin(πs/2) vanishes. These

are the trivial zeros of the zeta function. So all non-trivial zeros lie in the critical strip

where s has a real part between 0 and 1.
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Here is a first curiosity that needs further interpretation. If one substitutes in the func-

tional equation s = −1, one obtains

ζ(−1) = 2−1π−2(−1)Γ(2)ζ(2) =
1

2
· 1

π2
(−1) · 1 · π

2

6
= − 1

12
, (21)

which means that ζ(−1) = −1/12.

This regularized value of ζ(−1) has absolutely nothing to do with the real-space represen-

tation of ζ(−1) by the divergent series ζ(−1) =
∞∑

n=1

1
n−1 = 1+ 2 + 3 + 4 + · · · , which tells

us that the same function can have different representations. Some very learned mathe-

maticians entertain the opinion that the zeta-function regularization has swept away the

ugly infinities and produced the “golden nugget” of the otherwise nonconvergent series.

In quantum field theory one observes the same phenomena, where the zeta-function regu-

larization makes infinities disappear (Casimir effect, quantum electrodynamics, quantum

chromodynamics and particle production near black holes). We will come back to this

point toward the end of this article.

2 Prime Power Number Counting Function

On the way to showing the significance of the zeta zeros for counting prime numbers up to a

given magnitude, Riemann introduces an important weighted prime number function f(x).

We will call it Π(x) while others use J(x). Since this function is of utmost importance,

we will start introducing it by way of examples.

First, the definition of Π(x) is given by

Π(x) =
∑

pn<x

pprime

1

n
, (22)

i.e., for every prime number power pn which is smaller than x, we sum up its fractions;

for example,

Π(20) =

(
1

1
+

1

2
+

1

3
+

1

4

)

+

(
1

1
+

1

2

)

+

(
1

1

)

+

(
1

1

)

+

(
1

1

)

+

(
1

1

)

21, 22, 23, 24 < 20 31, 32 < 20 51 < 20 71 < 20 111 < 20 131 < 20

+

(
1

1

)

+

(
1

1

)

171 < 20 191 < 20 (23)
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The brackets can also be reorganized like this:

Π(20) =

(
1

1
+

1

1
+

1

1
+

1

1
+

1

1
+

1

1
+

1

1
+

1

1

)

+
1

2

(
1

1
+

1

1

)

+
1

3

(
1

1

)

+
1

4

(
1

1

)

. (24)

The first pair of brackets counts the number of primes smaller than x = 20; the second

pair counts the primes that are smaller than the square root of x, etc. Hence, denoting

the number of primes up to x by Π(x), we get Riemann’s formula,

Π(x) =

∞∑

n=1

1

n
π(x1/n) , (25)

which contains a finite number of terms, which becomes evident by looking at the following

example:

Π(x) = π(x) +
1

2
π( 2

√
x) +

1

3
π( 3

√
x) +

1

4
π( 4

√
x) + · · ·

x = 100 :

2
√
x = 10, 3

√
x = 4.6415 , 4

√
x = 3.1622, 5

√
x = 2.51188 ,

6
√
x = 2.15 . . . , 7

√
x = 1.930 . . . < 2 . (26)

If the argument of Π is less than 2, then Π(x) = 0. So our result for Π(100) is given by

Π(100) = π(100) +
1

2
π(10) +

1

3
π(4.6415) +

1

4
π(3.1622)

+
1

5
π(2.5118) +

1

6
π(2.15) + 0 + 0 + · · · . (27)

Counting the primes, we obtain

Π(100) = 25 +
1

2
· 4 + 1

3
· 2 + 1

4
· 2 + 1

5
· 1 + 1

6
· 1

= 28
8

15
= 28.533 . (28)

Hence, for any argument x > 1, the value Π(x) can be worked out for a finite sum. So

far we have learned that Π(x) measures primes. Evidently Π(x) is a step function which

starts at Π(0) = 0 and jumps at positive integers, i.e., the jump is 1 at primes, 1/2 at

squares of primes, and 1/3 at cubes of primes. Hence, our defining equations for Π(x)

can also be written as

Π(x) =
∑

p

∞∑

n=1

1

n
Θ(x− pn) , (29)
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where Θ(x) is the Heaviside step function given by Θ(x) =







1 , x > 0
1
2

, x = 0

0 , x < 0

.

There is still another function of the analytical theory of numbers which we need. It is

the so-called Möbius function, which defines the inverse of the zeta function:

1

ζ(s)
=

∞∑

n=1

µ(n)

ns
= 1− 1

2s
− 1

3s
− 1

5s
+

1

6s
− 1

7s
+ · · · . (30)

Using the original representation

1

ζ(s)
=

(

1− 1

2s

)(

1− 1

3s

)(

1− 1

5s

)(

1− 1

7s

)

· · · , (31)

we may execute the multiplication of the various factors and so end up again with

1− 1

2s
− 1

3s
− 1

5s
+

1

6s
− 1

7s
+

1

10s
− · · · , (32)

which identifies the following values for µ:

µ(1) = 1, µ(2) = −1, µ(3) = −1, µ(4) = 0, µ(5) = −1 ,

µ(6) = 1, µ(7) = −1, µ(8) = 0, µ(9) = 0, µ(5) = 1, etc. (33)

Here is the rule:

µ(n) =







−1 if n contains an odd number of primes

1 if n contains an even number of primes

0 if n contains a quadratic prime factor

(34)

For example:

µ(7) = −1; 7 is a prime number

µ(66) = −1; 66 = 2 · 3 · 11, odd number of primes

µ(18) = 0; 18 = 2 · 32, one quadratic prime number

(35)

For further use we list some lower Möbius numbers:

µ(n) = −1 2 3 5 7 11 13 17 19 23 29 30 31 37

µ(n) = 0 4 8 9 12 16 18 20 24 25 27 28 32 36

µ(n)0 + 1 1 6 10 14 15 21 22 26 33 34 35 38 39
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

µ(n) 1 −1 −1 0 −1 1 −1 0 0 1 −1 0 −1 1 1 0 −1 0 −1 0

The relation between Π(x) and π(x) is inverted by Riemann by means of the Möbius

inversion formula to obtain

π(x) =
∞∑

n=1

µ(n)

n
Π(x1/n) = Π(x)− 1

2
Π(x1/2)− 1

3
Π(x1/3)− 1

5
Π(x1/5)+

1

6
Π(x1/6)+· · · . (36)

In the final part of this section I want to discuss briefly a certain integral transform which

will be of great help in the next chapter. This transformation with kernel K(z, ξ) = ξz−1 is

known as Mellin transform, although Riemann knew about it forty years before it became

known under this name.

Let us start with

g(z) =

∞∫

0

dξξz−1f(ξ) , (37)

for example, with the left-hand side given by Γ(s), Re(s) > 0 and f(x) = e−x:

Γ(s) =

∞∫

0

dxe−xxs−1 with inverse e−x =
1

2πi

a+i∞∫

a−i∞

ds
Γ(s)

xs
. (38)

Now we replace x by nx(n = 1, 2, 3...), then multiply the equations by constants cn and

sum over n:

∞∑

n=1

cn
ns

=
1

Γ(s)

∞∫

0

xs−1

{ ∞∑

n=1

cn(e
−x)n

}

dx ,

∞∑

n=1

cn(e
−x)n =

1

2πi

a+i∞∫

a−i∞

Γ(s)

xs

{ ∞∑

n=1

cn
ns

}

ds . (39)

One can see that the Mellin transform changes the power series Σcn(e−x)n into a Dirichlet

series Σcn/n
s and the inverse of the Mellin transform changes the Dirichlet series into a

power series.

In particular, if we set cn = 1 for all n, then with Σ(e−x)n = 1/(ex − 1) we obtain an

integral representation of the Riemann zeta function:

ζ(s) =
∞∑

n=1

1

ns
=

1

Γ(s)

∞∫

0

xs−1

ex − 1
dx , Re(s) > 1 (40)
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the inverse of which is given by

1

ex − 1
=

1

2πi

a+i∞∫

a−i∞

Γ(s)ζ(s)

xx
ds (a > 1) . (41)

One of the most important formulae in Riemann’s paper is given by

log ζ(s)

s
=

∞∫

0

Π(x)x−s−1dx . (42)

Here one recognizes for the first time the close connection between the zeta function and

the function Π(x). To understand the above formula better, let us take the logarithm of

both sides of

ζ(s) =
∏

p

1

1− p−s
(43)

and using log(1− x) = −x− 1/2 x2 − 1/3 x3 · · · we obtain

log ζ(s) = −
∑

p

log(1− p−s) =
∑

p−s +
1

2

∑

p−2s +
1

3

∑

p−3s + · · · . (44)

Here we make use of the identities (Re(s) > 1)

p−s = s

∞∫

p

x−s−1ds , p−2s = s

∞∫

p2

x−s−1dx , · · · , p−ns = s

∞∫

pn

x−s−1dx , · · ·

(45)

to write

log ζ(s) =
∑

p

∑

n

1

n
p−ns =

∑

p

∑

n

1

n
· s

∞∫

pn

x−s−1dx

= s

∞∫

0

Π(x)x−s−1dx . (46)

To explain the last line, let us write

s

∞∫

0

Π(x)x−s−1dx = s







[

✘
✘
✘
✘
✘
✘
✘
✘

Π(x)(−1)
1

2
x−s
]∞

0
−

∞∫

0

dxdΠ
x−s

−s







=

∞∫

0

x−sdΠ(x) (Stieltjes integral) , (47)
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where the measure dΠ has been written as the density times dx; more precisely:

dΠ =

(
dΠ

dx

)

dx , (48)

where dΠ/dx is the density of primes plus 1/2-density of prime squares, plus 1/3-density

of prime cubes, etc.

Let us not forget that the calculus version of the “golden formula”

log ζ(s)

s
=

∞∫

0

Π(x)x−s−1dx (49)

has its origin in the Euler-Riemann prime product formula for the zeta function and the

intelligent invention of the step function Π(x). This name is justified because when x is

the exact square of a prime, e.g., x = 9 = 32,Π(x) jumps up one-half, since π(
√
x) = π(3)

jumps up 1, and so on. Note that the actual point where the jump occurs, the value of

the function is halfway up the jump.

So we have derived the marvelous formula given above, which will lead us directly to the

central result of Riemann’s paper. But what is the inverted expression, i.e., how can we

express Π(x) in terms of ζ(x)? This will be discussed in the next chapter.

3 Riemann as an Expert in Fourier Transforms

Earlier we introduced the pair of equations

log ζ(s)

s
=

∞∫

0

Π(x)x−s−1dx (Re(s) > 1) ,

and Π(x) =
1

2πi

a+i∞∫

a−i∞

log ζ(s)xs
ds

s
(a > 1) , (50)

when we discussed the Mellin transform. Let us see how Riemann reached the same result

much earlier by employing the Fourier inversion formula:

ϕ(x) =
1

2π

+∞∫

−∞





+∞∫

−∞

ϕ(λ)ei(x−λ)µdλ



 dµ . (51)
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When we write

ϕ(x) =

+∞∫

−∞

φ(µ)eiµxdµ , (52)

we can consider φ(µ) as coefficients of an expansion defined by

φ(µ) =
1

2π

+∞∫

−∞

ϕ(λ)e−iλµdλ . (53)

Now let s = a+ iµ, a = const. > 1 and µ be a real variable.

Then with λ = log x and ϕ(x) = 2Π(ex)e−ax, we obtain

x = eλ

dx
x
= dλ

:
log ζ(a+ iµ)

a+ iµ
=

+∞∫

−∞

Π(eλ)e−(a+iµ)λdλ

=: φ(µ) =
1

2π

+∞∫

−∞

ϕ(λ)e−iµλdλ . (54)

Hence we can continue to write

(ϕ(x)) = 2πΠ(ex)e−ax =

+∞∫

−∞

log ζ(a+ iµ)

a+ iµ
eiµxdµ (55)

and using ex = y, then y → x, s = a + iµ, ds = idµ, dµ = 1/i · ds we finally obtain

Π(x) =
1

2πi

a+i∞∫

a−i∞

log ζ(s)xs
ds

s
(a > 1) , (56)

which is the desired result.

From here on we can directly arrive at Riemann’s main result of his 1859 paper. However,

for the time being we have to accept two of Riemann’s novel quantities (details will be

reported later): The entire function ξ(s) (ζ(s) is not an entire function) and the product

formula for the ξ function:

ξ(s) =
1

2
s(s− 1)π− s

2Γ
(s

2

)

ζ(s) , Γ
(s

2

)

=
2

s
Γ
(

1 +
s

2

)

= (s− 1)π− s
2Γ
(

1 +
s

2

)

ζ(s) (57)

and

ξ(s) =
1

2

∏

ρ

(

1− s

ρ

)

, (58)
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with ρ the zeros of the zeta function (equal to the zeros of ξ).

So, taking the logarithm of both sides, we obtain

− log 2 +
∑

p

log

(

1− s

ρ

)

= log(s− 1)− s

2
log π + log Γ

(

1 +
s

2

)

+ log ζ(s)

or log ζ(s) =
∑

ρ

log

(

1− s

ρ

)

− log 2− log Γ
(

1 +
s

2

)

+
s

2
log π − log(s− 1) .

(59)

The first term on the right-hand side gives us the searched-for connection of the non-trivial

zeta zeros with Π(x). This becomes evident when we write

Π(x) =
1

2πi

a+i∞∫

a−i∞

log ζ(s)

s
xsds (60)

with log ζ(s) taken from above. Here, then, is Riemann’s result:

Π(x) = Li(x)−
∑

ρ

Li(xρ) + log

(
1

2

)

+

∞∫

x

dt

t(t2 − 1) log t
, x > 1 . (61)

The sum over ρ is to be understood as

∑

Imρ>0

(Li(xρ) + Li(x1−ρ)) (62)

and Li(x) denotes the logarithmic integral (see below).

This calculated expression for Π(x) is then used in the formula

π(x) =
∞∑

n=1

µ(n)

n
Π(x1/n) = Π(x)− 1

2
Π(x1/2)− 1

3
Π(x1/3)− 1

5
Π(x1/5)+

1

6
Π(x1/6)+· · · . (63)

This is Riemann’s great achievement, the explicit, exact calculation of the prime number

counting function π(x).

Let us rewrite Riemann’s result more explicitly:

Π(x) = Li(x)−
∑

Imρ>0

(Li(xρ) + Li(x1−ρ))− log 2 +

∞∫

0

dt

t(t2 − 1) log t
, x > 1 (64)

with

Li(x) = lim
ǫ→0





1−ǫ∫

0

dt

log t
+

x∫

l+ǫ

dt

log t



 . (65)
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If we differentiate Π(x) we obtain

dΠ =

[

1

log x
−
∑

Reα>0

2 cos(α log x)

x1/2 log x
− 1

x(x2 − 1) log x

]

dx x > 1 . (66)

α ranges over all values such that ρ = 1/2 + iα; in other words, α = −i(ρ− 1/2) where ρ

ranges over all roots, so that

xρ−1 + x−ρ = x−
1
2

[
xiα + x−iα

]
= 2x−

1
2 cos(α log x) . (67)

The Riemann hypothesis says that the α’s are all real.

Again, by the definition of Π, the measure dΠ is dx times the density of primes plus 1/2

the density of prime squares, plus 1/3 the density of prime cubes plus, etc. Thus 1/(log x)

alone should not be considered an approximation only to the density of primes as Gauß

suggested, but rather to dΠ/dx, i.e., to the density of primes plus 1/2 the density of prime

squares, plus, etc.

A fairly good approximation neglects the last term in dΠ. It is the number of α’s which

is significant in dΠ which Riemann meant to study empirically to see the influence of the

“periodic terms” on the distribution of primes. With the above equations we have reached

the end of Riemann’s famous paper of 1859.

We have, however, left out a number of revolutionary results to which we want to turn to

now.

4 On the Way to Riemann’s Entire Function ξ(s)

Let us begin with the integral representation of Euler’s Γ function:

Γ(s) =

∞∫

0

xs−1e−xdx ,

s→ s

2
: Γ

(s

2

)

=

∞∫

0

x
s
2
−1e−xdx ,

x = πtn2 : Γ
(s

2

)

=

∞∫

0

(πtn2)
s
2
−1e−πtn2

πn2dt ,

Γ
(s

2

)

π− s
2
1

ns
=

∞∫

0

e−πtn2

t
s
2
dt

t
,
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Take
∞∑

n=1

: Γ
(s

2

)

π− s
2 ζ(s) =

∞∫

0

ψ(t)t
s
2
dt

t
, Re(s) > 1 ,

ψ(t) =

∞∑

n=1

e−πtn2

. (68)

The last equation defines one of Jacobi’s ϑ functions:

Θ(x) := ϑ3(0, ix) =
+∞∑

n=−∞
e−πxn2

, ψ(x) =
∞∑

n=1

e−πxn2

, Θ(x) = 2ψ(x) + 1 . (69)

Also let me quote without proof the Jacobi identity:

Θ(x) =
1√
x
Θ

(
1

x

)

, x > 0 . (70)

One can then easily verify that

1 + 2ψ(x)

1 + 2ψ
(
1
x

) =
1√
x
, (71)

so that

ψ

(
1

x

)

=
1

2
Θ

(
1

x

)

− 1

2
=

1√
2

√
xΘ(x)− 1

2
=

√
xψ(x) +

√
x

2
− 1

2
. (72)

Now we are going to calculate the following integral, which will give us one of Riemann’s

wonderful results.

Using Ψ(x) = x−1/2Ψ(1/x) − 1/2 + 1/2x−1/2 and splitting the integral apart at 1, we

obtain
∞∫

0

Ψ(x)xs/2
dx

x
=

∞∫

1

Ψ(x)xs/2
dx

x
+

1∫

0

Ψ

(
1

x

)

x
s−1
2
dx

x
+

1

2

1∫

0

(

x
s−1
2 − x

s
2

) dx

x
. (73)

In the last two integrals we substitute x→ 1/x and so we get
∞∫

0

Ψ(x)x
s
2
dx

x
=

∞∫

1

Ψ(x)
[

x
s
2 + x

1
2
(1−s)

] dx

x
+

1

2

∞∫

1

[

x
1
2
(1−s) − x−

s
2

] dx

x

∞∫

1

dx
[

x−
s
2
− 1

2

]

= − 2

s− 1
,

∞∫

1

dx
[
x−

s
2
−1
]
=

2

s
,

=

∞∫

1

Ψ(x)
(

x
s
2
−1 + x−

s
2
− 1

2

)

dx =
1

s
+

1

s− 1
. (74)
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Here, then, is the important formula contained in Riemann’s paper:

Γ
(s

2

)

π− s
2 ζ(s) =

∞∫

1

Ψ(x)
(

x
s
2
−1 + x−

s
2
− 1

2

)

dx− 1

s(1− s)
.

poleΓ : s = 0

pole ζ : s = 1
(75)

Notice that there is no change of the right-hand side under s → 1 − s! π−s/2Γ(s/2)ζ(s)

has simple poles at s = 0 and s = 1. To remove these poles, we multiply by 1/2s(s− 1).

This is the reason why Riemann defines

ξ(s) =
1

2
s(s− 1)π− s

2Γ
(s

2

)

ζ(s) , (76)

which is an entire function (ζ(s) is a meromorphic function.) Obviously we have ξ(s) =

ξ(1− s) and the functional equation

Γ
(s

2

)

π− s
2 ζ(s) = Γ

(
1− s

2

)

π− 1
2
(1−s)ζ(1− s) . (77)

We obtain the right-hand side by the left-hand side by replacing s by (1− s).

Now we can continue to write for ξ(s)

ξ(s) =
1

2
− s(1− s)

2

∞∫

1

Ψ(x)
(

x
s
2 + x

1
2
(1−s)

) dx

x

=
1

2
− s(1− s)

2

∞∫

1

d

dx

{

Ψ(x)

[

x
s
2

s
2

+
x

1
2
(1−s)

1
2
(1− s)

]}

dx

+
s(1− s)

2

∞∫

1

Ψ′(x)

[

x
s
2

s
2

+
x

1
2
(1−s)

1
2
(1− s)

]

ds

=
1

2
+
s(1− s)

2
Ψ(1)

[
2

3
+

2

1− s

]

+

∞∫

1

Ψ′(x)
[

(1− s)x
s
2 + sx

1
2
(1−s)

]

dx

=
1

2
+ Ψ(1) +

∞∫

1

x
s
2Ψ′(x)

[

(1− s)x
1
2
(s−1)−1 + sx−

s
2
−1
]

dx

=
1

2
+ Ψ(1) +

∞∫

1

d

dx

[

x
3
2Ψ′(x)

(

−2x
1
2
(s−1) − 2x−

s
2

)]

dx
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−
∞∫

1

d

dx

[

x
3
2Ψ′(x)

] [

−2x
1
2
(s−1) − 2x−

s
2

]

dx

=
1

2
+ Ψ(1)−Ψ′(1)[−2− 2] +

∞∫

1

d

dx

[

x
3
2Ψ′(x)

] (

2x
1
2
(s−1) + 2x−

s
2

)

dx . (78)

Differentiation of

2Ψ(x) + 1 = x−
1
2

[

2Ψ

(
1

x

)

+ 1

]

(79)

easily gives
1

2
+ Ψ(1) + 4Ψ′(1) = 0 (80)

and using this puts the formula in the final form:

ξ(s) = 4

∞∫

1

d

dx

[

x
3
2Ψ′(x)

]

x−
1
4 cosh

[
1

2

(

s− 1

2

)

log x

]

dx , (81)

or, as Riemann writes it (s = 1/2 + it; 1/2 is Riemann’s conjecture!):

Ξ(t) = ξ

(
1

2
+ it

)

= 4

∞∫

1

d

dx

[

x
3
2ψ′(x)

]

x−
1
4 cos

(
t

2
log x

)

dx . (82)

With
d

dx

[
x3/2ψ′(x)

]
=

∞∑

n=1

(

n4π2x− 3

2
n2π

)

x1/2 exp(−n2πx) (83)

and

v =
1

2
log x (84)

and then v = 2u, we can also write Ξ
(
t
2

)
as a Fourier transform

Ξ

(
t

2

)

= 8

∞∫

0

duΦ(u) cos(ut) (85)

with

Φ(u) =
∞∑

n=1

πn2
(
2n2π exp(4u)− 3

)
exp(5u− n2π exp(4u)) . (86)

If cosh[1/2(s− 1/2) logx] is expanded in the usual power series

coshy =
1

2

(
ey + e−y

)
=
∑ y2n

(2n)!
, (87)
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we can write

ξ(s) =

∞∑

n=0

a2n

(

s− 1

2

)2n

, (88)

where

a2n = 4

∞∫

1

d

dx

[
x3/2Ψ′(x)

]
x−

1
4

(
1
2
log x

)2n

(2n)!
dx . (89)

Let us return to

ξ(s) =
1

2
s(s− 1)π− s

2Γ
(s

2

)

ζ(s) , (90)

with

π− s
2Γ
(s

2

)

ζ(s) =
1

s(s− 1)
+

∞∫

1

Ψ(x)
(

x
s
2
−1 + x−

s
2
− 1

2

)

dx , (91)

and write the right-hand side in terms of s = 1/2 + it, which makes use of Riemann’s

conjecture Re(s) = 1/2. Since the details of the substitution are trivial, we merely give

the final result:

ξ

(
1

2
+ it

)

=
1

2

(
1

2
+ it

)(

it− 1

2

)

π− 1
4
−i t

2Γ

(
1

4
+ i

t

2

)

ζ

(
1

2
+ it

)

=
−
(
t2 + 1

4

)

[

2(
√
π)

1
2
+it
]Γ

(
1

4
+
it

2

)

ζ

(
1

2
+ it

)

. (92)

In particular,

ξ

(
1

2

)

=
−1

(8π1/4)
Γ

(
1

4

)

ζ

(
1

2

)

(93)

with

ζ

(
1

2

)

= −1.4603545088 , Γ

(
1

4

)

=
√
2̟2π = 3.6256099082 , (94)

where Gauss’ lemniscate constant is given by

̟ = 2.62205755429 . (95)

Altogether:

ξ

(
1

2

)

= 0.4971207781 = a0 , (96)

which is the minimum for the real valued ξ(s) at s = 1/2. By the way ξ(0) = ξ(1) =

−ζ(0) = 1/2. The above result can also be written as

Ξ(t) := ξ

(
1

2
+ it

)

=
1

2
−
(

t2 +
1

4

) ∞∫

1

Ψ(x)x−
3
4 cos

(
t

2
log x

)

dx . (97)
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The right-hand side of this equation tells us that because t ∈ Re, x ∈ Re and log x ∈ Re,

we have

Imξ

(
1

2
+ it

)

= 0 , i.e., ξ

(
1

2
+ it

)

≡ Ξ(t) ∈ Re . (98)

Since Ξ(t) = ξ(1/2 + it) for t→ ∞ changes its sign infinitely often, ξ(s) (and ζ(s)) must

have infinitely many zeros on Re(s) = 1/2.

There is another useful form ξ(s) that starts with its original definition:

ξ(s) =
s(s− 1)

2
Γ
(s

2

)

π− s
2 ζ(s)

= eln Γ( s
2)π− s

2
s(s− 1)

2
ζ(s) . (99)

Then, setting s = 1/2 + it, we have

ξ

(
1

2
+ it

)

= elnΓ
( 1
2+it)
2 π−

1
2+it

2
1

2

(
1

2
+ it

)(
1

2
+ it− 1

)

ζ

(
1

2
+ it

)

=

[

eRe ln
( 1
2+it)
2 π− 1

4 · −t
2 − 1

4

2

][

ei Im lnΓ
( 1
2+it)
2 π− it

2 ζ

(
1

2
+ it

)]

=

[

−eRe lnΓ

(

1
2+it

2

)

π− 1
4
t2 + 1

4

2

][

e
i Im lnΓ

(

1
2+it

2

)

π− it
2 ζ

(
1

2
+ it

)]

. (100)

Notice that the first factor in the square brackets is negative. For the second factor we

have

Z(t) = eiϑ(t)ζ

(
1

2
+ it

)

, ϑ(t) = Im ln Γ

( 1
2
+ it

2

)

− t

2
ln π . (101)

Thus, Z(t) has always the opposite sign compared to the ξ function.

Now we have to compute ϑ(t) and ζ(1/2 + it). For numerical analysis it is sufficient to

use

ϑ(t) ∼ t

2
log

t

2π
− t

2
− π

8
+

1

48t
, (102)

which one can then apply to compute the roots of ξ(s) on the critical line.

5 The Product Representation of ξ(s) and ζ(s) by Rie-

mann (1859) and Hadamard (1893)

Riemann’s goal (before Weierstrass!) was to prove that ξ(s) can be expanded as an infinite

product

ξ(s) = ξ(0)
∏

ρ

(

1− s

ρ

)

, (103)
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where ρ ranges over all the roots of ξ(ρ) = 0. He did not really prove this formula, but he

was right, as shown much later by Hadamard. But one has to admit that Riemann must

have had a strong inkling of the product formula Weierstrass was soon to introduce as an

essential representation into the function theory, here the entire functions, i.e., functions

that can be determined by their zeros.

As a brief reminder, here is Weierstrass’ product representation of the Γ function:

Γ(x) = e−γx 1

x

∞∏

k=1

e
x
k

(
1 + x

k

) , (104)

where γ is the Euler-Mascheroni constant,

γ = lim
n→∞

[
n∑

k=1

1

k
− log n

]

≃ 0.5772157 . (105)

From this product formula follows, with the aid of

Γ(x)Γ(1− x) = Γ(x)(−x)Γ(−x) = π

sin(πx)
, (106)

the product representation of sin(πx):

sin(πx) = −π
x

1

Γ(x)Γ(−x) = −π
x

(

eγxx
∞∏

k=1

(
1 + x

k

)

e
x
n

)(

e−γx(−x)
∞∏

k>1

(
1− x

k

)

e−
x
k

)

= πx
∞∏

k=1

(

1− x2

k2

)

, (107)

a polynomial of infinite degree. Similarly, Euler thought of sin(πx) as a polynomial of

infinite degree when he conjectured, and finally proved, the formula for sin(πx).

So, why not think of ξ(s) as a polynomial of infinite degree and write down a product

formula determined by its infinite zeros ρ? This is what Hadamard had done in 1893 in a

paper in which he studied entire functions and their representations as infinite products

– like Weierstrass. He was able to prove that Riemann’s product formula was correct:

ξ(s) = ξ(0)
∏

ρ

(

1− ξ

ρ

)

. (108)

ξ(s) is an entire function. The infinite product is understood to be taken in an order which

pairs each root ρ with the corresponding root 1 − ρ. Hadamard’s proof of the product

formula for ξ was called by von Mangoldt “the first real progress in the field in 34 years,”

that is, the first since Riemann.
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Hadamard showed that it is possible to construct the ζ function as an infinite product,

given its zeros:

ζ(s) = f(s)
∏

ζ(ρ)=0

(

1− s

ρ

)

e
s
ρ , f(s) =

1

2(s− 1)

(
2π

e

)s

. (109)

Hence, including the trivial as well as the non-trivial zeros he obtains

ζ(s) =
1

2(s− 1)

(
2π

e

)s ∞∏

n=1

(

1 +
s

2n

)

e−
s
2n ·
∏

ρ

(

1− s

ρ

)

e
s
ρ . (110)

For the first product we use the product representation given by Weierstrass:

1

Γ(1 + s)
= eγs

∞∏

n=1

(

1 +
s

n

)

e−
s
n , (111)

and so obtain the Hadamard product formula, which is convergent in C \ {1}:

ζ(s) =
e(log 2π−1− γ

2 )s

2(s− 1)Γ
(
1 + s

2

)

∏

ρ

(

1− s

ρ

)

e
s
ρ . (112)

A slightly simplified form of the Hadamard product is

ζ(s) =
πs/2

2(s− 1)Γ
(
1 + s

2

)

∏

ρ

(

1− s

ρ

)

. (113)

Here we took pairs of roots ρ and −ρ together so the exponents e−s/ρ cancel.

The last expression shows the the ζ function can be completely constructed by its roots

(Riemann’s specialty) and the singularity at s = 1. However, to obtain absolute conver-

gence, we have to introduce ρ and −ρ pairwise in the product.

Now, we remember Riemann’s entire function ξ(s) and how it is related to the (non-entire)

ζ function:

ξ(s) =
s(s− 1)

2
Γ
(s

2

)

π− s
2 ζ(s) . (114)

Then

s(s− 1)

2
π− s

2Γ
(s

2

)

· πs/2

2(s− 1)Γ
(
1 + s

2

)

∏

ρ

(

1− s

ρ

)

, Γ
(

1 +
s

2

)

=
s

2
Γ
(s

2

)

(115)

or

ξ(s) =
1

2

∏

ρ

(

1− s

ρ

)

(116)
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and using ξ(0) = 1
2
, we have indeed

ξ(s) = ξ(0)
∏

ρ

(

1− s

ρ

)

, (117)

which is Riemann’s result of 1859!

Since the zeros of ζ(s) and ξ(s) in the critical strip are identical, we can also write

ζ(s) =
πs/2

2(s− 1)Γ
(
1 + s

2

)

∏

ρ

(

1− s

ρ

)(

1− s

1− ρ

)

=
πs/2

2(s− 1)Γ
(
1 + s

2

)

(

1− s
1
2
+ 14.134i

)(

1− s
1
2
− 14.134i

)(

1− s
1
2
+ 21.022i

)

(· · · ) ,

(118)

where we have used the first zeros on the Re(s) = 1/2 axis.

6 Derivation of Von Mangoldt’s Formula for Ψ(x)

There is another, more modern version of an equivalent to Riemann’s formula for Π(x),

i.e.,

Π(x) = Li(x)−
∑

ρ

Li(xρ)− log ξ(0) +

∞∫

x

dt

t(t2 − 1) log t
(x > 1) . (119)

This is von Mangoldt’s formula for Ψ(x), which contains essentially the same information

as Riemann’s Π(x). On the way to the explicit formula for Ψ(x), we need a special

representation of the discontinuity function. So let us begin very simply by verifying

1

s− β
=

∞∫

1

x−sxβ−1dx , Re(s− β) > 0 ,

x = eλ : =

∞∫

0

e−λseλ(β−1)eλdλ =

∞∫

0

e−λseλβdλ ,

s = a + iµ =

∞∫

0

e−λ(a+iµ)eλβαλ ,

1

a+ iµ− β
=

∞∫

0

e−iλµeλ(β−a)dλ , a > Reβ ,
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+∞∫

−∞

1

a + iµ− β
eiµxdµ =

+∞∫

−∞

eiµxdµ

∞∫

0

e−iλµeλ(β−a)dλ

=

+∞∫

−∞





∞∫

0

ei(x−λ)µdµ



 eλ(β−a)dλ

=

+∞∫

−∞

2πδ(x− λ)eλ(β−a)dλ

=

{

2πex(β−a) , x > 0

0 , x < 0
. (120)

So far we have

1

2π

+∞∫

−∞

1

a + iµ− β
ex(a+iµ)dµ =

{

exβ , x > 0

0 , x < 0
. (121)

With ex = y and s = a+ iµ, we obtain the discontinuity factor (step function)

1

2πi

a+i∞∫

a−i∞

1

s− β
ysds =

{

yβ , y > 1

0 , y < 1

β=0
=







1 , y > 1
1
2

, y = 0

0 , y < 1

a > 0 . (122)

Now we go back to the Euler-Riemann zeta function,

ζ(z) =
∏

p∈P

1

1− p−z
, Re(z) > 1 (123)

and take the logarithm:

log ζ(z) = −
∑

p

log(1− p−z) = −
∑

p

log
(
1− e−z log p

)
,

d

dz
log ζ(z) = −

∑

p

1

1− p−z

d

dz

(
1− e−z log p

)
= −

∑

p

1

1− p−z
log p · p−z

= −
∑

p

p−z

1− p−z
log p = −

∑

p

∞∑

ν=1

p−νz log p

=
ζ ′(z)

ζ(z)
.

·x
z

z
:
xz

z

∞∑

p
ν=1

log p

pνz
=

∞∑

p
ν=1

(
x

pν

)
log p

z
= −ζ

′(z)

ζ(z)
· x

z

z
,
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1

2πi

a+i∞∫

a−i∞

∞∑

p,ν=1

(
x

pν

)z
log p

z
=

1

2πi

a+i∞∫

a−i∞

−ζ
′(x)

ζ(z)

xz

z
dz

or
∞∑

p
ν=1

log p
1

2πi

a+i∞∫

a−i∞

(
x

pν

)z
1

z
dz =

1

2πi

a+i∞∫

a−i∞

−ζ
′(z)

ζ(z)

xz

z
dz

y =
x

pν
:

∞∑

p
ν=1

log p
1

2πi

a+i∞∫

a−i∞

yz

z
dz =

1

2πi

a+i∞∫

a−i∞

−ζ
′(z)

ζ(z)

xz

z
dz . (124)

Here we use the 1 of the discontinuity factor on the left-hand side and so obtain the

Chebyshev function Ψ(x):

Ψ(x) =
∑

pν<x

log p =
1

2πi

a+i∞∫

a−i∞

−ζ
′(z)

ζ(z)

xz

z
dz . (125)

So one has to sum the logarithm of all primes up to x. pν > x would mean y < 1, but for

this case the discontinuity formula gives zero.

The integral of the right-hand side can be evaluated with the aid of the theorem of residues.

The contributions to the residues of ζ ′(z)/ζ(z) · xz/z come from

Singularity Reason Residue

0 xz

z
ζ′(0)
ζ(0)

=
− 1

2
log 2π

− 1
2

= log(2π)

1 pole of ζ ζ′(z)
ζ(z)

= − 1
z−1

+ γ + · · · lim
z→1

(z − 1)
( −1
z−1

+O(1)
)

xz

z
= −x1

1
= −x

−2,−4,−6, · · · trivial zeros of ζ(z)
1
2
x−2, 1

4
x−4, 1

6
x−6,···

∞
∑

n=1

x−2n

2n
= 1

2
log(1− 1

x2
)

ρ nontrivial zeros of ζ(z) xρ

ρ

(126)

which leads to the exact explicit formula

Ψ(x) = x− log(2π)− 1

2

(

1− 1

x2

)

−
∑

ζ(ρ)=0

xρ

ρ
. (127)

This is known as Mangoldt’s formula (1895) and is one of the most important formulae

in analytic theory of numbers. Ψ(x) is real and gives the jumps for prime powers x.

Although the last term looks complex, it is not, since the zeros enter pairwise and hence

it is also real.

Ψ(x) is equivalent to Riemann’s Π(x) and one has to admit that the formula for Ψ(x) was

deduced much more easily than the formula for Π(x), with which we began this chapter.

No wonder that it is meanwhile considered preferable to that of Π(x).
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7 The Number of Roots in the Critical Strip

The following theorem was originally formulated by Riemann – but not proved. It was

not until 1905 that von Mangoldt proved that the number of zeros of ζ in the critical

range 0 < Re(s) < 1, 0 < t < T is given by

N(T ) =
T

2π
log

T

2π
− T

2π
. (128)

To prove this statement, let us assume T ≥ 3 and ζ(s) 6= 0 for t = T .

Then consider the rectangular RT in the complex plane:
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1
2

1
2

2 + iT−1 + iT

Figure 1: Boundary of RT

The zeros of the ξ function are identical to the ones of the ζ function in the critical range.

Symmetry with respect to the axis Re(s) = 1/2 yields (remember from the logarithmic

residue)

2N(T ) =
1

2πi

∫

∂RT

ξ′(s)

ξ(s)
ds . (129)

From the functional equation of ξ we obtain

ξ(1− s) = ξ(s)

−ξ
′(1− s)

ξ(1− s)
=
ξ′(s)

ξ(s)
. (130)
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C ′
T (CT ) is the left (right) boundary of RT :

∫

C′
T

ξ′(s)

ξ(s)
ds =

∫

CT

ξ′(1− s)

ξ(1− s)
d(1− s) =

∫

CT

ξ′(s)

ξ(s)
ds

> N(T ) =
1

2πi

∫

CT

ξ′(s)

ξ(s)
ds . (131)

Now, using the following representation of the ξ function,

ξ(s) =
s(s− 1)

2
π−s/2Γ

(s

2

)

ζ(s) (132)

we take the logarithm

log ξ(s) = − log 2 + log s+ log(s− 1)− s

2
log π + log Γ

(s

2

)

+ log ζ

>
d

ds
log ξ(s) =

ξ′(s)

ξ(s)
=

1

s
+

1

s− 1
− 1

2
log π +

1

2

Γ′ ( s
2

)

Γ
(
s
2

) +
ζ ′(s)

ζ(s)

> 2πiN(T ) =

∫

CT

(
1

s
+

1

s− 1

)

ds

︸ ︷︷ ︸

1©

−
∫

CT

1

2
log πds

︸ ︷︷ ︸

2©

+
1

2

∫

CT

Γ′ ( s
2

)

Γ
(
s
2

) ds

︸ ︷︷ ︸

3©

+

∫

CT

ζ ′(s)

ζ(s)
ds (133)

1©
∫

CT

(
1

s
+

1

s− 1

)

ds =
1

2

∫

∂RT

(
1

s
+

1

s− 1

)

ds
resid
=

1

2
2πi(1 + 1) = 2πi

2©
∫

CT

1

2
log πds =

1

2
log π

((
1

2
+ iT

)

−
(
1

2
− iT

))

= iT log π

3©
∫

CT

1

2

Γ′ ( s
2

)

Γ
(
s
2

) ds = log Γ
(s

2

)∣
∣
∣

1
2
+iT

1
2
−iT

= log Γ

(
1

4
+ i

T

2

)

− log Γ

(
1

4
− i

T

2

)

(134)

log Γ(s̄) = log Γ(s) : = 2i Im log Γ

(
1

4
+ i

T

2

)

Expand
=
T≥3

= 2i Im

(

log
√
2π +

(

−1

4
+ i

T

2

)

log

(

i
T

2

)

− i
T

2
+O

(
1

T

))

= 2i Im

(

log
√
2π +

(

−1

4
+ i

T

2

)(

log
T

2
+ i

π

2

)

− i
T

2
+O

(
1

T

))

= 2iπ

(
T

2π
log

T

2
− T

2π

)

− 1

8
+O

(
1

T

)

. (135)
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Our intermediate result is then

2πiN(T ) = 2πi− iT log π + 2πi

(
T

2π
log

T

2
− T

2π
− 1

8
+O

(
1

T

))

+

∫

CT

ζ ′(s)

ζ(s)
ds . (136)

N(T ) = 1− T

2π
log π +

T

2π
log

T

2
− T

2π
− 1

8
+O

(
1

T

)

+
1

2πi

∫

CT

ζ ′(s)

ζ(s)
. (137)

The last term can be split up into two parts, the results of which are given without further

detailed calculations:
2+iT∫

2−iT

ζ ′(s)

ζ(s)
ds = O(1) , for T ≥ 3 (138)

and using

2−iT∫

1
2
−iT

ζ ′(s)

ζ(s)
ds =

2∫

1/2

ζ ′(σ − iT )

ζ(σ − iT )
dσ =

2∫

1/2

ζ ′(σ − iT )

ζ(σ + iT )
ds

=

2+iT∫

1
2
+iT

ζ ′(s)

ζ(s)
ds

>
1

2πi

(
2−iT∫

1
2
−iT

ζ ′(s)

ζ(s)
ds+

1
2
+iT
∫

2+iT

ζ ′(s)

ζ(s)
ds
)

=
1

π
Im






1
2
+iT
∫

2+iT

ζ ′(s)

ζ(s)
ds




 . (139)

So far we have found

N(T ) =
T

2π
log

T

2π
− T

2π
+

7

8
+O

(
1

T

)

+
1

π
Im






1
2
+iT
∫

2+iT

ζ ′(s)

ζ(s)
ds




 . (140)

Using

1
2
+iT
∫

2+iT

ζ ′(s)

ζ(s)
ds = log ζ

(
1

2
+ iT

)

− log ζ(2 + iT )

> Im






1
2
+iT
∫

2+iT

ζ ′(s)

ζ(s)
ds




 = arg

(

ζ

(
1

2
+ iT

))

− arg (ζ(2 + iT )) . (141)

The modulus of the last expression can be shown to be O(log T ).
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Hence our final result for the number of zeros in the critical strip with 0 < T is given by

N(T ) =
T

2π

(

log
T

2π
− 1

)

+O(log T ) . (142)

As mentioned above, this formula was given by Riemann in 1859, but only proved by von

Mangoldt in 1905.

By the way, we can also approximate Im log Γ(1/4 + it/2) and so obtain

Im

{

log Γ

(
1

4
+
it

2

)}

=
t

2
log

(
t

2

)

− t

2
− π

8
− t

2
log π +O(t−1)

i.e. ϑ(t) =
t

2
log

(
t

2π

)

− t

2
− π

8
+O(t−1) . (143)

This brings us to the useful result

N(T ) =
1

π
ϑ(T ) + 1 +

1

π
argζ

(
1

2
+ iT

)

, (144)

with
1

π
argζ

(
1

2
+ iT

)

= O(log T ) for T → ∞ . (145)

So we can conclude for the number of zeros of ζ in the critical strip:

1.N(T )
T→∞−→ ∞

2.N(T ) ∼ T

2π
log T . (146)

This follows from

N(T ) =
T

2π
log

T

2π
+O(log T ) , (147)

which when divided by T/2π log T , leads to

N(T )
T
2π

log T
=

log T − log 2π

log T
+

C

T/2π
−→
T→∞

1 . (148)

This result should be compared with the prime number theorem (Gauß 1796, when he

was 15 years old)

π(x) ∼ x

log x
or lim

x→∞

(

π(x)
x

log x

)

= 1 . (149)

Von Koch proved in 1901: If the Riemann hypothesis
(
Re(s) = 1

2

)
is true, then

π(x) = Li(x) +O
(√

x log x
)
, (150)

i.e., the error in the claim π(x) ∼ Li(x) is of the order
√
x log x.
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8 Riemann’s Zeta Function Regularization

In this final section, we want to introduce the concept of the zeta function in connec-

tion with regularizing certain problems in quantum physics where infinities occur. For

this reason, we consider an operator A with positive, real discrete eigenvalues {an}, i.e.,

Afn(x) = anf(x) and one defines its associated zeta function by

ζA(s) =
∑

n

a−s
n =

∑

n

e−s lnan , (151)

where n runs over all eigenvalues. If one chooses for A the Hamilton operator of the

harmonic oscillator, for example, one gets (apart from the zero-point energy) exactly the

Riemann zeta function. By formal differentiation now follows:

ζ ′A(0) = −
∑

n

ln ane
−s ln an

∣
∣
∣
∣
∣
s=0

= − ln

(
∏

n

an

)

. (152)

This suggests the definition

detA = exp [−ζ ′A(0)] , (153)

which we shall exclusively be using in the following. The advantage of this method is that

ζ ′A(0) is not singular for many operators of physical interest. As an example of the many

applications to relativistic as well as non-relativistic problems in quantum field theory, we

will choose the Casimir effect.

This effect is a non-classical electromagnetic, attractive or repulsive force which occurs

between electrically neutral conductors in a vacuum. The size of this force was first

calculated by Casimir for the case of ideal conducting, infinitely extended, parallel plates;

his result was a force

F = − π2

240
· ~c
a4
, (154)

where a is the distance between the plates and the negative sign indicates that the plates

attract each other. This force apparently depends only on the fundamental constants ~

and c apart from the distance between the plates; not, however, on the coupling constant

α between the Maxwell and the matter field. Its quantum mechanical character is revealed

by the fact that F vanishes in the classical limit ~ → 0.

Casimir’s derivation of F was based on the concept of a quantum electrodynamic (par-

ticle) vacuum representing the zero-point oscillations of an infinite number of harmonic
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oscillators. As a result, one gets the total vacuum energy by summation over the zero-

point energies 1/2~ω~k of all allowed modes with wave number vector ~k and polarization

σ,

E =
∑

~k,σ

1

2
~ω~k . (155)

If we evaluate this equation for the case of two plane parallel plates at distance a from each

other, one does get a divergent total energy E(a), but the energy difference E(a)−E(a+δa)
is finite (δa = infinitesimal change in the plate distance), leading also to a finite force per

unit area,

F = −∂E(a)
∂a

. (156)

To calculate this energy difference or force, a UV-cut-off is usually introduced, i.e., the

energy E is replaced by
∑

~k,σ

1

2
~ω~ke

− b
πc

ω~k (157)

and, in the end result, the limit b→ 0 is considered.

This derivation of F , however, can give the impression that the appearance of the Casimir

force is linked to the existence of the zero-point fluctuations of the quantized electromag-

netic field.

In order to avoid the divergent vacuum energy problem, in the following, we shall consider

the problem according to Hawking from the viewpoint of path integral quantization and

zeta-function regularization. Here, it is again unnecessary to refer to the vacuum oscil-

lation. For reasons of simplicity, we wish to consider the Casimir effect only for a real,

scalar field theory which is defined by (~ = c = 1!)

L(φ) = −1

2
∂µφ∂

µφ− 1

2
m2φ2 − V (φ) , (158)

with the arbitrary potential V .

First, we couple the field φ to an external source J ,

L(φ) → L(φ) + Jφ . (159)

We can then write the vacuum amplitude 〈0+|0−〉J or the action W [J ] in the form

〈0+|0−〉J = eiW [J ] =

∫

[dφ]ei
∫

d4x{L(φ)+Jφ} , (160)
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where we guarantee the convergence of the path integral by the substitution m2 → m2 −
iǫ , ǫ > 0. We have assumed that |0−〉 or |0+〉 describes a vacuum which is not “disturbed”

by the presence of certain geometries, i.e., the path integral is, without restriction by

boundary conditions, to be taken over all fields φ. This changes as soon as we introduce

two plates into the vacuum, for example, perpendicular to the z axis (points of intersection:

z = 0 and z = a) and require that only those fields should contribute to the path integral

which would vanish on the plate surface, i.e., for which it holds that

φ(x0, x1, x2, 0) = φ(x0, x1, x2, a) = 0 (161)

for arbitrary (x0, x1, x2). We now get

〈0+|0−〉Ja = eiW (a,[J ])

=

∫

Fa

[dφ] exp

[

i

∫

d4x

{

−1

2
∂µφ∂

µφ− 1

2
(m2 − iǫ)φ2 − V (φ)− Jφ

}]

, (162)

where
∫

Fa
suggests that the path integral is only to be taken over the restricted space

of functions Fa defined by the boundary conditions. With this, we have represented the

vacuum amplitude or the action for the most general case as a function of the geometric

parameter a and as a functional of the external source J . In order to approach the

conditions of the QED Casimir effect, we now choose J = 0 as well as a free (V = 0),

massless (m = 0) field φ. Following a partial integration:

〈0+|0−〉a = eiW (a) =

∫

Fa

[dφ]e−
i
2

∫

d4xφ{−∂2−iǫ}φ . (163)

The Gauss integral gives

〈0+|0−〉a = eiW (a) =

∫

Fa

[dφ]e−
1
2

∫

d3xdτφ{−�E}φ . (164)

Here, N is a (divergent) constant which we shall set = 1, since it only contributes a non-

physical additive constant to W (a). By writing �E/Fa, we mean that only eigenvalues

with eigenfunctions in Fa can be used to evaluate the determinant. Furthermore (in

keeping with the iǫ requirement), a Wick rotation t→ iτ was made, i.e., �E = ∂2τ +∆.

From the original definition of the determinant, it follows that

〈0+|0−〉a = eiW (a) =
[
exp

{
−ζ ′−�E/Fa

(0)
}]− 1

2

= exp

[
1

2
ζ ′−�E/Fa

(0)

]

. (165)
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The operator −�E/Fa has the spectrum
{

k20 + k21 + k22 +
(πn

a

)2

|k0, k1, k2 ∈ R, n ∈ N
}

(166)

and thus, the zeta function

ζ−�E/Fa(s) = 2
A

(2π)2
TE
2π

∫ ∞∫

−∞

∫

dk0dk1dk2

∞∑

n=1

[

k20 + k21 + k22 +
(nπ

a

)2
]−s

. (167)

Here, the factor 2 makes allowance for the two polarization possibilities of the photon,

which, in our simple model, have no analogue. Furthermore, ATE is a normalization

volume in three-dimensional (0, 1, 2) space, where the Euclidean time TE is linked to a

(Minkowski) normalization time interval T by TE = iT . Dropping the term independent

of a (n = 0) in the last equation simply leads to the subtraction of an (infinite) constant

of W (a).

Further evaluation of ζ−�E/Fa
(s) now takes on the form

ζ−�E/Fa
(s) = 2ATE

4π

(2π)3

∞∑

n=1

∞∫

0

dkk2
[

k2 +
(nπ

a

)2
]−s

=
8π

(2π)3
ATE

(π

a

)3−2s
∞∑

n=1

n3−2s1

2

Γ
(
3
2

)
Γ
(
s− 3

2

)

Γ(s)

=
4π

(2π)3
ATE

(π

a

)3−2s

ζ(2s− 3)
Γ
(
3
2

)
Γ
(
s− 3

2

)

Γ(s)
. (168)

The derivative is

ζ ′−�E/Fa
(0) =

4π

(2π)3
ATE

(π

a

)3

ζ(−3)Γ

(
3

2

)

Γ

(

−3

2

)
d

ds

1

Γ(s)

∣
∣
∣
∣
s=0

=
π2

360a3
ATE . (169)

Finally we get

〈0+|0−〉 = eiW (a) = e−ǫ(a)TE = e−iǫ(a)T , (170)

with

ǫ(a) = − π2

720a3
A . (171)

The appearance of the phase factor e−iǫ(a)T in the vacuum amplitude allows us to identify

ǫ(a) as the vacuum energy displacement and to write, for the force per surface unit,

F = − 1

A

∂ǫ

∂a
, (172)
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which leads to

F = − π2

240
· 1

a4
(173)

or, after putting ~ and c back in:

F = − π2

240
· ~c
a4
. (174)

This is precisely Casimir’s result which we have now completely derived with the aid of

Riemann’s zeta-function regularization, which completely eliminated the divergent zero-

point energy. The same procedure finds application in QED and QCD, and can be looked

up in the list of references (i.e., in [10, 11, 12]).
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Supplements

The Riemann ζ function can be extended meromorphically into the region {s : ℜ(s) > 0}
in and on the right of the critical strip {s : 0 ≤ ℜ(s) < 1}. This is a sufficient region of

meromorphic continuation for many applications in analytic number theory. The zeroes

of the ζ function in the critical strip are known as the non-trivial zeroes of ζ .

It is remarkable that ζ obeys a functional equation establishing a symmetry across the

critical line {s : ℜ(s) = 1
2
} rather than the real axis. One consequence of this symmetry

is that the ζ function may be extended meromorphically to the entire complex plane with

a simple pole at s = 1 and no other poles. For all C \ ℜ(s) = 1 including the strip we

have the functional equation:

ζ(s) = 2sπs−1 sin
(sπ

2

)

Γ(1− s)ζ(1− s), ℜ(s) < 0 (175)

or, equivalently, the identity between meromorphic functions ζ(s):

ζ(1− s) =
2

(2π)s
cos
(sπ

2

)

Γ(s)ζ(s). (176)
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The analytical continuation given here allows one to connect ζ(s) for positive values of

ℜ(s) with the same for negative values, for instance:

ζ(−1) = 2−1π−2(−1)Γ(2)ζ(2) =
1

2
· 1

π2
· (−1) · 1 · π

2

6
= − 1

12
, (177)

i.e.,

ζR(−1) = − 1

12
, (178)

where the subscript R is added to distinguish Riemann’s ζ from Euler’s ζ , of which it is

an extension, i.e.,

ζ(x) =

∞∑

n=1

1

nx
=
∏

p prime

1

1− p−x
converging for x > 1

1

1x
+

1

2x
+

1

3x
+ . . . =

∏

p prime

px

px − 1
=

(
2x

2x − 1

)(
3x

3x − 1

)(
5x

5x − 1

)

. . .

Figure 2: The different domains of definition of Riemann’s ζ function of (179)

When we extend this function into the whole complex s plane, then Riemann’s ζ function

comes in three different representations:

ζ(s) =







∑∞
n=1

1
ns =

∏

p prime
ps

ps−1
, ℜ(s) > 1

(1− 21−s)
∑∞

n=1
(−1)n+1

ns , 0 < ℜ(s) < 1

2sπs−1 sin
(
sπ
2

)
Γ(1− s)ζ(1− s) , ℜ(s) < 0

(179)

Where is ζ(s) equal to zero?
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1. No zeroes for ℜ(s) > 1 since here ζ(s) > 0.

2. Non-trivial zeroes in the strip 0 < ℜ(s) < 1, symmetric around ℜ(s) = 1
2
.

3. Trivial zeroes for s = −2,−4, . . . , thus for ℜ(s) < 0 .

There is a pole at s = 1.

The origins of the functional equation for Dirichlet’s η

function

Euler in his “Remarques sur un beau rapport entre les series des puissances tant directes

que reciproches”1 writes the following functional equations

1− 2n−1 + 3n−1 − 4n−1 + 5n−1 − 6n−1 + . . .

1− 2−n + 3−n − 4−n + 5−n − 6−n + . . .
= −1 · 2 · 3 · . . . (n− 1)(2n − 1)

(2n−1 − 1)πn
cos
(nπ

2

)

1− 3n−1 + 5n−1 − 7n−1 + . . .

1− 3−n + 5−n − 7−n + . . .
=

1 · 2 · 3 · . . . (n− 1)(2n)

πn
sin
(nπ

2

)

.

Then he finishes his work by proving that the above statements hold true for positive and

negative whole numbers as well as for fractional values of n.

Nowadays we write with s ∈ C:

η(1− s) = − (2s − 1)

πs(2s−1 − 1)
cos
(πs

2

)

Γ(s)η(s) (180)

which is the functional equation of Dirichlet’s η function.

Hardy gave a proof for the case when s is replaced by s+ 1 in the last equation:

η(−s) = 2
(1− 2−s−1

1− 2−s
π−s−1s sin

(πs

2

)

Γ(s)η(s+ 1) . (181)

From the relation η(s) = (1− 21−s) ζ(s) one can show that η has zeroes at the points

sk = 1 + 2πik
ln 2

for all k ∈ Z \ {0}, e.g., s1 = 1 + 9.0647i. For k = 0 one finds instead

η(1) = ln 1 = 0.69315. Remember that ζ(1) = ∞.

When we write

ζ(s) =
η(s)

1− 21−s

1Remarks on a beautiful relation between direct as well as reciprocal power series.
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−4 −3 −2 −1 1 2 3 41
2

σ=ℜ(s)

−2

−1

0

1

2

3

4

−1
2

-1.46

ζ(
σ)

ζ(2) = π2

6

ζ(4) = π4

90

σ<0 0< σ<1 σ>1 Euler

Riemann analytic continuation

trivial zeroes no zeroes

Figure 3: The behaviour of Riemann’s ζ-function for real arguments.

we realize that η(s) as well as (1−21−s) have the same zeroes sk with k = 1, 2, 3, . . . . η(s) is

also zero at the points where ζ(s) is zero. These are the trivial zeroes s = −2,−4,−6, . . .

such that

η(−2) = η(−4) = η(−6) = · · · = 0 .

Finally, η, like ζ , possesses the non-trivial zeroes within the critical strip {s ∈ C|0 <

ℜ(s) < 1}. The celebrated unproven Riemann hypothesis claims that all non-trivial zeros

of ζ are located on the axis ℜ(s) = 1
2
.

ζ(s) is a meromorphic function. Later we will meet Riemann’s ξ function, ξ(s) = 1
2
s(s−

1)π− s
2Γ
(
s
2

)
ζ(s). ξ(s) is an entire function, it has non-trivial zeroes, however no trivial

zeroes and no poles. Also: ξ(s) = ξ(1− s).

The tables (1) indicate that the Γ function and trigonometric factors in the functional

equation ((175), (176), resp.) are tied to the trivial zeros and poles of the ζ function,

but have no direct bearing on the distribution of the non-trivial zeroes, which is the most

important feature of the ζ function for the purposes of analytic number theory, beyond the

fact that they are symmetric about the real axis and the critical line x = 1
2
. Exponential

functions such as 2s−1 or π−s have neither zeroes nor poles. In particular the Riemann

hypothesis is not going to be resolved just from further analysis of the Γ function.
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s ζ(s)

−2N 0

−N
−Bn+1

n+1

−7 1
240

−5 −1
252

−3 1
20

−1 −1
12

0 −1
2

1
2

−1.46035450

1 ∞
3
2

2.6123753486

2 π2

2
≈ 1.6449340(Euler,Basel)

5
2

1.3414872572

3 1.2020569
7
2

1.1267338673

4 π4

90
≈ 1.082323233

(a) A few values of ζ(s)

Function Non-trivial zeroes Trivial zeroes Poles

ζ(s) Yes −2,−4,−6, . . . 1

ζ(1− s) Yes 3, 5, . . . 0

sin πs
2

No 2N No

cos πs
2

No 2N+ 1 No

sin πs No N No

Γ(s) No No 0,−1,−2, . . .

Γ
(
s
2

)
No No 0,−2,−4, . . .

Γ(1− s) No No 1, 2, 3, . . .

Γ
(
1−s
2

)
No No 1, 3, 5, . . .

ξ(s) Yes No No

(b) Function Properties

Table 1: Properties and special values of the Riemann ζ function.
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Remarkable historical fact: Euler, in 1749 ( 110 years before Riemann!) discovered that

the following series is convergent:

φ(s) =
∞∑

n=1

(−1)n+1

ns
(182)

This is also referred to as Dirichlet’s η function. It is related to ζ by

φ(s) = (1− 21−s)ζ(s) (183)

Within the critical strip 0 < s < 1 we have:

ζ(s) =
2s−1

2s−1 − 1
φ(s) =

1

1− 21−s
φ(s)

=
1

1− 21−s

∞∑

n=1

(−1)n+1

ns
, ℜ(s) > 0, 1− 21−s 6= 0 . (184)

From Euler we have

φ(1− n)

φ(n)
=

−(n− 1)!(2n − 1)

(2n−1 − 1)πn
cos
(nπ

2

)

, (185)

and he furthermore says: “I shall hazard the following conjecture:

φ(1− s)

φ(s)
= −Γ(s)(2s − 1) cos

(
πs
2

)

(2s−1 − 1)πs
(186)

is true for all s”. We know that (η(s) =)φ(s) = (1− 21−s)ζ(s), which leads at once from

(186) to

ζ(1− s) =
2

(2π)s
Γ(s)ζ(s) cos

(πs

2

)

, ∀s ∈ C \ 1 (187)

and this is the famous functional equation which was proven by Riemann in 1859 (but it

was conjectured by Euler in 1749!). It is probably correct to assume that Riemann was

very familiar with Euler’s contribution.

With the alternating Dirichlet series at hand we can already make an important statement

regarding the zeroes of the ζ function within the critical strip 0 < ℜ(s) = σ < 1, which

is important for the Riemann hypothesis, which claims that all non-trivial zeroes of ζ lie

on the line with ℜ(s) = 1
2
.

To show this we start with

ζ(s) =

∞∑

n=1

1

ns
, s := σ + it (188)
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which is convergent for ℜ(s) > 1, is a meromorphic function and has a pole at s = 1.

Next let

ns = nσ+it = nσnit = nσeit lnn = |n|σ (cos(t lnn) + i sin(t lnn)) (189)

from which immediately follows

ζ(s) = ℜ(ζ(s)) + iℑ(ζ(s)) =
∞∑

n=1

1

nσ
[cos(t lnn)− i sin(t lnn)] (190)

⇒ ℜ(ζ(s)) =
∞∑

n=1

n−σ cos(t lnn) (191)

ℑ(ζ(s)) =
∞∑

n=1

n−σ sin(t lnn) (192)

which are convergent for σ > 1, t ∈ R. Next consider the Euler’s φ function as given in

(182), which is also known as Dirichlet’s η function. An extension of the domain of ζ into

the region of 0 < σ < 1, i.e., into the critical strip, is obtained by rewriting (183) as

ζ(s) =
1

1− 21−s
η(s) . (193)

Note that only the critical strip is of importance for the Riemann hypothesis. Note further

that η is convergent for σ = ℜ(s) > 0 and that the following alternating harmonic series,

η(1) = 1− 1

2
+

1

3
− 1

4
+ · · · = ln 2 ≈ 0.69315 , (194)

is obtained from

ln(x+ 1) = x− 1

2
x2 +

1

3
x3 − . . . − 1 < x ≤ 1 , (195)

where x is assumed to be real. One may rewrite Dirichlet’s η function in the following

way:

η(s) =

∞∑

n=1

(
1

(2n− 1)s
− 1

(2n)s

)

. (196)

From which one then obtains in a simple way (c.f. (191), (192)):

ℜ(η(s)) =
∞∑

n=1

[
(2n− 1)−σ cos(t ln(2n− 1))− (2n)−σ cos(t ln(2n))

]
(197)

ℑ(η(s)) =
∞∑

n=1

[
(2n)−σ sin(t ln(2n))− (2n− 1)−σ sin(t ln(2n− 1))

]
. (198)
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Using cosx− sin x =
√
2 sin

(
x+ 3

4
π
)

one then obtains

ℜ(η(s)) + ℑ(η(s)) =
√
2

∞∑

n=1

[

(2n− 1)−σ sin

(

t ln(2n− 1) +
3

4
π

)

−(2n)−σ sin

(

t ln(2n) +
3

4
π

)]

6= 0 ∀σ ∈ (0,
1

2
), ∀t , (199)

i.e., η possesses no roots on the left half of the critical strip, and because of the reflection

formula (176) this holds true for the right half as well, i.e., they can only be on the critical

line σ = 1
2
, which is the Riemann hypothesis.

Theorem. If ℜ(s) = σ > 0 we have

(1− 21−s)ζ(s) = η(s) =
∞∑

n=1

(−1)n−1

ns
, (200)

which implies that ζ(s) < 0 if s is real and 0 < s < 1.

Proof. First assume that σ > 1 (Euler: ℜ(s) > 1). Then we have

(1− 21−s)ζ(s) =
∞∑

n=1

1

ns
− 2

∞∑

n=1

1

(2n)s

= (1 + 2−s + 3−s + . . . )− 2(2−s + 4−s + 6−s + . . . )

= 1− 2−s + 3−s − 4−s + · · · = alternating ζ function,

which proves (200) for ℜ(s) = σ > 1. However, if σ > 0 the series on the right converges,

thus (200) also holds for σ > 0 by analytic continuation, i.e., when s is real then the sum

in (200) is an alternating series with a positive limit.

If 0 < s < 1, then the factor 1− 21−s becomes negative. Hence ζ(s) is also negative (has

no zeroes!) in 0 < s < 1.

Note that η(1) = · · · = ln 2 ≈ 0.69315 (c.f. (194)) while ζ(1) = ∞, that is, s = 1 is a pole

of the meromorphic function ζ . Furthermore we have

ζ(0) = −1

2
. (201)

Proof. Starting with the functional equation

Γ
(s

2

)

π− s
2 ζ(s) = Γ

(
1− s

2

)

π− 1−s
2 ζ(1− s) (202)
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(a) The argument

(b) The Function

Figure 4: A closer look at the behavior of ζ . Referring to 4b we have |ζ(1
2
− σ)| >

|ζ(1
2
+ σ)| or |ζ(1

2
− σ)| > |ζ(1

2
)|. No zeroes of ζ on the left half and right half of the

critical strip, which is equivalent to Riemann’s hypothesis.
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solve for ζ(s) to obtain

ζ(s) = π
s
2π− 1−s

2 Γ

(
1− s

2

)
ζ(1− s)

Γ
(
s
2

)

s→ 0 : ζ(0) = π− 1
2Γ

(
1

2

)

lim
s→0

ζ(1− s)

Γ
(
s
2

) .

Since the residues of ζ at s = 1 and of Γ at s = 0 are both 1, i.e.,

ζ(s) =
1

s− 1
+ . . . , Γ(s) =

1

s
+ . . . , (203)

we have

ζ(1− s) = −1

s
+ . . . , Γ(

s

2
) =

2

s
+ . . . (204)

and therefore

lim
s→0

ζ(1− s)

Γ( s
2
)

= lim
s→0

−
1
s
+ . . .

2
s
+ . . .

= −1

2
(205)

from which follows, using Γ
(
1
2

)

ζ(0) = π− 1
2π

1
2

(

−1

2

)

= −1

2
=⇒ ζ(0) = −1

2
. (206)

From the eqs. (98), (99) we have

t, x, ψ(x), ln(x) ∈ R .

Therefore ℑξ(1
2
+ it) = 0, i.e., ξ(1

2
+ it) ≡ Ξ(t) ∈ R and thus

Ξ(t) = ξ(
1

2
+ it) = − t2 + 1

4

2 (
√
π)

1
2
+it

Γ

(
1

4
+
it

2

)

ζ

(
1

2
+ it

)

ξ(
1

2
) = − 1

8π
1
4

Γ(
1

4
)ζ(

1

2
) ≈ 0.4971207781 =: a0

ζ(
1

2
) ≈ −1.4603545088

Γ(
1

4
) =

√
2ω̄2π ≈ 3.6256099082

where in the last equation ω̄ is the so-called Gaussian lemniscate constant.

Some special values:

ξ(0) = ξ(1) = −ζ(0) = 1

2
. (207)
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Proof. Using ξ(s) = 1
2
s(s− 1)π− s

2Γ( s
2
)ζ(s) as well as Γ(1 + s

2
) = s

2
Γ( s

2
) we obtain

ξ(s)|s=0 = (s− 1)π− s
2Γ(1 +

s

2
)ζ(s)|s=0 ⇔ ξ(s) = −1 · 1 · Γ(1) · ζ(0) = 1

2
(208)

Thus

ξ(0) =
1

2
.

In a similar manner, utilizing the reflection property ξ(s) = ξ(1− s):

ξ(s) = (−s)π− 1
2
(1−s)Γ(

3

2
− s

2
)ζ(1− s)

⇒ ξ(1) = −1 · 1 · Γ(1) · ζ(0) = 1

2

=⇒ ξ(1) =
1

2
(209)

Riemann’s Functional Equation

π− s
2Γ(

s

2
)ζ(s) = π− 1−s

2 Γ(
1− s

2
)ζ(1− s) , (210)

whose symmetry is obvious when s→ 1− s is substituted into both sides of the equation.

Proof. Starting with Euler’s Γ function

Γ(s) =

∫ ∞

0

ts−1e−tdt . (211)

Using s→ s
2
, the above results in

Γ(
s

2
) =

∫ ∞

0

t
s
2
−1e−tdt . (212)

Next one can use the substitution t = πn2x (dt = πn2dx) to obtain

Γ(
s

2
) =

∫ ∞

0

(πn2x)
s
2
−1e−πn2xπn2dx

π− s
2Γ(

s

2
)
1

ns
=

∫ ∞

0

x
s
2
−1e−πn2xdx .
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Summation over n yields

∞∑

n=1

π− s
2Γ(

s

2
)
1

ns
=

∞∑

n=1

∫ ∞

0

x
s
2
−1e−πn2xdx

π− s
2Γ(

s

2
)

∞∑

n=1

1

ns
=

∫ ∞

0

x
s
2
−1

∞∑

n=1

e−πn2xdx

π− s
2Γ(

s

2
)ζ(s) =

∫ ∞

0

x
s
2
−1

∞∑

n=1

e−πn2x

︸ ︷︷ ︸

closely related to Jacobi ϑ func.

dx

ϑ(x) =
∑

n∈Z
e−πn2x = 1 + 2

∞∑

n=1

e−πn2x = 1 + 2ψ(x), x > 0 .

⇒
∫ ∞

0

x
s
2
−1

∞∑

n=1

e−πn2xdx =

∫ ∞

0

x
s
2
−1ψ(x)dx .

Split the integral on the r.h.s into two parts:
∫ ∞

0

x
s
2
−1ψ(x)dx =

∫ ∞

1

x
s
2
−1ψ(x)dx+

∫ 1

0

x
s
2
−1ψ(x)dx . (213)

Look at ϑ(x) = 1√
x
ϑ( 1

x
) or 2ψ(x) + 1 = 1√

x
(1 + ψ( 1

x
)). The equations (72)ff. in the body

of the paper are

ψ(x) =
1√
x
ψ(

1

x
)− 1

2
+

1

2
√
x

∫ 1

0

x
s
2
−1ψ(x)dx =

∫ 1

0

x
1
2
−1

(
1√
x
ψ(

1

x
) +

1

2
√
x
− 1

2

)

dx

=

∫ 1

0

(

x
s
2
− 3

2ψ(
1

x
) +

1

2

(

x
s
2
− 3

2 − x
s
2
−1
))

dx

=

∫ 1

0

x
s−3
2 ψ(

1

x
)dx+

1

2

[
1

s
2
− 1

2

x
s
2
− 1

2 − 1
s
2

x
s
2

]1

0

=

∫ 1

0

x
s
2
− 3

2ψ(
1

x
)dx+

1

s(s− 1)

(∗)
=

∫ 1

∞

(
1

y

) s
2
− 3

2

ψ(y)

(

− 1

y2

)

dy +
1

s(s− 1)

y→x
=

∫ ∞

1

(
1

x

) s
2
− 3

2

ψ(x)
dx

x2
+

1

s(s− 1)

⇒
∫ 1

0

x
s
2
−1ψ(x)dx =

∫ ∞

1

x−
s
2
− 1

2ψ(x)dx+
1

s(s− 1)
∫ ∞

0

x
s
2
−1ψ(x)dx =

∫ ∞

1

x
s
2
−1ψ(x)dx+

∫ 1

0

x
s
2
−1ψ(x)dx
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=

∫ ∞

1

x
s
2
−1ψ(x)dx+

∫ ∞

1

x−
s
2
− 1

2ψ(x)dx+
1

s(s− 1)

=

∫ ∞

1

(

x
s
2
−1 + x−

s
2
− 1

2

)

ψ(x)dx+
1

s(s− 1)
,

where in (∗) the substitution x = 1
y
, dx = − 1

y2
dy,
∫ 1

0
→
∫ 1

∞ was used. Recall that we

started with π− s
2Γ
(
s
2

)
ζ(s) =

∫∞
0
x
s
2
−1ψ(x)dx and arrived at

π− s
2Γ
(s

2

)

ζ(s) =

∫ ∞

1

(

x
s
2 + x

1−s
2

) ψ(x)

x
dx− 1

s(s− 1)
. (214)

Note that the last term carries the pole of Γ at s = 0 and of ζ at s = 1. Note further that

the r.h.s. does not change under s→ 1− s, which implies Riemann’s functional equation

π− s
2Γ
(s

2

)

ζ(s) = π− 1−s
2 Γ

(
1− s

2

)

ζ(1− s) .

Riemann used 4-5 lines to derive this relation!

In (214) we used

x
s
2 = x

σ+it
2 = e

σ ln(x)
2

+i t
2
ln(x) = e

σ ln(x)
2

[

cos

(
t

2
ln(x)

)

+ i sin

(
t

2
ln(x)

)]

x
1−s
2 = e

(1−σ) ln(x)
2

[

cos

(
t

2
ln(x)

)

− i sin

(
t

2
ln(x)

)]

x
s
2 + x

1
2
(1−s) =

(

e
σ ln(x)

2 + e
(1−σ) ln(x)

2

)

cos

(
t

2
ln(x)

)

y= t
2
ln(x)
=

(

eσ
y
2 + e(1−σ) y

2

)

cos(y)

R.H.:σ= 1
2=
(

e
y
2t + e

y
2t

)

cos(y) = 2e
y
2t cos(y)

= 2e
1
4
ln(x) cos(y) = 2x

1
4 cos

(
t

2
ln(x)

)

and whose imaginary part vanishes for σ = 1
2
. Thus

Ξ(t) := ξ

(
1

2
+ it

)

=
1

2
+

1

2
s(s− 1)

∫ ∞

1

ψ(x) · 2 · e 1
4
ln(x) cos

(
t

2
ln(x)

)
dx

x
(215)

is a real function, which is mentioned in Riemann’s Berlin paper on p.147 as

Ξ(t) =
1

2
− (t2 +

1

4
)

∫ ∞

1

ψ(x)x−
3
4 cos

(
t

2
ln(x)

)

dx ; (216)

furthermore,

ℑξ
(
1

2
+ it

)

= 0, ⇒ ξ

(
1

2
+ it

)

= Ξ(t) ∈ R . (217)
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What is a function?

Why is 1 + 2 + 3 + 4 + · · · = − 1
12

a regularized value? A normal reaction to this result:

This is not a true result. It is hogwash to say that 1 + 2 + 3 + . . . has a finite value, as

long as one does not specify what a function is (the concept of a function) and how it is

calculated, i.e., which representation is chosen, what its domain of definition is, etc.

The following two statements are, however, true:

1 + 2 + 3 + 4 + . . .→ ∞, i.e., divergent

ζRiemann(−1) = − 1

12
.

Question: In which representation is the latter statement true? We need a more general

understanding of a function as well as the representation in which the value of the function

is calculated.

It is well known that a function can have several different representations, e.g., taking the

sine function:

f(z) =







sin(z)

eiz−e−iz

2i
Euler

z − z3

3!
+ z5

5!
− . . . Taylor expansion

z
∏∞

n=1

(

1− z2

π2n2

)

product expansion

(218)

The Taylor expansion is an infinite-sum expansion of the sine function, one needs only

powers of z. The product expansion of the sine function needs all the infinitely many

zeroes of the sine function. One sees that there are many different ways to write a single

function (e.g., sine), i.e., many different expressions for performing various calculations !

What does all of this mean for the zeta function? Let’s start with Euler’s definition

(1737):

ζ(s) =

∞∑

n=1

1

ns
, s > 1

= 1 +
1

2s
+

1

3s
+ . . . , s > 1 for convergence ,

which is a sum of reciprocal powers of integers. Evidently substituting negative numbers

for s is not allowed, not even s = 1 is permitted.

If one ignores the convergence condition s > 1, then one can write

ζEuler(−1) = 1 +
1

2−1
+

1

3−1
+ · · · = 1 + 2 + 3 + 4 + . . . , (219)
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which is pure nonsense, because it is not correctly defined. s = −1 is simply not allowed

in Euler’s definition (representation) of the zeta function, which is only defined on the

real axis 1 < x ≡ s. But there is another representation attributed to Riemann, which

can be extended into the whole complex plane, s ∈ C \ {0, 1}, i.e., including the value

ℜ(s) = −1.

ζ(s) =







ζE(s) =
∑∞

n=1
1
ns ℜ(s) > 1,Euler (1797)

ζR(s) = 2sπs−1 sin
(
πs
2

)
Γ(1− s)ζ(1− s) s ∈ C \ {0, 1},Riemann (1859)

(220)

Note that the latter function is not given as a series but as a meromorphic function.

In Riemann’s representation we obtain

ζR(−1) = 2−1π−2 sin

(−π
2

)

Γ(1− (−1))ζ(1− (−1))

= 2−1π−2(−1)Γ(2)ζ(2)

= 2−1π−2(−1) · 1 · π
2

6
= − 1

12
,

where in the third equality we used Γ(2) = (2− 1)! · 1 = 1, ζ(2) = 1+ 1
22
+ 1

32
+ · · · = π2

6
.

This is a true statement in Riemann’s zeta-function representation

− 1

12
= ζR(−1) 6= ζE(−1) =

∞∑

n=1

1

ns
|s=−1 ≡ 1 + 2 + 3 + 4 + . . . (221)

whereas Euler’s representation is not defined for s = −1.

The prime number counting function π(x).

Claim:

ln ζ(s)

s
=

∫ ∞

2

π(x)

x(xs − 1)
dx, s > 1 (222)

ζ(s) =
∏

p∈primes

1

1− p−s
, s > 1

ln ζ(s) = ln
∏

p∈primes

1

1− p−s
=

∑

p∈primes

ln
1

1− p−s

where π(x) is the number of primes smaller than x. Replacing the summation over the

primes by a summation over all integers yields

ln ζ(s) =
∞∑

n=2

{π(n)− π(n− 1)} ln 1

1− n−s
(223)
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where

π(n)− π(n− 1) =







1, n ∈ primes

0, else

projects out the primes, e.g.,

π(2)− π(1) = 1− 0 = 1

π(3)− π(2) = 2− 1 = 1

π(4)− π(3) = 2− 2 = 0

...

(223) ⇒ ln ζ(s) =
∞∑

n=2

π(n) ln
1

1− n−s
−

∞∑

n=2

π(n− 1) ln
1

1− n−s

=
∞∑

n=2

π(n) ln
1

1− n−s
−

∞∑

n=2

π(n) ln
1

1− (n+ 1)−s

=
∞∑

n=2

π(n)
(
ln(1− (n + 1)−s)− ln(1− n−s)

)
. (224)

Now use
d

dx
ln(1− x−s) =

1

1− x−s
(sx−s−1) =

s

x(xs − 1)
. (225)

Integrate both sides to obtain

ln(1− x−s) = s

∫
1

x(xs − 1)
dx+ C (226)

and use it in (224), whilst converting the indefinite integral into one over [n, n+ 1]:

ln ζ(s) =
∞∑

n=2

π(n)
︸︷︷︸

const. under integral

∫ n+1

n

s

x(xs − 1)
dx

=
∞∑

n=2

∫ n+1

n

sπ(s)

x(xs − 1)
dx n : 2 → 3, 3 → 4, . . .

ln ζ(s) =

∫ ∞

2

sπ(s)

x(xs − 1)
dx

or

ln ζ(s)

s
=

∫ ∞

2

π(x)

x(xs − 1)
dx .

This concludes the proof.
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For s > 1 there are no non-trivial zeroes of ζ . Such are located in the critical strip

0 < ℜ(s) = σ < 1. The Riemann Hypothesis states that σ = 1
2

for all zeroes of the ζ

function. Hence the formula (222) is not applicable and we have to make an analytic

continuation into the entire complex s plane.
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